2020深国交入学考试G1数学复习题型汇编: 二次函数及其应用专题 (含答案)

合集下载

2020年最新深圳国际交流学院G1入学考试数学训练2

2020年最新深圳国际交流学院G1入学考试数学训练2

2020年最新深圳国际交流学院G1入学考试数学训练一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.32.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5705.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.46.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时7.如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2 B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤28.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二.填空题(共5小题)9.因式分解:x3﹣9x=.10.已知=+,则实数A=.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题)14.计算:+﹣﹣()﹣1.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()。

2020年深国交G1入学考试数学复习资料:综合专题 精讲精练(解析版)

2020年深国交G1入学考试数学复习资料:综合专题 精讲精练(解析版)

综合专题精讲精练(含答案解析)1. 在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B 、C. (1)当n =1时,如果a=-1,试求b 的值;(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O ,①试求出当n=3时a 的值; ②直接写出a 关于n 的关系式.(2)设所求抛物线的解析式为y=ax2+bx+1, 由对称性可知抛物线经过点B(2,1)和点M(12,2),∴⎩⎪⎨⎪⎧1=4a+2b+1,2=14a+12b+1.解得⎩⎨⎧a=-43,b=83.∴所求抛物线解析式为y=-43x2+83x+1;(3)①当n=3时,OC=1,BC=3, 设所求抛物线的解析式为y=ax2+bx ,过C 作CD⊥OB 于点D ,则Rt△OCD∽Rt△CBD, ∴OD CD =OC BC =13,设OD=t ,则CD=3t , ∵OD 2+CD2=OC2, ∴(3t )2+ t 2=12,∴ t=110=1010, ∴C(1010,31010),又B(10,0), ∴把B 、C 坐标代入抛物线解析式,得⎩⎪⎨⎪⎧0=10a+10b ,31010=110a+1010b.解得:a=-103;②a=-n2+1n.2. 将抛物线c1:y=-3x2+3沿x 轴翻折,得抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m 个单位长度,平移后得的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E. ①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】【答案】解:(1)y=3x2-3.(2)①令-3x2+3=0,得x1=-1,x2=1,则抛物线c1与x 轴的两个交点坐标为(-1,0),(1,0).∴A(-1-m ,0),B (1+m,0).当AD=31AE 时,如图①,(-1+m )-(-1-m )=31, ∴m=21 当AB=31AE 时,如图②,(1-m )-(-1-m )=31, ∴m=2.∴当m=21或2时,B ,D 是线段AE 的三等分点.②存在.理由:连接AN、NE、EM、MA.依题意可得:M(-m,-3).即M,N关于原点O对称,∴OM=ON.∵A(-1-m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE,∴四边形ANEM 为平行四边形.要使平行四边形ANEM为矩形,必需满足OM=OA,即m2+(3)2=2, ∴m=1.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.3. (2011甘肃兰州,28,12分)如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线2y ax bx c=++经过点A、B和D(4,23-)。

2020中考数学 函数复习:二次函数及其图像(含答案)

2020中考数学 函数复习:二次函数及其图像(含答案)

2020中考数学函数复习:二次函数及其图像(含答案)一、选择题1.抛物线(是常数)的顶点坐标是()A.B.C.D.2.根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()x …-1 0 1 2 …y …-1 -2 …A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点3.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()4.二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.B.C.D.不能确定22()y x m n=++m n,()m n,()m n-,()m n-,()m n--,cbxaxy++=247-47-cbxaxy++=221yy<21yy=21yy>B.C.D.1111xoyyo xyo xxoy5.将函数的图象向右平移a 个单位,得到函数的图象,则a 的值为 A .1 B .2C .3D .46.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .C. D .7.把二次函数用配方法化成的形式A. B. C. D. 8.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s二、填空题1.若把代数式化为的形式,其中为常数,则=.2.已知二次函数的图象经过原点及点(,),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 3.抛物线的顶点坐标为__________.4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.5.抛物线的图象如图所示, 则此抛物线的解析式为 .2y x x =+(0)a >232y x x =-+22y x x =+-x y 22y x x =--+22y x x =-+-22y x x =-++22y x x =++3412+--=x x y ()k h x a y +-=2()22412+--=x y ()42412+-=x y ()42412++-=x y 321212+⎪⎭⎫ ⎝⎛-=x y 2120y x =223x x --()2x m k -+,m k m k +12-14-23(1)5y x =--+2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>2y x bx c =-++yx =16.函数取得最大值时,______. 三、解答题1.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.(1)求点的坐标(用表示); (2)求抛物线的解析式;(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结并延长交于点,试证明:为定值.3.已知二次函数过点A (0,),B (,0),C ().(1)求此二次函数的解析式; (2)判断点M (1,)是否在直线AC 上? (3)过点M (1,)作一条直线与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4.如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(2)(3)y x x =--x =ABC ∆90ACB ∠=︒AC BC =A C x B 3m 0m >AB y D P B D A m Q P B PQ BC E BQ AC F ()FC AC EC +2-1-5948,1212l yxQPFE DC BA O(-1,2).(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.5.新星电子科技公司积极应对世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]【参考答案】 选择题 1. B 2. B 3. C 4. C 5. B 6. C 7. D 8. C 填空题 1. -32. ,3. (1,5)4. 45. 6. 解答题1. 解:设这个二次函数的关系式为得:解得:∴这个二次函数的关系式是,即2. (1)由可知,,又△ABC 为等腰直角三角形,∴,,所以点A 的坐标是(). (2)∵ ∴,则点的坐标是(). 又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:解得 ∴抛物线的解析式为 2y x x =+21133y x =-+223y x x =-++52(3,)B m 3OC =BC m =AC BC m ==3OA m =-3,0m -45ODA OAD ∠=∠=︒3OD OA m ==-D 0,3m -(1,0)P B D 2(1)y a x =-22(31)(01)3a m a m ⎧-=⎪⎨-=-⎪⎩14a m =⎧⎨=⎩221y x x =-+(3)过点作于点,过点作于点,设点的坐标是,则,.∵ ∴∽ ∴ 即,得 ∵ ∴∽ ∴ 即,得 又∵ ∴ 即为定值8.3. (1)设二次函数的解析式为(), 把A (0,),B (,0),C ()代入得解得 a =2 , b =0 , c =-2, ∴(2)设直线AC 的解析式为 ,把A (0,-2),C ()代入得, 解得 ,∴ 当x =1时, ∴M (1,)在直线AC 上(3)设E 点坐标为(),则直线EM 的解析式为 由 化简得,即,∴F 点的坐标为().Q QM AC ⊥M Q QN BC ⊥N Q 2(,21)x x x -+2(1)QM CN x ==-3MC QN x ==-//QM CE PQM ∆PEC ∆QM PM EC PC =2(1)12x x EC --=2(1)EC x =-//QN FC BQN ∆BFC ∆QN BN FC BC =234(1)4x x FC ---=41FC x =+4AC =444()[42(1)](22)2(1)8111FC AC EC x x x x x x +=+-=+=⋅+=+++()FC AC EC +c bx ax y ++=20a ≠2-1-5948,2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩222y x =-(0)y kx b k =+≠5948,29584b k b =-⎧⎪⎨=+⎪⎩522k b ==-,522y x =-511222y =⨯-=121322--,4536y x =-2453622y x y x ⎧=-⎪⎨⎪=-⎩2472036x x --=17()(2)023x x +-=713618,第3题过E 点作EH ⊥x 轴于H ,则H 的坐标为(). ∴ ∴,类似地可得 , , ∴,∴△BEF 是直角三角形.4. 解:(1)过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E , 则AF =2,OF =1.∵OA ⊥OB ,∴∠AOF+∠BOE =90°. 又 ∵∠BOE+∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴. ∴BE =2,OE =4. ∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax 2+bx+c . ∴解之,得∴所求抛物线的表达式为. (3)由题意,知AB ∥x 轴.设抛物线上符合条件的点P 到AB 的距离为d ,102-,3122EH BH ==,2223110()()224BE =+=22213131690845()()186324162BF =+==222401025001250()()186324162EF =+==2221084512504162162BE BF EF +=+==2===OAOBAF OE OF BE ⎪⎩⎪⎨⎧==++=+-.0,2416,2c c b a c b a ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.0,23,21c b a x x y 23212-=则S △ABP =. ∴d =2.∴点P 的纵坐标只能是0或4. 令y =0,得,解之,得x =0,或x =3. ∴符合条件的点P 1(0,0),P 2(3,0). 令y =4,得,解之,得. ∴符合条件的点P 3(,4),P 4(,4). ∴综上,符合题意的点有四个: P 1(0,0),P 2(3,0),P 3(,4),P 4(,4). (评卷时,无P 1(0,0)不扣分) 5.解:(1)当时,线段O A 的函数关系式为;当时,由于曲线AB 所在抛物线的顶点为A (4,-40),设其解析式为在中,令x=10,得;∴B (10,320)∵B (10,320)在该抛物线上 ∴解得∴当时,=综上可知,(2) 当时, 当时,当时,AF AB d AB ⋅=⋅2121023212=-x x 423212=-x x 2413±=x 2413-2413+2413-2413+(3) 10月份该公司所获得的利润最多,最多利润是110万元.6. 解:(1)根据题意得解得.所求一次函数的表达式为.(2),抛物线的开口向下,当时,随的增大而增大,而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由,得,整理得,,解得,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是.7. (1)(4,0),..(2)是直角三角形.证明:令,则...解法一:..是直角三角形.解法二:,..,.即.是直角三角形.(3)能.当矩形两个顶点在上时,如图1,交于.,..解法一:设,则,,.=.当时,最大..,.,.解法二:设,则..当时,最大..,.,.当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.当时,最大.,.解法二:设,,,,..=∴当时,最大,..∴综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为。

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(含答案)

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(含答案)

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(1. 综合与实践问题探究:(1)如图①,点A 是线段BC 外一动点,若AB =a ,BC =b ,求线段AC 长的最大值(用含a ,b 的式子表示);(2)如图①,点A 是线段BC 外一动点,且AB =1,BC =4,分别以AB 、AC 为边作等边①ABD 、等边①ACE ,连接CD 、BE .①求证:CD =BE ;①求线段BE 长的最大值;问题解决:(3)如图①,在平面直角坐标系中,已知点A (2,0)、B (5,0),点P 、M 是线段AB 外的两个动点,且P A =2,PM =PB ,①BPM =90°,求线段AM 长的最大值及此时点P 的坐标.第1题图(1)解:①点A 是线段BC 外一动点,且AB =a ,BC =b , 则AC ≤AB +BC ,且当点A 位于CB 的延长线上时,线段AC 的长取得最大值,此时AC 的长的最大值为:AB +BC =a +b ;(2)①证明:①①ABD ,①ACE 都是等边三角形,①AD =AB ,AC =AE ,①BAD =①EAC =60°,①①DAC =①BAE ,在①CAD 和①EAB 中,⎩⎪⎨⎪⎧AD =AB ①CAD =①EAB AC =AE,①①CAD ①①EAB (SAS),①CD =BE ;①解:①CD =BE ,①线段BE 长的值最大值即为线段CD 长的最大值,此时BE 的最大值为:BD +BC=AB +BC =5;(3)解:如解图①,连接BM ,①PB =PM ,①MPB =90°,第1题解图①①可以将①APM 绕点P 顺时针旋转90°得到①PBN ,连接AN ,则①APN 是等腰直角三角形,①PN =P A =2,BN =AM ,①线段AM 的长的最大值即为线段BN 长的最大值, 由(1)的结论可知,当点N 在线段BA 的延长线上时,线段BN 的值最大,且此时的最大值为AB +AN 的值.①A (2,0),B (5,0),①OA =2,OB =5,AB =3,①AN =2AP =22,①最大值为22+3;如解图①中,作PE ①x 轴于点E ,第1题解图①①①APN 是等腰直角三角形,①PE =AE =12AN =2, ①OE =OA -AE =2-2,①P (2-2,2), 即线段AM 的最大值为22+3,此时P 的坐标为(2-2,2).2.综合与探究问题背景在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:如图①,点C在线段BD上,点E在线段AC上.①ACB=①ACD=90°,AC=BC;DC=CE,M,N分别是线段BE,AD上的点.“兴趣小组”写出的两个教学结论是:①①BCE①①ACD;①当CM,CN分别是①BCE和①ACD 的中线时,①MCN是等腰直角三角形.解决问题(1)请证明“兴趣小组”所写的两个结论的正确性.类比探究受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图②,当①BCM=①ACN时,①MCN是等腰直角三角形.(2)“实践小组”所写的结论是否正确?请说明理由.感悟发现“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,①MCN仍然是等腰直角三角形请你思考:(3)“奋进小组”所提结论是否正确?答:.(填“正确”、“不正确”或“不一定正确”.)(4)反思上面的探究过程,请你添加适当的条作,再写出使得①MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)图①图②备用图。

2020年深国交G1入学考试 数学模拟试卷9(初三)

2020年深国交G1入学考试  数学模拟试卷9(初三)

3.若方程组
的解 x 与 y 的和为 0,则 m 的值为( )
A.﹣2 B.0 C.2 D.4
4.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于 x 轴的直线 l:x=t(0≤t≤a)从原点 O 向右平行移动,l 在移动过程中扫过平面图形的面积为 y(图中阴 影部分),若 y 关于 t 函数的图象大致如图,那么平面图形的形状不可能是 ()
A. a(x1﹣x2)=d C. a(x1﹣x2)2=d
B. a(x2﹣x1)=d D. a(x1+x2)2=d
10.在平面直角坐标系中,函数 y=x2﹣2x(x≥0)的图象为 C1,C1 关于原点对称的图象为 C2,则直线 y=a(a 为常数)与 C1、C2 的交点共有( ) A.1 个 B.1 个或 2 个 C.1 个或 2 个或 3 个 D.1 个或 2 个或 3 个或 4 个
中阴影部分的面积为

16.方程 x=
的解是
三.解答题(共 3 小题,共 36 分) 17.(10 分)若 x1,x2 是关于 x 的方程 x2+bx+c=0 的两个实数根,且|x1|+|x2|=2|k(| k 是整数), 则称方程 x2+bx+c=0 为“偶系二次方程”.如方程 x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣ =0, x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”. (1)判断方程 x2+x﹣12=0 是否是“偶系二次方程”,并说明理由; (2)对于任意一个整数 b,是否存在实数 c,使得关于 x 的方程 x2+bx+c=0 是“偶系二次方 程”,并说明理由.
二.填空题(共 6 小题,每题 4 分)

2020年深国交G1入学考试数学复习资料:填空综合训练-12(30题)

2020年深国交G1入学考试数学复习资料:填空综合训练-12(30题)

填空综合训练-121.如图,数轴上有六个点,且EF DE CD BC AB ====,则与点C 所表示的数最接近的整数是。

2.因式分解:=+++611623x x x 。

3.方程1252-=+x x 的解是4.(1)计算:=++⨯20202020202020202018638443(.(2)如n 8333444422666666555555555555555=+++++⨯++++++,那么n =.5.若322255(21)()3x ax x x ax x b --+=+--+,其中a ,b 为整数,则ab 的值为6.已知不等式⎩⎨⎧+><14a x x ,满足不等式的所有整数解之和为5,则实数a 的取值范围是7.已知一元二次方程02=++c bx x ,且c b ,在5,4,3,21,中取值(可重复),使得组成的方程有实数根的概率为8.若方程a x x =-|24|2有且只有三个不同实根,则=a9.若m 为实数,关于x 的方程0162=-+-m x x 的两个非负实数根为a 、b ,则代数式)2)(2(22b a --的最大值为.10.已知20201+=x a ,19201+=x b ,21201+=x c ,则=---++ac bc ab c b a 22211.已知一元二次方程01)6(322=-+--+a x a a x 的两个根互为相反数,则=a 12.如图是一组密码的一部分。

为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”。

目前,已破译出“今天考试”的真实意思是“努力发挥”。

若“今”所处的位置为),(y x ,你找到的密码钥匙是(,),破译“正做数学”的真实意思是“”。

13.如图,已知9321A A A A 是一个正九边形,a A A =21,b A A =31,则51A A 的值为。

14.已知直线:l 12-=x y 与y 轴交于点A ,若将直线l 绕点A 旋转090,则得到的直线的解析式为15.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为.16.如图,已知在ABC RT ∆中,90C ∠= ,D 是BC 边上一点,AD =,CAD ABC α∠=∠=,且1tan 2α=,则BD 的长为.17.如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线)0(>=x x k y 上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为.。

2020年深国交G1入学考试 数学模拟试卷2答案(初二新版)

2020年深国交G1入学考试  数学模拟试卷2答案(初二新版)
12 解得 x1 6 2 6 , x2 6 2 6 . ∴ CD=| x1 x2 | 4 6 ≈10 . ∴ BD=13-6+10=17(米). 答:他应再向前跑 17 米.
19.(1)如图所示,设第一次落地时,抛物线的表达式为 y a(x 6)2 4 .由已知 当 x=0 时,y=1.即1 36a 4,∴ a 1 .
12 ∴ 表达式为 y 1 (x 6)2 4 .
12
(2)令 y=0, 1 (x 6)2 4 0 . 12
∴ (x 6)2 48. 解得 x1 4 3 6 ≈13 , x2 4 3 6 0 (舍去). ∴ 足球第一次落地距守门员约 13 米. (3)如图所示,第二次足球弹出后的距离为 CD, 根据题意得 CD=EF(即相当于将抛物线 AEMFC 向下平移了 2 个单位), ∴ 2 1 ( x 6)2 4 ,
x1
1 时,原方程无意义.∴
x
3 2
是原方程的解.
(2) x4 x2 6 0 .
解:设 x2 y ,那么原方程可化为 y2 y 6 0
解得 y1 3 ; y2 2 当 y 3 时, x2 3 ; x 3
当 y 2 时, x2 2 不符合题意,舍去.
所以原方程的解为 x1 3 , x2 3 .
2020年深国交入学考试
G1 数学试题模拟2(初二新版)
一、 选择题(共 10 小题,每小题 4 分,共 40 分)
1-5 BABBA 6-10 DACCA
二、填空题(共 6 小题,每小题 4 分,共 24 分)
11.18
12.-2
13.300°
14.y1<y21)设生产 A 型桌椅 x 套,则生产 B 型桌椅 (500 x) 套,由题意得 0.5x 0.7 (500 x) ≤302 2x 3 (500 x) ≥1250

2020年最新深圳国际交流学院G1入学考试数学训练试题

2020年最新深圳国际交流学院G1入学考试数学训练试题

2020年最新深圳国际交流学院G1入学考试数学训练知识点1 :函数的定义与自变量的取值范围1.(3分)下列图象能表示y是x的函数的是()A.B.C.D.2.(3分)在函数y=+中,自变量x的取值范围是()A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3知识点2 :一次函数的定义,图像与性质3.(3分)若y=(m﹣1)x2﹣|m| +3是关于x的一次函数,则m的值为()A.1 B.﹣1 C.±1 D.±24.(3分)以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4中,y的值随x的增大而减小5.(3分)A(x1,y1)和B(x2,y2)是一次函数y=(k2+1)x+2图象上的两点,且x1<x2,则y与y2的大小关系是()1A.y1=y2B.y1<y2C.y1>y2D.不确定6.(3分)已知正比例函数y=kx(k≠0)的图象经过二、四象限,则一次函数y=kx﹣k的图象大致是()A.B.C.D.7. (3分)将函数y=2x-3的图象向上平移2个单位得到的函数解析式为。

知识点3 :一次函数图像与不等式,方程(组)的关系8.(3分)函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b<0的解集为()A.x>0 B.x<0 C.x<2 D.x>29.(3分)如图,一次函数y=x+1与y=2x﹣1图象的交点是(2,3),观察图像,直接写出方程组 y=x+1 的解为()y=2x﹣1A. B.C. D.知识点4 :观察图像,获取信息10.(3分)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.11.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度12. (3分)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B. C. D.知识点5: 分段函数的定义与图像13.(3分)如图是一个运算程序的示意图,若输出y的值为2,则输入的x值可能为()A.3 B.±1C.1或3 D.±1或314.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之间的关系的是()A. B.C. D.15.(9分)某城市出租车的收费标准为:3千米以内(含3千米)收费8元,超过3千米时,超过的部分每千米收费1.4元.(1)写出车费y(元)和行车里程x(千米)之间的关系式;(2)甲乘坐13千米需付多少元钱?若乙付的车费是36元,则他乘坐了多少里程?知识点6: 反比例函数的定义,图像与性质16. (3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=17.(3分)已知函数是反比例函数,且当x<0时,y随着x的增大而增大,则m的取值是.18.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y219.(3分)对于反比例函数y=,下列说法不正确的是()A.图象分布在第一、三象限B.当x>0时,y随x的增大而减小C.图象经过点(2,3)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y220.(3分)已知函数y=图象如图,以下结论,其中正确的有()个:①k<0;②y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b(﹣x,﹣y)也在图象上.④若P(x,y)在图象上,则点P1A.4个 B.3个 C.2个 D.1个21.(3分)已知A(m+3,2),B(3,)是同一个反比例函数图象上的两个点,则m=知识点7: 反比例函数中K的几何意义22.(3分)反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是()A.y= B.y=C.y=﹣ D.y=﹣23.(3分)如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴作垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=()A.2 B.2.5C.3 D.无法确定知识点 8:反比例函数的应用24. (3分)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,当气球内的气压大于160kPa时,气球将爆炸,为了安全,气球的体积应该()A.不小于m3 B.小于m3C.不大于m3 D.小于m3知识点 9: 反比例函数与一次函数结合25.(3分)函数y=﹣2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.26.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >227.(12分)如图,直线y =kx +b 与反比例函数的图象分别交于点A (﹣1,2),点B (﹣4,n ),直线与x 轴,y 轴分别交于点C ,点D . (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.28.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C 点, CD 垂直于x 轴,垂足为 D.若OA=OB=OD=1,(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.yOxDC B A29.(14分)为了预防传染病,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)分别求出药物燃烧时及药物燃烧后y 关于x 的函数关系式, 并写出自变量x 的取值范围,(2)研究表明,当空气中每立方米的含药量低于 1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室?(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?参考答案1.D2.B3.B4.B5.B6.C7.y=2x-1,8.D 9.B 10.D 11.C 12.C 13.C 14.C8 x≤315.(1)y = (2)甲需付22元,乙乘坐了23千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

() A. x1=-3,x2=-1 B. x1=1,x2=3 C. x1=-1,x2=3 D. x1=-3,x2=1
7.已知一次函数 y1=ax+c 和反比例函数 y2=bx的图象如图所示,则二次函数
y3=ax2+bx+c 的大致图象是( )
8.在平面直角坐标系中,二次函数 y=x2+2x-3 的图象如图所示,点 A(x1,y1),B(x2, y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是( )
1
5 25
A. 2ቤተ መጻሕፍቲ ባይዱB. 5 C. 5 D. 2
11.若二次函数 y=x2-2x+m 的图象与 x 轴有两个交点,则 m 的取值范围是________.
12.已知 A(0,3),B(2,3)是抛物线 y=-x2+bx+c 上两点,该抛物线的顶点坐标是
________.
13.已知点 P(m,n)在抛物线 y=ax2-x-a 上,当 m≥-1 时,总有 n≤1 成立,则 a 的 取值范围是____________.
)
A. 当 x>0 时,y 随 x 的增大而增大 B. 当 x=2 时,y 有最大值-3 C. 图象的顶点坐标为(-2,-7) D. 图象与 x 轴有两个交点 3.二次函数 y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:
x … -3 -2 -1 0
1

y … -3 -2 -3 -6 -11 …
则该函数图象的对称轴是( )
A. 直线 x=-3
B. 直线 x=-2
C. 直线 x=-1
D. 直线 x=0
4.A(-2,y1),B(1,y2),C(2,y3)是抛物线 y=-(x+1)2+a 上的三点,则 y1,y2,y3,
的大小关系为( )
A. y1>y2>y3 B. y1>y3>y2
C. y3>y2>y1
①b>0;②a-b+c<0;③阴影部分的面积为 4;④若 c=-1,则 b2=4a. 16. 如图,已知抛物线 y=-x2+mx+3 与 x 轴交于点 A,B 两点,与 y 轴交于点 C, 点 B 的坐标为(3,0). (1)求 m 的值及抛物线的顶点坐标; (2)点 P 是抛物线对称轴 l 上的一个动点,当 PA+PC 的值最小时,求点 P 的坐标.
18.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长 为 30 米的篱笆围成.已知墙长为 18 米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米.
(1)若苗圃园的面积为 72 平方米,求 x; (2)若平行于墙的一边长不小于 8 米,这个苗圃园的面积有最大值和最小值吗?如果有, 求出最大值和最小值;如果没有,请说明理由; (3)当这个苗圃园的面积不小于 100 平方米时,直接写出 x 的取值范围.
17.图中是抛物线形拱桥,P 处有一照明灯,水面 OA 宽 4 m.从 O、A 两处观测 P 处, 仰角分别为 α、β,且 tanα=12,tanβ=32.以 O 为原点,OA 所在直线为 x 轴建立直角坐标 系.
(1)求点 P 的坐标; (2)水面上升 1 m,水面宽多少( 2 取 1.41,结果精确到 0.1 m)?
A 【解析】根据二次函数的对称性,可利用对称性,找出点 A 的对称点 A′,再利用二 次函数的增减性可判断 y 值的大小.∵函数的解析式是 y=-(x+1)2+a,如右图,
14.如图,抛物线 y=ax2+bx+c 与 x 轴相交于点 A、B(m+2,0),与 y 轴相交于点 C, 点 D 在该抛物线上,坐标为(m,c),则点 A 的坐标是________.
15. 如图,已知抛物线 y=ax2+bx+c 与 x 轴交于 A、B 两点,顶点 C 的纵坐标为-2, 现将抛物线向右平移 2 个单位,得到抛物线 y=a1x2+b1x+c1,则下列结论正确的是 ________.(写出所有正确结论的序号)
D. y3>y1>y2 5.将抛物线 y=x2-4x-4 向左平移 3 个单位,再向上平移 5 个单位,得到抛物线的函 数表达式为( ) A.y=(x+1)2-13 B.y=(x-5)2-3 C.y=(x-5)2-13 D.y=(x+1)2-3 6.若二次函数 y=ax2-2ax+c 的图象经过点(-1,0),则方程 ax2-2ax+c=0 的解为
A. y1<y2 B. y1>y2 C. y 的最小值是-3 D. y 的最小值是-4 9.抛物线 y=x2+bx+c(其中 b,c 是常数)过点 A(2,6),且抛物线的对称轴与线段 y= 0(1≤x≤3)有交点,则 c 的值不可能是( )
A. 4 B. 6 C. 8 D. 10 10.已知抛物线 y=-x2-2x+3 与 x 轴交于 A、B 两点,将这条抛物线的顶点记为 C, 连接 AC、BC,则 tan∠CAB 的值为( )
2020 深国交入学考试 G1 数学复习题型汇编:
二次函数及其应用专题 (含答案)
1.二次函数 y=x2-2x+4 化为 y=a(x-h)2+k 的形式,下列正确的是( ) A. y=(x-1)2+2 B. y=(x-1)2+3 C. y=(x-2)2+2 D. y=(x-2)2+4
2.对于二次函数 y=-14x2+x+4,下列说法正确的是(
1. B 【解析】y=x2-2x+4=x2-2x+1+3=(x-1)2+3. 2. D 【解析】y=-14x2+x+4=-14(x-2)2+5,∴当 0<x<2 时,y 随 x 增大而增大, 当 x>2 时,y 随 x 增大而减小,故 A 错误;因为抛物线开口向下,所以当 x=2,y 有最大 值是 5,故 B 不正确;图象的顶点坐标是(2,5),故 C 不正确;∵b2-4ac=5>0,∴抛物线 与 x 轴有 2 个交点,故 D 正确,故答案为 D. 3. B 【解析】由表格的数据可以看出,x=-3 和 x=-1 时 y 的值相同都是-3,所以 可以判断出,点(-3,-3)和点(-1,-3)关于二次函数的对称轴对称,利用公式 x=x1+2 x2 可求出对称轴为直线 x=x1+2 x2=-32-1=-24=-2.故选 B. 4.
相关文档
最新文档