MOS管i-v特性
第2章MOS器件物理基础

❖ 版图、电容、小信号模型等
第2章MOS器件物理基础
10
2.2 MOMSO的SI管/V工特作性-原工作理原理与阈值电压
当VG=0,MOS管相当于两个反偏的二极管,截止 当VG稍微增大时,在正的栅源电压作用下,产生电场,
这个电场排斥空穴而吸引电子,因此,使栅极附近的p型 衬底中的空穴被排斥,留下不能移动的受主离子(负离 子),截止。
第2章 MOS器件物理基础
2.1 基本概念
❖ 简化模型-开关 ❖ 结构
2.2 I/V特性
❖ 阈值电压 ❖ I-V ❖ 跨导
2.3 二级效应
❖ 体效应、沟道长度调制效应、亚阈值导电性
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础 1
2.1 基本概念-MOSFET开关
NMOS管三端器件,栅(G)、源(S)、 漏(D)。 通常作为开关使用,VG高 电平,MOS管导通,D、S连接。
nCox
W L
(VGS
Vth )VDS
1 2
VD2S
K N 2(VGS Vth )VDS VD2S
VGS-Vth:MOS管的“过驱动电压”
L:指沟道的有效长度
W/L称为宽长比,K N
1 2
nC,ox WL
称为NMOS管的导电因子,
μn载流子迁移率。
ID的值取决于工艺参数:μn、Cox、器件尺寸W和L、VDS及VGS。
第2章MOS器件物理基础 14
2.2 MOS的I/V特性-阈值电压
0 栅与衬底功函数差
COX
OX
TOX
单位面积栅氧化层电容
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH第02章就MO固S器定件物了理基,础 设计者无法改变
MOS管(新)总结

vDS /V
iD K n [2 (v G S V T )v D S v D 2 S ]iD
其中 KnK 2n ' .W LnC 2OX(W L)
本征导电因子 Kn' nCOX n 为反型层中电子迁移率 C O X 为栅极氧化层单位面积电容
vDS /V
在特性曲线原点四周 iD 2 K n (v G S V T )v D S
第五章 场效应管放大电路
场效应管是一种利用电场效应来把握电流的一种半导体器 件,是仅由一种载流子参与导电的半导体器件。从参与导电的 载流子来划分,它有电子作为载流子的N沟道器件和空穴作为 载流子的P沟道器件。
场效应管:
结型
N沟道 P沟道
增强型
MOS型
N沟道 P沟道
耗尽型 增强型 耗尽型
§5.1 金属-氧化物-半导体〔MOS〕场效应管
在VDS作用下无iD。
耗尽型:VGS=0时,漏源之间有导电沟道, 在VDS作用下iD。
§5.1.1 N沟道增加型MOSFET
1. 构造和符号
N沟道增加型MOSFET构 造左右对称,是在一块浓 度较低的P型硅上生成一层 SiO2 薄膜绝缘层,然后用 光刻工艺集中两个高掺杂 的N型区,从N型区引出电 极作为D和S,在绝缘层上镀 一层金属铝并引出一个电 极作为G
〔1〕 直流通路
Rg1
VGS= VG=VDDRg2/(Rg1+Rg2) 假设NMOS工作于饱和区,则 IDKn(VGSVT)2
+Cb2V+G g
vi Rg2
-
VDD
Rd
+Cb2
d iIdD
+
B
v0
s
VS
-
VDS= VDD-IDRd
模拟IC设计知识分享(1)

模拟IC设计知识分享(1)最近刚好要考AAIC了,于是就想着怎么把考试的知识点总结起来分成章节。
本来想画成思维导图,但一是很多公式很多图,二是知识点间相互都有联系,也着实不太好具象化。
模拟电路就是折中的艺术,硬要画成放射状也是有点难为我了。
不如就写成文章,不仅能帮助我learning by teaching,说不定也能造福点后人。
MOS管作为模拟IC的基础组成部分,掌握MOS的各项特性是重中之重。
但由于MOS管其实是一个特性非常复杂,且无法用一个简单模型做出概括的非线性器件,我们也有必要对其进行一定的简化。
我们首先介绍MOS的基本结构和简化模型。
一、MOS管三维结构MOS管符号[1]典型的NMOS拥有四个端口,分别是栅极(gate),源极(source),漏极(drain)和衬底(body/bulk)。
MOS管是一种将电压转化为电流的器件,可以简单理解为一个压控电流源,以栅极和源极间的电压控制流过漏极和源极的电流。
根据各个端口间电压的不同,MOS管还可以分为三个工作区域,分别为截止区(cut-off region),线性区/三极管区(triode region)和饱和区(saturation region)。
我们可能已经了解MOS管可以用作开关,也可以对信号进行放大。
当MOS管用作开关时,它就工作在线性区;而当用作放大器时,它需要工作在饱和区。
在进一步分析每个工作区域的特性和条件之前,我们首先把这个抽象模型和实际世界的MOS管这一半导体器件对应起来。
NMOS管三维结构[2]上图所示是一个NMOS的结构图。
器件制作在p型衬底(substrate)上,两个n离子掺杂区形成源极和漏极,并通过金属引出。
早期MOS管的栅极由金属层制成(如图,这也是MOSFET名字中第一个M-Metal的由来),但现今大部分的MOS 管采用多晶硅(poly)来制作栅极,而名字却没有随之修改。
当然多晶硅和金属制作栅极各有利弊,还请详见半导体物理一书。
LDMOS介绍

阈值电压
阈值电压Vgs(th)定义为使半导体表面为反型层 时栅上所需加的电压。它由三部份组成:(1)栅 上首先需加电压VFB(平带电压)使半导体表面能 带是平的;(2)若要表面反型则半导体能带应有 2qφFB的弯曲,其中qφFB是体内费米能级到禁带中央 的距离,故栅上还应再加qφFB的电压;(3)能带弯 qφ 3 曲qφFB对应着表面反型层到体内有一过渡的耗尽层, 此耗尽层有一负的电荷面密度,这个负电荷需由栅 上相应的正电荷来屏蔽,因此氧化层上又需再加一 个电压Q/Cox,综上所述,得到阈值电压:
LDMOS
(Laterally Diffused Metal Oxide Semiconductor)
横向扩散金属氧化物半导体
简介
80年代以来,迅猛发展的超大规模集成电路技术给高压大电流半导体注入了 新的活力,一批新型的声控功放器件诞生了,其中最有代表性的产品就是 VDMOS声效应功率晶体管。这种电流垂直流动的双扩散MOS器件是电压控制型 器件。在合适的栅极电压的控制下,半导体表面反型,形成导电沟道,于是漏极 和源极之间流过适量的电流VDMOS兼有双极晶体管和普通MOS器件的优点。与 双极晶体管相比,它的开关速度,开关损耗小;输入阻抗高,驱动功率小;频率 特性好;跨导高度线性。特别值得指明出的是,它具有负的温度系数,没有双极 功率的二次穿问题,安全工作区大。因此,不论是开关应用还是线性应用, VDMOS都是理想的功率器件。 九十年代中后期开始大批量生产LDMOS,作为微波低端大功率(20W以上)器 件的主流技术, 2. 4GHz以下输出峰值可达到200W以上,年产量超过4亿美元。与 传统的双极型晶体管相比, LDMOS器件在2. 4GHz以下频段时,增益、线性度、开 关性能、散热性能、价格等方面都有着明显的优势。今后LDMOS将向更高频率、 更低成本方向发展,见表1。 现在,VDMOS器件已广泛应用于各种领域,包括电机调速、逆变器、不间 熠电源、开关电源、电子开关、高保真音响、汽车电器和电子镇流器等。由于 VDMOS的性能价格比已优于比极功率器件,它在功率器件市声中的份额已达 42%。并将继续上升。世界各大半导体厂商如Freescale公司(占全球市场60% )、 Philips公司(占全球市场25% )、Infineon公司以及STM公司等竞相研究与开发。
MOS器件物理(2)

饱和区MOS管的跨导与导纳
讨论2:
两种跨导相比可得到如下结论: 对于双极型,当IC确定后,gm就与几何形状 无关,而MOS管除了可通过IDS调节跨导外, gm还与几何尺寸有关;双极型三极管的跨导
dI C 双极型三极管的跨导为: g m dV BE
VCE C
IC VT
,
与电流成正比,而MOS管的跨导与成正比, 所以在同样工作电流情况下,MOS管的跨导 要比双极型三极管的跨导小。
MOS管的电特性-输出特性(I/V特性)
MOS晶体管的输出电流-电压特性的经典描述是萨氏方程。 忽略二次效应,对于NMOS管导通时的萨氏方程为:
W 1 2 I D n C ox (VGS Vth )V DS 2 V DS L 2 K N 2(VGS Vth )V DS V DS
漏极电流随栅源电压的变化率,即:
I D gm VGS 2 K N VGS Vth
VDS C
2I D 2 KN ID VGS Vth
饱和区跨导的倒数等于深三极管区的导通电阻Ron
饱和区MOS管的跨导与导纳
讨论1:
在KN(KP)为常数(W/L为常数)时,跨 导与过驱动电压成正比,或与漏极电流ID的 平方根成正比。 若漏极电流ID恒定时,则跨导与过驱动电压 成反比,而与KN的平方根成正比。 为了提高跨导,可以通过增大KN(增大宽长 比,增大Cox等),也可以通过增大ID来实 现,但以增大宽长比为最有效。
I D 2 K N VGS Vth VDS
上式表明在VDS较小时,ID是VDS的线性函数,即这时MOS管可 等效为一个电阻,其阻值为: VDS 1 Ron ID 2 K N VGS Vth
Cmos模拟电路基础

1Cmos 模拟电路基础(一)写这个文章的目的是为了这段时间的学习作个笔记,同时激励自己继续下去。
1,NMOS管的V-I特性非饱和区的I-V特性。
( 0 < Vds < Vgs – Vtn )Vd = u E其中,u为电子迁移率,E=V/l, 为导体内的场强。
Ids = 0.5*K*(W/L)*[2*(Vgs – Vtn)*Vds – Vds*exp2]其中,K为器件的跨导系数,K= u*Cox = (u*ε0*εox)/ tox用βn表示器件的增益系数,βn = K* (W/L)饱和区的I-V特性。
( 0 < Vgs - Vtn < Vds )随着Vds的增大,沟道漏端的导电层会减薄,当Vds = Vgs – Vtn时,它被夹断。
当Vds继续增大,夹断点向源端移动。
此时,沟道两端电压保持为(Vgs – Vtn),而Vds的增加部分落在夹断耗尽区内,Ids几乎不变。
如果夹断耗尽区的长度远小于L,忽略沟道长度的缩短,用Vgs – Vtn = Vds 带入得到饱和区的电流表达式为Ids = 0.5*K*(W/L)*[(Vgs – Vtn)*exp2]但是,当考虑沟道长度调制效应时,Ids = 0.5*K*(W/L)*[(Vgs – Vtn)*exp2]*(1+λ*Vds)试验证明,λ是沟道长度的线性函数。
截止区(Vgs – Vtn < = 0)Ids = 0.PMOS管的V-I特性,它的偏压与极性与NMOS相反。
但是,由于电子的迁移率与空穴的迁移率不等,前者是后者的2~3倍,因此,Kn= (2.0~3.0)Kp2,MOS管的小信号模型输入信号的幅度一般与电源电压相比很小,它在直流偏置工作点附近变化,可以近似认为器件工作在线性区间。
大信号可以确定器件的直流工作点,小信号可以用来设计器件和电路的性能。
对于在饱和区工作的mos,gm = K*(W/L)*(Vgs – Vtn)*(1+λ*Vds)其中,gm 是栅跨导gds = 1/rds = ( Ids *λ)/(1+λ*Vds ) =λIds其中,rds 是mos管的输出电阻。
MOS器件物理(1)

在截止时,耗尽区电容较大,故可忽略,因此 CGB=WLCox。
CSB与CDB的值相对于衬底是源漏间电压的函数
MOS管的电容随栅源电压的变化-饱和区
栅漏电容大约为:WCol。 漏端夹断,沟道长度缩短,从沟道电荷分布相当于 CGS增大,CGD减小,栅与沟道间的电位差从源区的 VGS下降到夹断点的VGS-Vth,导致了在栅氧下的沟 道内的垂直电场的不一致。可以证明这种结构栅源的 过覆盖电容的等效电容为: 2 WLCox /3 因此有:
CGS=2WLCox/3+ WCol
MOS管的电容随栅源电压的变化-线性区
漏源之间产生反型层并且沟道与衬底之间形成较厚的 耗尽层,产生较小的耗尽层电容,此时栅极电容为:
CGD = CGS = WLCox /2+ WCol 因为S和D具有几乎相等的电压,且栅电压变化ΔV就 会使相同的电荷从源区流向漏区,则其栅与沟道间的 电容WLCox等于栅源及栅漏间的电容。
MOS管的电特性
主要指:
阈值电压
I/V特性
输入输出转移特性
跨导等电特性
MOS管的电特性 -阈值电压(NMOS)
在漏源电压的作用下刚开始有电流产生时的VG为阈值电压Vth :
Vth MS
Qb Qss Q b 2 f 2 f VFB Cox Cox Cox
无源器件:
模拟集成电路中常用的电阻、电容的结构及其特点。
等比例缩小理论; 短沟道效应及狭沟道效应; MOS器件模型。
有源器件-MOS管
结构与几何参数(1)
G G
tox
B p+ n+
S
D n+ p+
D
S p+ n阱 n+
mos管基极电压

MOS管基极电压详解一、MOS管的基本概念MOS管,即金属-氧化物-半导体场效应晶体管,是半导体器件中的一种重要类型。
其基本结构包括金属、氧化物和半导体三个部分。
在MOS管中,基极电压通过控制半导体中的电荷分布,进而控制电流的流动。
二、MOS管的基极电压基极电压是MOS管中一个非常重要的参数,它直接影响到MOS管的开关速度、驱动能力、功耗以及稳定性等性能。
适当的基极电压可以保证MOS管的正常工作,提高系统的效率和稳定性。
三、MOS管的伏安特性伏安特性是指电流和电压之间的关系。
在MOS管中,伏安特性表现为非线性关系。
当基极电压增加时,漏极电流也会增加。
这种特性使得MOS管具有高输入阻抗和低输出阻抗的优点。
四、MOS管的工作原理MOS管的工作原理是基于半导体中的电荷分布受电场控制而改变的原理。
当基极电压施加到半导体上时,会在半导体中产生一个电场,这个电场会改变电荷的分布。
当基极电压改变时,电场也会改变,从而改变电荷的分布,进而改变电流的流动。
五、MOS管的开关特性MOS管具有高速开关特性,可以在非常短的时间内完成开关动作。
当基极电压改变时,MOS管可以迅速地开启或关闭,从而实现高速开关动作。
这种特性使得MOS管在许多电子设备中得到广泛应用。
六、MOS管的热稳定性热稳定性是指电子设备在高温条件下保持正常工作的能力。
在MOS管中,热稳定性取决于其制造工艺和材料选择。
高质量的制造工艺和材料选择可以保证MOS管在高温条件下保持稳定的工作状态。
七、MOS管的可靠性可靠性是指电子设备在长时间使用过程中保持正常工作的能力。
在MOS管中,可靠性取决于其制造工艺和材料选择以及使用环境。
高质量的制造工艺和材料选择可以保证MOS管的可靠性。
同时,正确的使用和维护也可以提高MOS管的可靠性。
八、MOS管的制造工艺制造工艺是指制造电子设备所采用的技术和方法。
在MOS管的制造过程中,需要采用先进的制造工艺和技术以确保其质量和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
分析mos晶体管i-v特性分析
二、实验要求
了解结型场效应管和MOS管的工作原理、特性曲线及主要参数
三、实验内容
1、MOS器件的结构介绍
2、MOS的工作原理
3、i-v特性曲线
图1 原理图
1.特性曲线和电流方程
输出特性曲线
与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止
区和击穿区几部分。
转移特性曲线
转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和
区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线.
i D 与v GS 的近似关系
与结型场效应管相类似。
在饱和区内,i D 与v GS 的近似关系式为
( v
GS >
V T )
式中I DO 是v GS =2V T 时的漏极电流i D 。
2.参数
2
GS DO
D
)1(-=T
V v I i
MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。
MOS管
1. 基本结构
原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。
如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。
反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。
当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。
沟道消失时的栅-源电压称为夹断电压,仍用V P表示。
与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。
而后者在v GS=0,v GS>0,V P<v GS<0的情况下均能实现对iD的控制,而且仍能保持栅-源极间有很大的绝缘电阻,使栅极电流为零。
这是耗尽型MOS管的一个重要特点。
图(b)、(c)分别是N沟道和P沟道耗尽型MOS管的代表符号。
电流方程:在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即
各种场效应管特性比较
1,MOS管导通特性
导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3,MOS开关管损失
MOS在导通和截止的时候,一定不是在瞬间完成的。
MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。
通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。
导通瞬间电压和电流的乘积很大,造成的损失也就很大。
缩短
开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。
这两种办法都可以减小开关损失。
I d s
GS T
DS V V V -,NMOS 进入饱和区,此时源漏电流与Vds 无关,满足关系式
2()2n ox
ds GS T W C I V V L
μ=
-,W 为NMOS 沟道宽度,L 为沟道长度,n μ为电子迁移率,
T V 为阈值电压。
跨导为()n ox
m GS T W C g V V L
μ=
-,饱和区的跨导随着Vgs 的提高而增大,但由输出特性曲线可以看出在饱和区时,Ids 随着Vds 的增加有微弱的增加,这是因为有效沟道调制效应造成的结果。
当GS T
DS V V V -时,sat V 向源端移动,即夹断点向
源端移动,但夹断点的电压依然为
sat GS T V V V =-,有效沟道长度减小,导致电阻
减小,因此源漏电流才会有所增加,但在长沟道MOS 器件并不显著,但在短沟道且比较突出。
GS T
DS V V V -时,器件处于线性区21[()]2
n ox ds GS T DS DS W C I V V V V L
μ=--,
四、实验总结
这次实验主要是通过cadence 软件来分析mos 晶体管的i-v 特性,在实验中不断地进行测试仿真,得到符合理论的MOS 晶体管i-v 特性,进一步加深了对
MOS晶体管的特性了解和熟悉了cadence软件,提高了动手能力和解决问题的能力,这次实验收获很大。