七年级培优试题及答案
七年级上册语文培优试卷(含答案)

七年级上册语文培优试卷(含答案)(总分70分)一、语文知识及运用1. 根据拼音在括号内用正楷写出相应的汉字。
(3分)落叶的静,也许是一种伤残的清幽,也许是一种优yǎ( 雅 )的静怡。
她会静静地梦恋在你的脚下,会mù( 沐 )浴在你涟漪的秋水里,也许会随风儿轻舞,飘向你心里看不到的某个角落,暗暗nì( 匿 )笑。
2.下面词语中加点字注音全部正确....的一项是( A )(3分)A.嫩.芽(nèn)暴怒.(nù)收敛.(liǎn)絮絮叨.叨(dāo) B.诀.别(jué)烂.漫(làn)树杈.(chā)忍俊不禁.(jìn) C.迂.回(yū)啜.泣(duō)宽恕.(sù)头晕目眩.(xuàn) D.憔悴.(chuì)颤.动(zhàn)隐秘.(mì)瘦骨嶙.峋(lín )3.下列句子中加点的成语使用不当..的一项是( D )(3分)A.安娜对这一问题不求甚解....,所以他的分析似是而非,未能切中要点。
B.11月10日,今冬第一场雪飘落巫溪红池坝,老师带领同学们玩耍其中,同学们快乐得像一群小鸟,老师的身心得到了放松,真是各得其所....。
C.这下子,我才恍然大悟....,原来小明一直在暗地里帮助我啊!D.朦胧夜色中,小偷一丝不苟....地搜寻房主人的卧室。
4.下面文段中有语病...的一句是( A )(3分)(A)“满山红叶似彩霞,彩霞年年映三峡……”每当一丛丛一簇簇的红叶拥满整个山坡时,这优美的旋律就飘荡在脑海里,流动在唇齿间。
(B)由于巫山小三峡的巴雾峡满山遍野都是红叶,吸引了中外许多摄影师到此拍摄。
(C)红叶,绿水,灰色的船和白色的浪花,让人留恋忘返。
(D)不久前开辟的观景步行道和观景台,更是让游客能够零距离欣赏红叶。
5.依次填入横线处最恰当...的一组是( D )(3分);;;而衰黄了的叶片却给田野着上了凋敝的颜色。
人教版七年级生物下册期末培优试题及参考答案

人教版七年级生物下册期末培优试题及参考答案一、选择题1.如图所示,A 、B 、C 、D 表示与人体新陈代谢相关的生理过程, ①代表人体的某一系统。
下列说法中错误的是( )A. ①表示人体的消化系统B. C 过程使血液由静脉血变为动脉血C. 完成D 的气体交换过程依靠扩散作用D. A 过程使血液内葡萄糖、水、无机盐、尿素含量增加2.测得某同学的肺容量变化情况如下图,据图分析正确的是( ) A. 该同学肺容量最大为4升 B. AB 段表示吸气过程 C. BC 段膈肌处于收缩状态D. AD 段曲线所示呼吸频率为36次/分3.下列选项中,甲、乙、丙、丁之间的关系与如图所示一致的是( )A. AB. BC. CD. D4.如图为人体内血液流经某部位的示意图,a 、b 表示相关血管,“→”表示血流方向。
根据图示,以下推断合理的是( )A. 若a 为动脉,则b 一定是静脉B. 若a 为上腔静脉,则X 为左心房C. 若X 为肾脏,则b 内尿素含量会上升D. 若X 为大脑,则b 内氧气含量会降低5.下列关于人体不同生理过程的示意图,正确的是( ) A. 空气→鼻腔→咽→喉→气管→支气管→肺B. 光线→瞳孔→角膜→晶状体→视网膜→视神经→视觉中枢C. 血液→肾小球→出球小动脉→肾小管→肾小囊→尿液D. 左心室→主动脉→各级动脉→全身毛细血管网→各级静脉→上下腔静脉→左心房 6.如图为神经元的结构示意图,下列说法正确的是( )甲 乙 丙 丁 A 神经中枢 脑 脊髓 视觉中枢 B 脑 大脑 小脑 脑干 C 反射 向地性 望梅止渴 惊弓之鸟 D人体内的激素生长素胰岛素肾上腺素A. 该神经元就可以完成最基本的反射活动B. 该神经元包括细胞体和突起两部分C. ③外表都套有一层鞘,组成神经纤维D. 神经元又称为神经,是神经系统结构和功能的基本单位7.小肠吸收来的氨基酸被运至脑部,并将脑部产生的含氮废物送至肾脏排出。
在整个过程中,血液经过心脏和肺的次数是()A. 各2次B. 心脏2次,肺1次C. 各4次D. 心脏4次,肺2次8.下列对甲、乙、丙、丁四幅曲线图的叙述中正确的是()A. 甲图中曲线表示人体血液流过肾脏后某物质含量的变化情况,则该物质可能是尿素或无机盐B. 乙图为正常人进食后血糖含量的变化曲线,BC段出现血糖含量上升的情况主要是由于食物中糖类的消化C. 如丙图,若A为吸入气体,B为呼出气体,则X可表示二氧化碳D. 如丁图,若A为动脉,C为静脉,则曲线a表示二氧化碳浓度的变化9.学习科学时我们经常会用图象来建模,下列对图象的分析错误的是()A. 甲图中饭后1小时(BC段)血糖含量出现大幅上升的原因是糖类被消化吸收B. 某人每次呼吸肺内气压变化的曲线可以用图乙表示C. 图丙表示血液流经肾单位时某些物质含量的变化情况,曲线A代表的物质是尿素D. 图丁中脂肪在器官d中最终被消化成甘油和脂肪酸10.下列有关生命活动调节的描述中,不正确的是()A. 内分泌腺通过导管分泌激素B. “望梅止渴”,“谈虎色变”都是人类特有的复杂反射C. 神经系统是由脑、脊髓和它们发出的神经组成的D. 激素调节既受神经调节的控制,也能对神经调节产生影响11.下列措施中,不能帮助糖尿病患者降低餐后血糖浓度的是()A. 控制饮食B. 限制糖类的摄入量C. 限制脂肪的摄入量D. 限制运动量12.足球场上,你争我夺而又互相配合,人体中起主要调节作用的系统是()A. 呼吸系统B. 运动系统C. 循环系统D. 神经系统13.下列与人体生命活动调节有关的说法,正确的是()A. 幼年时甲状腺激素分泌不足,会患侏儒症。
七年级上期培优数学测试题

七年级上期培优数学测试题姓名 分数一、选择题(本大题共10小题,每小题3分,共30分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、 一滴墨水洒在一个数轴上,根据图24中标出的数值, 可以判定墨迹盖住的整数个数是( ) A .285. B .286. C .287. D .288. 2、 整数a,b 满足:a b ≠O 且a+b =O ,有以下判断:○1a,b 之间没有正分数. ○2a,b 之间没有负分数. ○3a,b 之间至多有一个整数. ○4a,b 之间至少有一个整数. 其中,正确判断的个数为( ) (A )1. (B )2. (C) 3. (D) 4.3、 方程13153520052007x x x x +++=⨯ 的解是 x =( ) (A )20072006. (B )20062007 . (C) 10032007. (D) 20071003.4、 如图2,边长为1的正六边形纸片是轴对称图形,它的对称轴的条数是( )。
(A ) 1. (B) 3. (C) 6. (D) 9..5、 在9个数:-5,-4,-3,-2,-1,0,1,2,3中,能使不等式-32x <-14成立的数的个数是( ) (A )2. (B)3. (C)4. (D)5.6、 韩老师特制了4个同样的立方块,并将它们如图3(a )放置,然后又如图3(b )放置,则图3(b )中四个底面正方形中的点数之和为( ) (A )11. (B)13. (C)14. (D)16.图37、 对于彼此互质的三个正整数,,a b c ,有以下判断:①,,a b c 均为奇数. ②,,a b c 中必有一个偶数. ③,,a b c 没有公因数. ④,,a b c 必有公因数. 其中,不正确的判断的个数为( )(A )1 . (B )2 . (C )3 . (D )4.图1LOBA图28、 某中学科技楼窗户设计如图15所示.如果每个符号(窗户形状)代表一个阿拉伯数码,每横行三个符号自左至右看成一个三位数.这四层组成四个三位数,它们是837,571,206,439.则按照图15中所示的规律写出1992应是图16中的()9、将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体。
七年级上册数学培优题及详解答案

挑战题1、已知a :b :c=2 :3 :4,且2a+3b-2c=10,求a, b,c的值。
2、麦迪在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了两分球和个罚球.3、小明、小亮、小强三个人在一起玩扑克牌,,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张。
”小亮给小明牌之后他手中还有张牌。
4、.一个长方形的周长为26,如果长减少1,宽增加2,就可成为一个正方形,设长方形的长为,则可列方程为.5、生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了.(精确到元.毛利率即利润率)6、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马.7、古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()8、一张试卷共25道题,做对一题得4分,做错或不做一题扣1分,小明做了全部试题,若要得70分以上,那么小明至少要做对的题数是()9、小亮的爸爸在一家合资企业工作,月工资5500元,按规定:其中2500元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过1500元的部分按3%的税率;超过1500元不超过4500元的部分则按5%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?10、民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b 千克(b>a)时,所交费用为Q=10b-200(单位:元).(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m表示Q.11、某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.12、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?13、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?14、小华家是我市第一批9万户统一换装“峰谷分时”电表的家庭之一,他们家将率先享受苏州市生活用电“峰谷分时电价”的新政策,用电价将按不同时段实行不同的价格,具体为:8点至21点为“峰时”,电价为每千瓦时0.55元;21点至次日8点为“谷时”,电价为每千瓦时0.30元,而我市原来实行的电价为每千瓦时0.52元。
七年级培优试卷【含答案】

七年级培优试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种现象属于光的折射?A. 镜子中的倒影B. 针孔成像C. 水中的鱼看起来更浅D. 彩虹2. 下列哪个单位是力的国际单位?A. 焦耳B. 牛顿C. 瓦特D. 安培3. 在下列反应中,哪个是放热反应?A. 灯泡发光B. 燃烧木材C. 溶解氨气在水中D. 植物光合作用4. 下列哪个是单质?A. 水B. 二氧化碳C. 氧气D. 盐酸5. 下列哪个行星离太阳最近?A. 地球B. 金星C. 水星D. 火星二、判断题(每题1分,共5分)1. 地球是太阳系中最大的行星。
()2. 动能和势能统称为机械能。
()3. 酸性溶液的pH值大于7。
()4. 光速在真空中是最快的。
()5. 金属通常都是良导体。
()三、填空题(每题1分,共5分)1. 地球自转的方向是______。
2. 物质由液态变为固态的过程叫做______。
3. 声音的传播需要______。
4. 植物进行光合作用时,会释放出______。
5. 在电路中,电阻的单位是______。
四、简答题(每题2分,共10分)1. 简述光的反射定律。
2. 解释什么是机械能。
3. 描述水的沸腾过程。
4. 简述植物的呼吸作用。
5. 解释地球公转的意义。
五、应用题(每题2分,共10分)1. 一个物体从高处落下,不考虑空气阻力,其速度会如何变化?2. 如果将两个不同材质的物体放在太阳光下,哪个会更快变热?3. 在一个密闭容器中,如果温度和压力保持不变,溶解更多的气体是否可能?4. 如果要增大电路中的电流,应该增加还是减少电阻?5. 为什么在冬天,我们呼出的气体会形成白雾?六、分析题(每题5分,共10分)1. 分析水的三态变化过程中,分子间距离和分子运动速度的变化。
2. 分析地球自转和公转对地球上生物的影响。
七、实践操作题(每题5分,共10分)1. 设计一个实验来验证光的直线传播。
2. 描述如何通过实验来确定物质的密度。
七年级上册数学有理数培优50题含详细答案

(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
七年级上册数学培优题及详解答案

挑战题1、已知a :b :c=2 :3 :4,且2a+3b-2c=10,求a, b,c的值。
2、麦迪在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了两分球和个罚球.3、小明、小亮、小强三个人在一起玩扑克牌,,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张。
”小亮给小明牌之后他手中还有张牌。
4、.一个长方形的周长为26,如果长减少1,宽增加2,就可成为一个正方形,设长方形的长为,则可列方程为.5、生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了.(精确到元.毛利率即利润率)6、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马.7、古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()8、一张试卷共25道题,做对一题得4分,做错或不做一题扣1分,小明做了全部试题,若要得70分以上,那么小明至少要做对的题数是()9、小亮的爸爸在一家合资企业工作,月工资5500元,按规定:其中2500元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过1500元的部分按3%的税率;超过1500元不超过4500元的部分则按5%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?10、民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b 千克(b>a)时,所交费用为Q=10b-200(单位:元).(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m表示Q.11、某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.12、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?13、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?14、小华家是我市第一批9万户统一换装“峰谷分时”电表的家庭之一,他们家将率先享受苏州市生活用电“峰谷分时电价”的新政策,用电价将按不同时段实行不同的价格,具体为:8点至21点为“峰时”,电价为每千瓦时0.55元;21点至次日8点为“谷时”,电价为每千瓦时0.30元,而我市原来实行的电价为每千瓦时0.52元。
2024年部编版七年级上册语文周末复习培优训练试卷及答案 (3)

周末提优3第三单元学习任务群:学习生活总分:50 分建议用时:45 分钟得分:基础型学习任务群[荣德原创]为更好地巩固近期所学内容,某班学生分为“现代文小组”和“文言文小组”,对第三单元展开学习。
请你阅读两个小组的成果,完成相关问题。
1. 下面是“现代文小组”制作的口袋书,请你阅读其中几页,完成相关任务。
(9 分)(1)任务一:第1 页中有四个词语存在书写错误,请你在下面写出正确的字形。
(4 分)①___________ ②___________ ③___________ ④___________(2)任务二:第2 页中有两个字的读音标注错误,请你改正。
(2 分)①___________应读作___________ ②___________应读作___________(3)任务三:第3 页中个别词语的归类出现错误,___________应该是名词,___________应该是动词,___________既不是动词也不是名词。
(3 分)2. “文言文小组”研读了《〈论语〉十二章》,邀请你参与,一起完成学习任务。
(11 分)(1)任务一:明义• 理解内容下面句中加点词的解释,有误的一项是(2 分) ( )A. 学而时.习之(按时)B. 传.不习乎(传授,这里指老师传授的知识)C. 三军可夺.帅也(夺取)D. 切.问而近思(恳切)(2)任务二:广识•了解文化下面文学及文化常识,说法错误的一项是(2 分) ( )A. 儒家是先秦诸子百家之一,脱胎自周朝礼乐传统, 代表人物有孔子、老子、孟子、庄子。
B. “箪”,古代盛饭用的圆形竹器, 也有用芦苇等制成的。
C. 文言文中的“水”指的是冷水,“汤”指的是热水。
D. “匹夫”泛指平民百姓,除此之外,平民百姓还可以用“布衣”来代称。
(3)任务三:记言• 书写运用请根据语境进行默写。
(7 分)文学社的同学们想要为外国友人表演一场话剧。
请你依据《〈论语〉十二章》的内容将下面的剧本补充完整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF=3.(仅填结果)【考点】命题与定理;三角形的面积;直角三角形的性质.【分析】(1)根据直角三角形两锐角互余可得∠A+∠B=90°,然后求出∠A+∠ACD=90°,从而得到∠ADC=90°,再根据垂直的定义证明即可;(2)根据角平分线的定义可得∠CAE=∠BAE,再根据直角三角形两锐角互余可得∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,从而得到∠AEC=∠AFD,再根据对顶角相等可得∠AFD=∠CFE,然后等量代换即可得证;(3)根据等高的三角形的面积的比等于底边的比求出S△ACD和S△ACE,然后根据S△CEF ﹣S△ADF=S△ACE﹣S△ACD计算即可得解.【解答】(1)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,即CD⊥AB,证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;(2)证明:∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,∴∠AEC=∠AFD,∵∠AFD=∠CFE(对顶角相等),∴∠AEC=∠CFE;(3)解:∵BC=3CE,AB=4AD,∴S△ACD=S△ABC=×36=9,S△ACE=S△ABC=×36=12,∴S△CEF﹣S△ADF=S△ACE﹣S△ACD=12﹣9=3.故答案为:3.【点评】本题考查了命题与定理,三角形的面积,直角三角形两锐角互余的性质,有两个锐角互余的三角形是直角三角形,(3)利用等高的三角形的面积的比等于底边的比求出S△ACD 和S△ACE是解题的关键.2. Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①,且∠α=50°,则∠1+∠2=140°;(2)若点P在斜边AB上运动,如图②,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+∠α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°;(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.【考点】三角形内角和定理;三角形的外角性质.【专题】探究型.【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质分三种情况讨论即可;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)如图,连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;故答案为:∠1+∠2=90°+∠α;(3)如图1,∵∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∵∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.故答案为;∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.【点评】本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练利用三角形外角的性质是解题的关键.3.阅读下面的材料:如图①,在ABC ∆中,试说明180A B C ∠+∠+∠=︒.分析:通过画平行线,将A ∠、B ∠、C ∠作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法.第24题解:如图②,延长BC 到点D ,过点C 作CE //BA . 因为BA //CE (作图所知),所以2B ∠=∠,1A ∠=∠(两直线平行,同位角、内错角相等). 又因为21180BCD BCA ∠=∠+∠+∠=︒(平角的定义), 所以180A B ACB ∠+∠+∠=︒(等量代换).如图③,过BC 上任一点F ,作FH //AC , FG //AB ,这种添加辅助线的方法能说明180A B C ∠+∠+∠=︒吗?并说明理由.. 能 理由:因为FH ∥AC ,所以1,2C CGF ∠=∠∠=∠,因为FG ∥AB ,所以3,B CGF A ∠=∠∠=∠,所以2A ∠=∠,因为180BFC ∠=︒,所以180A B C ∠+∠+∠=︒.4.如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P ,问:线段CP 可能是△CFG 的高线还是中线?或两者都有可能?请说明理由. .①若1CFG ECD ∠=∠,此时线段CP 1为△CFG 1的斜边FG 1上的中线.证明如下: ∵1CFG ECD ∠=∠,∴11CFG FCP ∠=∠.又∵1190CFG CG F ∠+∠=︒,∴11190FCP PCG ∠+∠=︒. ∴111CG F PCG ∠=∠. ∴111CP G P =.又∵11CFG FCP ∠=∠,∴11CP FP =. ∴1111CP FP G P ==. ∴线段CP 1为△CFG 1的斜边FG 1上的中线.②若2CFG EDC ∠=∠,此时线段CP 2为△CFG 2的斜边FG 2上的高线.证明如下:∵2CFG EDC ∠=∠,又∵DE ⊥AC ,∴90DEC ∠=︒. ∴90ECD EDC ∠+∠=︒. ∴290ECD CFG ECD EDC ∠+∠=∠+∠=︒. ∴CP 2⊥FG 2. ∴线段CP 2为△CFG 2的斜边FG 2上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线又是中线.E ADBC5.如图,D 是ABC ∆的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点,且ABC∆的面积为20 cm 2,求BEF ∆的面积.. 因为E 是AD 的中点,所以BE 是ABD ∆的中线,CE 是ACD ∆的中线,所以BF 是BCE ∆的中线,所以12BEF BEC S S ∆∆==5(cm 2) 6.在ABC ∆中,C B ∠>∠.如图①,AD BC ⊥于点D ,AE 平分BAC ∠,则易知1()2EAD C B ∠=∠-∠.(1)如图②,AE 平分BAC ∠, F 为AE 上的一点,且FD BC ⊥于点D ,这时EFD ∠与B ∠、C ∠有何数量关系?请说明理由;(2)如图③,AE 平分BAC ∠,F 为AE 延长线上的一点,FD BC ⊥于点D ,请你写出这时AFD ∠与B ∠、C ∠之间的数量关系(只写结论,不必说明理由)..(1)如图辅助线:作AG BC ⊥,1()2EFD C B ∠=∠-∠. (2)1()2AFD C B ∠=∠-∠7. BC ∥OA ,∠B=∠A=100︒,试回答下列问题:(1)如图,求证:OB ∥AC ;(2)如图,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF①∠EOC 的度数;②求∠OCB :∠0FB 的值;③如图,若∠OEB=∠OCA ,此时∠OCA= (在横线上填上答案即可).(1)证明:∵BC ∥OA ∴∠B+∠0=180°.∵∠A=∠B .∴∠A+∠O=180°.∴OB ∥AC . (2)①∠A=∠B=:100°,由(1)得∠BOA=180°-∠B=80°. ∵∠FOC=∠AOC ,并且OE 平分∠BOF ,BC ∥OA ,∴∠FOC=12∠FOA ,∠EOF=12∠BOF . ∴∠EOC=∠EOF+∠FOC=12 (∠BOF+∠FOA)= 12∠BOA=40°.②∵BC ∥OA ,∴∠FCO=∠COA .又∵∠FOC=,∠AOC ,.∴∠FOC=∠FCO .∵∠FOC+∠FCO=180°-∠OFC ,且∠BFO=180°-∠0FC , ∴∠OFB=∠FOC+∠FCO=2∠OCB . ∴∠0CB :∠0FB=1:2.③由(1)知OB ∥AC ,∴∠OCA=∠BOC .由(2)可以设∠B0E=∠E0F=a ,∠FOC=∠COA=β,∴∠OCA=∠BOC=2a +β ∵∠ECO+∠EOC=180°-∠OEC ,且∠OEB=180°-∠OEC , 即∠OEB=∠EOC+∠ECO=a +β+β=a +2β ∵∠OEB=∠OCA .∴2a +β=a +2β·即a =β ∵∠AOB=80°,∴a =β=20°. ∴∠OCA=2a +β=40°+20°=60°9.阅读下列材料:一般地,n 个相同的因数a 相乘, 记为n a .如2×2×2=32=8,此时,3叫做以2为底8的对数,记为log 8a (即log 8a =3).一般地,若n a =6(a >0且a ≠1,6>0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n).如34=81,则4叫做以3为底81的对数,记为3log 81 (即3log 81=4). (1)计算以下各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?8.如图7所示,直线a ∥b ,则∠A =_______. .如图8所示,∠A+∠B+∠C+∠D+∠E =______.log log a a M N += (a>0且a≠1,M>0,N>0); (4)根据幂的运算法则:n m a a g =n m a +以及对数的含义证明上述结论.10.(1)阅读材料:求l+2+22+32+42+…+22013的值. 解:设S= l+2+22+32+42+…+ 20122+22013 ,将等式两边同时乘2, 得2S=2+22+32+42+52+…+22013+22014. 将下式减去上式,得2S-S=22014一l 即S=22014一l ,即1+2+ 22+32+42+…+22013= 22014一l 仿照此法计算:(1)1+3+2333++…+1003 (2) 231111222+++…+1001211.阅读下列一段话,并解决后面的问题.观察下面一列数:l ,2,4,8,…我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,一15,45,…的第4项是_______;(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,那么根据上述规定有21a q a =32a q a =,43aq a =,…所以a 2=a 1q,a 3=a 2q=a 1q ·q=a 1q 2,a 4=a 3q=a 1q 2·q=a 1q 3, … 则a n =______;(用a 1与q 的代数式表示)(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第4项.12.如图1,△ABC中,两条角平分线BD,CE交于点M,MN⊥BC于点N,将∠MBN 记为∠1,∠MCN记为∠2.∠CMN记为∠3.(1)若∠A=98°,∠BEC=124°,则∠2=26°,∠3﹣∠1=49°;(2)猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,如图2所示,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)【考点】三角形内角和定理;三角形的外角性质.【专题】计算题.【分析】(1)利用三角形外角性质得到∠BEC=∠A+∠ACE,则可计算出∠ACE=26°,再根据角平分线定义得到∠2=∠ACE=26°,接着在△BCE中计算出∠EBC,从而得到∠1的度数,然后利用互余求∠3=64°,最后计算∠3﹣∠1;(2)利用三角形外角性质得∠BMC=∠MDC+∠DCM,∠MDC=∠A+∠ABD,即∠BMC=∠2+∠A+∠1,再利用三角形内角和得到180°﹣∠1﹣∠2=∠2+∠A+∠1,然后把∠2=90°﹣∠3代入后整理得到∠3﹣∠1=∠A;(3)利用三角形外角性质得∠BEC=∠A+∠ACE,∠BDC=∠A+∠ABD,加上∠1=∠EBM,∠2=∠DCM,则α=∠A+∠2,β=∠A+∠1,把两式相加后把∠A=∠3﹣∠1代入得到α+β=2(∠3﹣∠1)+90°﹣∠3+∠1,整理即可得到∠3﹣∠1=α+β﹣90°.【解答】解:(1)∵∠BEC=∠A+∠ACE,∴∠ACE=124°﹣98°=26°,∵CE平分∠ACB,∴∠2=∠ACE=26°,∴∠EBC=180°﹣∠2﹣∠BEC=30°,而BD平分∠ABC,∴∠1=×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣26°=64°;∴∠3﹣∠1=49°,故答案为26,49;(2)∠3﹣∠1=∠A.理由如下:∵∠BMC=∠MDC+∠DCM,而∠MDC=∠A+∠ABD,∠DCM=∠2,∴∠BMC=∠2+∠A+∠ABD,∵BD平分∠ABC,∴∠1=∠ABD,∴∠BMC=∠2+∠A+∠1,∴180°﹣∠1﹣∠2=∠2+∠A+∠1,∴2∠2+2∠1=180°﹣∠A,而∠2=90°﹣∠3,∴2(90°﹣∠3)+2∠1=180°﹣∠A,∴∠3﹣∠1=∠A;(3)∵∠BEC=∠A+∠ACE,∠BDC=∠A+∠ABD,而∠1=∠EBM,∠2=∠DCM,∴α=∠A+∠2,β=∠A+∠1,∴α+β=2∠A+∠2+∠1,而∠A=∠3﹣∠1,∴α+β=2(∠3﹣∠1)+90°﹣∠3+∠1,∴∠3﹣∠1=α+β﹣90°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.正确运用角平分线和三角形外角性质是解题的关键.13.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.考点:坐标与图形性质;垂线;三角形的面积.分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.解答:解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.点评:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.14.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80,则∠ABC+∠BCD=200°;∠E=100°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为AB∥CD.【考点】多边形内角与外角;三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=100°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,然后根据三角形内角和定理求出∠E=180°﹣(∠DAE+∠ADE)=100°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=80,∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为200°;100°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.15.已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D 的两条边分别经过点B和点C.(1)当将△DEF如图1摆放时,则∠ABD+∠ACD=240度(2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由;(3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论不能.(填“能”或“不能”)考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:(1)要求∠ABD+∠ACD的度数,只要求出∠ABC+∠CBD+∠ACB+∠BCD,利用三角形内角和定理得出∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°;根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°,∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°;(2)要求∠ABD+∠ACD的度数,只要求出∠ABC+∠ACB﹣(∠BCD+∠CBD)的度数.根据三角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°;根据三角形内角和定理得,∠ABC+∠ACB=180°﹣∠A=140°,∴∠ABD+∠ACD=∠ABC+∠ACB﹣(∠BCD+∠CBD)=140°﹣100°=40°;(3)不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.解答:解:(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°﹣40°=140°在△BCD中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°﹣∠D在△DEF中,∠D+∠E+∠F=180°∴∠E+∠F=180°﹣∠D∴∠CBD+∠BCD=∠E+∠F=100°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.故答案为:240°;(2)∠ABD+∠ACD=40°;理由如下:∵∠E+∠F=100°∴∠D=180°﹣(∠E+∠F)=80°∴∠ABD+∠ACD=180°﹣∠A﹣∠DBC﹣∠DCB=180°﹣40°﹣(180°﹣80°)=40°;(3)不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.故答案为:不能.点评:考查三角形内角和定理,外角性质.熟练掌握这些性质是解题的关键.16.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是20°;②当∠BAD=∠ABD时,x=120°;当∠BAD=∠BDA时,x=60°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.考点:三角形的角平分线、中线和高;平行线的性质;三角形内角和定理.专题:计算题.分析:利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.解答:解:(1)①∵∠MON=40°,OE平分∠MON∴∠AOB=∠BON=20°∵AB∥ON∴∠ABO=20°②∵∠BAD=∠ABD∴∠BAD=20°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=120°∵∠BAD=∠BDA,∠ABO=20°∴∠BA D=80°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=60°故答案为:①20 ②120,60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20若∠BAD=∠BDA,则x=35若∠ADB=∠ABD,则x=50②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.点评:本题考查了三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.17.如图,在△ABC中,A D⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数;(2)求∠DAE的度数;(3)探究:小明认为如果只知道∠B﹣∠C=40°,也能得出∠DAE的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.考点:三角形内角和定理;角平分线的定义;三角形的外角性质.专题:探究型.分析:(1)利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.(2)先求出∠BAD,就可知道∠DAE的度数.(3)用∠B,∠C表示∠DAE即可.解答:解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,因为AE平分∠BAC,所以∠BAE=40°;(2)∵AD⊥BC,∠B=70°,∴∠BAD=90°﹣∠B=90°﹣70°=20°,而∠BAE=40°,∴∠DAE=20°;(3)可以.理由如下:∵AE为角平分线,∴∠BAE=,∵∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=﹣(90°﹣∠B)=,若∠B﹣∠C=40°,则∠DAE=20°.点评:熟练运用角平分线定义和三角形的内角和定理.同时也要熟练掌握角与角之间的代换.18.如图,(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=360度.并试说明你猜想的理由.(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E2请你猜一猜,2环n边形的内角和为360(n﹣2)度(只要求直接写出结论).考点:多边形内角与外角;三角形内角和定理.专题:规律型.分析:(1)连结B1B2,可得∠A2+∠C1=∠B1B2A2+∠B2B1C1,再根据四边形的内角和公式即可求解;(2)A1A2之间添加两条边,可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2,再根据边形的内角和公式即可求解;2环n边形添加(n﹣2)条边,再根据边形的内角和公式即可求解.解答:解:(1)连结B1B2,则∠A2+∠C1=∠B1B2A2+∠B2B1C1,∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=∠A1+∠B1+∠B1B2A2+∠B2B1C1+∠B2+∠C2=360度;(2)如图,A1A2之间添加两条边,可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2则∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2=∠A1+∠B1+∠C1+∠D1+∠A2+∠EA1D+∠A1EA2+∠EA2B2=720°;2环n边形添加(n﹣2)条边,2环n边形的内角和成为(2n﹣2)边形的内角和.其内角和为180(2n﹣4)=360(n﹣2)度.故答案为:(1)360;(2)360(n﹣2)点评:考查了多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数).19.已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠ACB的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.考点:三角形内角和定理;三角形的外角性质.分析:根据角平分线的定义、三角形的内角和、外角性质求解.解答:解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.点评:本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.20.某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐变小;连接FC,∠FCE的度数逐渐变大.(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明.(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数.考点:三角形的外角性质;平行线的判定;三角形内角和定理.分析:(1)利用图形的变化得出F、C两点间的距离变化和,∠FCE的度数变化规律;(2)利用外角的性质得出∠FEC+∠CFE=∠FED=45°,即可得出答案;(3)要使FC∥AB,则需∠FCE=∠A=30°,进而得出∠CFE的度数.解答:解;(1)F、C两点间的距离逐渐变小;连接FC,∠FCE的度数逐渐变大;故答案为:变小,变大;(2)∠FCE与∠CFE度数之和为定值;理由:∵∠D=90°,∠DFE=45°,又∵∠D+∠DFE+∠FED=180°,∴∠FED=45°,∵∠FED是△FEC的外角,∴∠FEC+∠CFE=∠FED=45°,即∠FCE与∠CFE度数之和为定值;(3)要使FC∥AB,则需∠FCE=∠A=30°,又∵∠CFE+∠FCE=45°,∴∠CFE=45°﹣30°=15°.点评:此题主要考查了三角形的外角以及平行线的判定和三角形内角和定理等知识,熟练利用相关定理是解题关键.21.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm.设运动的时间为t秒.(1)当t=6秒时,CP把△ABC的周长分成相等的两部分?(2)当t=6.5秒时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为12?考点:一元一次方程的应用;三角形的面积.专题:几何动点问题.分析:(1)先求出△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;(3)分两种情况:①P在AC上;②P在AB上.解答:解:(1)△ABC中,∵AC=8cm,BC=6cm,AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴2t=12,t=6;(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴2t=13,t=6.5;(3)分两种情况:①当P在AC上时,∵△BCP的面积=12,∴×6×CP=12,∴CP=4,∴2t=4,t=2;②当P在AB上时,∵△BCP的面积=12=△ABC面积的一半,∴P为AB中点,∴2t=13,t=6.5.故答案为6秒;6.5秒.点评:本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分类讨论的思想是解(3)题的关键.22.如图,已知长方形的每个角都是直角,将长方形ABCD沿EF折叠后点B恰好落在CD边上的点H处,且∠CHE=40°.(1)求∠HFA的度数;(2)若再将△DAF沿DF折叠后点A恰好落在HF上的点G处,请找出线段DF和线段EF 有何位置关系,并证明你的结论.考点:翻折变换(折叠问题).分析:(1)根据余角的定义,可得∠CEH的度数,根据角的和差,可得∠HEB的度数,根据翻折的性质,可得∠EHF的度数,根据四边形内角和,可得∠HFB的度数,根据邻补角的定义,可得答案;(2)根据翻折的性质,可得∠BFE=∠HFE,∠AFD=∠GFD,根据角的和差,等式的性质,可得答案.解答:解:(1)由余角的定义,得∠CEH=90°﹣∠CHE=50°由角的和差,得∠HEB=180°﹣∠CEH=180°﹣50°=130°,由翻折的性质,得∠B=∠EHF=90°,由四边形内角和,得∠HFB=360°﹣∠B﹣∠BEH﹣∠EHF=50°,由邻补角的定义,得∠HFA=180°°﹣∠HFB=130°;(2)DF和线段EF位置关系是DF⊥EF,证明:∵长方形ABCD沿EF折叠后点B恰好落在CD边上的点H处,将△DAF沿DF折叠后点A恰好落在HF上的点G处,∴∠BFE=∠HFE,∠AFD=∠GFD.∵∠BFE+∠HFE+∠AFD+∠GFD=180°,∴∠DFG+∠GFE=90°,即∠DFE=90°,∴DF⊥EF.点评:本题考查了翻折变换,利用了余角的定义,角的和差,翻折的性质,四边形内角和,邻补角的定义,利用知识点较多,题目稍微有点难度..23.在梯形ABCD中,AB∥CD,∠B=90°,AB=BC=3cm,CD=4cm,动点P从点A出发,先以1cm/s的速度沿A→B→C运动,然后以2cm/s的速度沿C→D运动.设点P运动的时间为t秒,是否存在这样的t,使得△BPD的面积S=3cm2?考点:梯形.专题:动点型.分析:分三段考虑,①点P在AB上,②点P在BC上,点P在CD上,分别用含t的式子表示出△BPD的面积,再由S=3cm2建立方程,解出t的值即可.解答:解:①当点P在AB上时,点P的速度为1cm/s,0<t<3,如图①所示:,则BP=AB﹣AP=3﹣t,S△BPD=BP×CB=﹣=3,解得:t=1.②当点P在BC上时,点P的速度为1cm/s,3<t≤6,如图②所示:,则BP=t﹣3,S△BPD=BP×DC=2t﹣6=3,解得:t=4.5.③当点P在CD上时,点P的速度为2cm/s,6<t<8,如图③所示:,则DP=CD﹣CP=4﹣2(t﹣6)=16﹣2t,S△BPD=DP×BC=24﹣3t=3,解得:t=7.综上可得:当t=1秒或4.5秒或7秒时,使得△BPD的面积S=3cm2.点评:本题考查了梯形的知识,解答本题的关键是分段讨论,画出每段的图形,根据△BPD 的面积为3建立方程,注意数形结合思想的运用.24.(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等;(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.考点:三角形的面积.分析:(1)根据三角形的面积公式,只需过点A和BC的中点画直线即可;(2)结合平行线间的距离相等和三角形的面积公式即可证明;(3)结合(1)和(2)的结论进行求作.解答:(1)解:取BC的中点D,过A、D画直线,则直线AD为所求;(2)证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=GH•h,S△FGH=GH•h,∴S△EGH=S△FGH,∴S△EGH﹣S△GOH=S△FGH﹣S△GOH,∴△EGO的面积等于△FHO的面积;(3)解:取BC的中点D,连接MD,过点A作AN∥MD交BC于点N,过M、N画直线,则直线MN为所求.点评:此题主要是根据三角形的面积公式,知:三角形的中线把三角形的面积等分成了相等的两部分;同底等高的两个三角形的面积相等.25.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关∠A+∠D=∠B+∠C;(2)仔细观察,在图2中“8字形”的个数:6个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)考点:三角形内角和定理.专题:探究型.分析:(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;(2)根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;(3)根据(1)的关系式求出∠OCB﹣∠OAD,再根据角平分线的定义求出∠DAM﹣∠PCM,然后利用“8字形”的关系式列式整理即可得解;(4)根据“8字形”用∠B、∠D表示出∠OCB﹣∠OAD,再用∠D、∠P表示出∠DAM﹣∠PCM,然后根据角平分线的定义可得∠DAM﹣∠PCM=(∠OCB﹣∠OAD),然后整理即可得证.解答:解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)交点有点M、O、N,以M为交点有1个,为△AMD与△CMP,以O为交点有4个,为△AOD与△COB,△AOM与△CON,△AOM与△COB,△CON 与△AOD,以N为交点有1个,为△ANP与△CNB,所以,“8字形”图形共有6个;(3)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.点评:本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D 有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.解答:解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣(180°﹣∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=(∠DBC+∠ECB)=(180°+∠A),在△PBC中,∠P=180°﹣(180°+∠A)=90°﹣∠A;即∠P=90°﹣∠A;故答案为:50°,∠P=90°﹣∠A;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.27.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分DP、CP分别平公∠ADC 和∠ACD,如果∠A=60°,那么∠P=120°;如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=90+°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P 与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E的数量关系:(∠A+∠B+∠E)﹣90°;(4)如图4,P为六边形ABCDEF内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:(∠A+∠B+∠E+∠F)﹣180°;(5)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:(∠A3+∠A4+∠A5+…∠A n)﹣(n﹣4)×90°.(用含n的代数式表示)【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【专题】探究型.【分析】(1)根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;(2)根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理(1)解答即可;(3)根据五边形的内角和公式表示出∠EDC+∠BCD,然后同理(1)解答即可;(4)根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理(1)解答即可;(5)根据n边形的内角和公式表示出∠EDC+∠BCD,然后同理(1)解答即可.【解答】解:(1)∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A,∴如果∠A=60°,那么∠P=120°;如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)°;(2)∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);(3)五边形ABCDEF的内角和为:(5﹣2)•180°=540°,∵DP、CP分别平分∠EDC和∠BCD,∴∠P=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(540°﹣∠A﹣∠B﹣∠E)=(∠A+∠B+∠E)﹣90°,即∠P=(∠A+∠B+∠E)﹣90°.(4)六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F)=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.(5)同(1)可得,∠P=(∠A3+∠A4+∠A5+…∠A n)﹣(n﹣4)×90°.故答案为:120,135,(90+);(∠A+∠B);∠P=(∠A+∠B+∠E)﹣90°;∠P=(∠A+∠B+∠E+∠F)﹣180°;,∠P=(∠A3+∠A4+∠A5+…∠A n)﹣(n﹣4)×90°.【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.28.已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.考点:多边形内角与外角;平行线的判定.分析:(1)DE⊥BF,延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF;(2)DE∥BF,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.解答:解:(1)DE⊥BF,延长DE交BF于点G∵∠A+∠ABC+∠C+∠ADC=360°又∵∠A=∠C=90°,∴∠ABC+∠ADC=180°∵∠ABC+∠MBC=180°∴∠ADC=∠MBC,∵DE、BF分别平分∠ADC、∠MBC∴∠EDC=∠ADC,∠EBG=∠MBC,∴∠EDC=∠EBG,∵∠EDC+∠DEC+∠C=180°∠EBG+∠BEG+∠EGB=180°。