第六章一次方程(组)和一次不等式(组)单元测试
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(Word版含答案)

2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是( )A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是( )A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是( )A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是( )A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠0 7.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是( )A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B⎩⎪⎨⎪⎧x +y =3016x +12y =400 C.⎩⎪⎨⎪⎧12x +16y =400x +y =400 D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为( )A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64 二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为 . 12.不等式2-2x <x -4的解集为 .13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为 . 14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为 .15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则 2 020-a -b 的值是 .16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为 . 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②18.(6分)解方程:x 2+1=2(x +1).19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是(D)A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是(A)A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为(B)A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是(D)A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是(A)A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠07.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是(C)A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为(C)A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(B)A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B.⎩⎪⎨⎪⎧x +y =3016x +12y =400C.⎩⎪⎨⎪⎧12x +16y =400x +y =400D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为(A)A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为1. 12.不等式2-2x <x -4的解集为x >2.13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为12.14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为5.15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2 020-a -b 的值是2__025.16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为8. 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②解:①-②×2,得 -7y =7,∴y =-1.③ 将③代入②,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.18.(6分)解方程:x 2+1=2(x +1).解:x 2-2x -1=0. (x -1)2=2.∴x 1=1+2,x 2=1- 2.19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来. 解:不等式组的解集为-32<x ≤1.在数轴上表示不等式组的解集如图所示.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.解:(1)设甲、乙工程队单独完成此项工程各需x 天,2x 天,根据题意,得 1x +12x =110. 解得x =15,2x =30.答:甲、乙工程队单独完成此项工程各需15天,30天. (2)分三种情况讨论:①甲单独做费用:4.5×15=67.5(万元); ②乙单独做费用:2.5×30=75(万元);③甲、乙合作完成费用:(4.5+2.5)×10=70(万元). ∵75>70>67.5,∴甲工程队单独做既能使工程按时完工,又能使工程费用最小,为67.5万元.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x 元,依题意,得 (60-40-x)(100+x2·20)=2 240,解得x =4或x =6.答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃应降价4元或6元, 为了尽可能让利于顾客,每千克核桃应降价6元, 此时售价为60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?解:(1)设每个篮球x 元,每个足球y 元,由题意,得⎩⎪⎨⎪⎧2x +3y =310,5x +2y =500,解得⎩⎪⎨⎪⎧x =80,y =50. 答:每个篮球80元,每个足球50元. (2)设购买z 个篮球,由题意,得 80z +50(60-z)≤4 000,解得z ≤3313.∵z 为整数, ∴z 最大取33.答:最多可以购买33个篮球.23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?解:(1)⎩⎪⎨⎪⎧x -y =4,①3x +y =-8,②②+①,得4x =-4.解得x =-1.把x =-1代入①,得-1-y =4.解得y =-5. ∴方程组的解是⎩⎪⎨⎪⎧x =-1,y =-5.(2)设“□”为a ,∵x ,y 是一对相反数,∴把x =-y 代入x -y =4,得-y -y =4. 解得y =-2.∴x =2. ∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-2.代入ax +y =-8,得2a -2=-8.解得a =-3.∴原题中“□”是-3.24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW 公司计划2020年生产的手机全部使用自主研发的“QL ”系列芯片.从2019年起逐年扩大“QL ”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW 公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m 的值.解:(1)设2018年甲类芯片的产量为x 万块,由题意,得 x +2x +(x +2x)+400=2 800. 解得x =400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x +400=1 600(万块),设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400. 解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部).根据题意,得400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简,得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =400.。
一元一次不等式(组)单元测试卷(题型全)

一、选择题(每题3分) 1、下列不等式一定成立的是A.52<xB.0>x -C.01>+xD.02>x 2、不等式组1010,x x -⎧⎨+⎩≤>的解集在数轴上表示正确的是3、若x >y ,且(a +3)x <(a +3)y ,则a 的取值范围是 A .a >-3 B .a <-3 C .a <3D .a ≥-34、如果关于x 的不等式 的解集为 ,那么a 的取值范围是( )A. B . C. a>-2 D .5、实数a 、b 在数轴上的位置如图所示,下列各式成立的是( )A 、B 、a ﹣b >0C 、ab >0D 、a+b >06、关于x 的方程2a-3x=6的解是非负数,那么a 满足的条件是( )A 、a >3B 、a ≤3C 、a <3D 、a ≥37、如图,天平右边托盘里的每个砝码的质量都是1千克,那么图中显示物体的质量范围是( )A 、大于2千克B 、小于3千克C 、大于2千克小于3千克D 、大于2千克或小于3千克8、若不等式组⎩⎨⎧-+-142322x x a x >>,的解集为32<<x -,则a 的取值范围是( ) A.21=a B.2-=a C.2-≥a D.1-≤a 9、若不等式 的解集为,则a 的取值范围是 A. B. C. D.10、若方程组的解满足 ,则a 的取值范围是A. B. C. D. 11、不等式的解集是,则应满足( ) A. B.C. D.12、把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式x 11)9x (7<+,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本 二、填空题(每题3分)1、若是关于的一元一次不等式,则的取值是 .2、不等式2x <4x ﹣6的最小整数解为 .3、若点(2,m -1)在第四象限,则实数m 的取值范围是______.4、某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选对______ 道题,其得分才能不少于80分.5、一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.6、已知x =3是不等式mx +2<1-4m 的一个解,如果m 是整数,那么m 的最大值是______ .7、若不等式 的正整数解是1,2,3,则m 的取值范围是______. 8、不等式组的解集是,则的取值 .9、若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .10、已知关于x 的不等式组有且只有三个整数解,则a的取值范围是 .三、解答题1、(8)解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x+72②.2、(10)已知关于y x 、的方程组⎩⎨⎧--=++=-a y x ay x 731的解x 为非正数,y为负数.(1)求a 的取值范围;(2)结合(1)中的a 取值范围,当a 为何整数时扌,不等式122++a x ax >的解集为1<x .211133x ax +-+>53x <a 5a >5a =5a >-5a =-(1)20m m x ++>x m ⎩⎨⎧-<+<632a x a x 32+<a x a C 1 -0 D1 -0 B 1 -0 A 1 -03、(12)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?4、(12)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).5、(12)某工厂准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖..箱子. (1)若该工厂准备用不超过10000元的资金去购买A ,B 两种型号板材,并全部..制作竖式箱子,已知A 型板材每张30元,B 型板材每张90元,求最多可以制作竖式箱子多少个?(2)①若该工厂仓库里现有A 型板材65张、B 型板材110张,用这批板材制作两种..类型的箱子,问制作竖式和横式两种箱子各多少个,恰好将库存的板材用完?②若该工厂新购得65张规格为(3×3)m 的C 型正方形板材,将其全部切割成A 型或B 型板材(不计损耗),用切割成的板材制作两.种.类型的箱子,要求竖式箱子不少于20个,且材料恰好用完,则能制作两种箱子共_______个.附加题:1、已知关于y x 、的方程组⎩⎨⎧-=--=+a y x ay x 343,其中-3≤a ≤1,给出下列说法:①当a =1时,方程组的解也是方程a y x -=+2的解;②当a=-2时,y x 、的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( )A.①②③④B.①②③C.②④D.②③2、运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作.若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .3、不等式2+x 3>2x -15的解都是3x-a<2x+3的解,则a 的取值范围为(第24题图)横式竖式A B 甲乙。
沪教版(上海)六年级数学第二学期第六章一次方程(组)和一次不等式(组)章节练习试卷(含答案详解)

第六章一次方程(组)和一次不等式(组)章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程组839845x y x y -=⎧⎨+=-⎩消去x 得到的方程是( ) A .y =4 B .y =-14 C .7y =14 D .-7y =142、若x <y 成立,则下列不等式成立的是( )A .﹣x +2<﹣y +2B .4x >4yC .﹣3x <﹣3yD .x ﹣2<y ﹣23、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4- B .4 C .2- D .24、若a b >,那么下列各式中正确的是( )A .11+<+a bB .a b ->-C .33a b -<-D .222a b <+ 5、下列利用等式的基本性质变形错误的是( )A .如果37x -=,那么73x =+B .由210x =得5x =C .如果14x y +=-,那么41x y -=--D .如果142-=x ,那么2x =- 6、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有x 人,该物品价值y 元,则根据题意可列方程组为( )A .8374x yx y -=⎧⎨+=⎩ B .8374x yx y +=⎧⎨+=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x yx y -=⎧⎨-=⎩7、已知关于x 的方程()120m m x --=是一元一次方程,则m 的值是( ).A .2B .0C .1D .0或28、把某个关于x 的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A .x ≥﹣2B .x >﹣2C .x <﹣2D .x ≤﹣29、已知x y =,则下列式子不一定成立的是( )A .+=+x a y aB .x b y b -=-C .x c y c ⋅=⋅D .xyd d =10、不等式820x ->的解集在数轴上表示正确的是 ( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x >y ,试比较大小:﹣3x +5 ______﹣3y +5.(填“>”、“<”或“=”)2、若1x =是关于x 的一元一次方程31x a -=的解,则a 的值为______.3、不等式353x x -<+的非负整数解有______.4、关于x 的方程2ax =的解是2x =,则a 的值是______.5、若3x =是关于x 的方程25x a +=的解,则a 的值是________.三、解答题(5小题,每小题10分,共计50分)1、解方程组346323x y x y -=⎧⎪⎨+=⎪⎩ 2、解不等式组()45321023x x x x ⎧->-⎪⎨+>⎪⎩3、如图,在大长方形ABCD 中,放入8个小长方形,(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?4、解方程组:(1)33?15?x y x y -=⎧⎨+=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩. 5、解关于x 的方程:631524x x -=+-参考答案-一、单选题1、D【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】解:{8x−3x=9①8x+4x=−5②①-②得:-7y=14.故答案为:-7y=14,故选:D.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.2、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.3、A【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:51234a ba b+=⎧⎨-=⎩①②,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则-a-b=-4,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、C【分析】根据不等式的性质判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 错误;∵a b >,∴-a <-b ,故选项B 错误;∵a b >,∴33a b -<-,故选项C 正确;∵a b >,∴22a b >,故选项D 错误; 故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.5、D【分析】等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】解:如果x -3=7,那么x =7+3,故A 选项正确;如果210x =,那么x =5,故B 选项正确;如果14x y +=-,那么41x y -=--,故C 选项正确; 如果142-=x ,那么8x =-,故D 选项错误. 故选D【点睛】本题主要考查了等式的性质,解题时注意:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.6、A【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x 人,物品价值y 元,由题意得:8374x y x y-=⎧⎨+=⎩ 故选:A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7、B【分析】根据一元一次方程的定义,得到关于m -1的绝对值的方程,利用绝对值的定义,解之,把m 的值代入m -2,根据是否为0,即可得到答案.【详解】解:∵关于x 的方程()120m m x--=是一元一次方程,∴|m -1|=1,整理得:m -1=1或m -1=-1,解得:m =2或0,把m =2代入m -2得:2-2=0(不合题意,舍去),把m =0代入m -2得:0-2=-2(符合题意),即m 的值是0,故选B .【点睛】本题考查了一元一次方程的定义,绝对值,正确掌握一元一次方程的定义,绝对值的定义是解题的关8、B【分析】观察数轴上x 的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x >-,故选B .【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】根据等式的性质逐项分析即可.【详解】解:A . ∵x y =,由等式的性质1可知+=+x a y a ,故成立;B . ∵x y =,由等式的性质1可知x b y b -=-,故成立;C . ∵x y =,由等式的性质2可知x c y c ⋅=⋅,故成立;D . ∵x y =,由等式的性质2可知,当d =0时,x y d d=不成立; 故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:820x ->,移项得:28,x解得:4,x <所以原不等式得解集:4x <.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.二、填空题1、<【分析】利用不等式的性质进行判断.【详解】解:∵x >y ,∴﹣3x <﹣3y ,∴﹣3x +5<﹣3y +5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2、2【分析】把x=1代入方程3x-a=1,再求出关于a的方程的解即可.【详解】解:把x=1代入方程3x-a=1得:3-a=1,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.3、0,1,2,3【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:353-<+,x x2x<8,x<4,∴不等式353-<+的非负整数解有0,1,2,3,x x故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.4、1【分析】根据关于x 的方程2ax =的解是2x =,可得22a = ,解出即可求解.【详解】解:∵关于x 的方程2ax =的解是2x =,∴22a = ,解得:1a =.故答案为:1【点睛】本题主要考查了一元一次方程解的定义,解一元一次方程,熟练掌握使方程左右两边同时成立的未知数的值是方程的解是解题的关键.5、-1【分析】把x =3代入方程计算即可求出a 的值.【详解】把x =3代入方程得:6+a =5,解得:a =-1,故答案为:-1.【点睛】本题考查了一元一次方程的解和解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.三、解答题1、1432 xy⎧=⎪⎨⎪=⎩【分析】把方程组整理后,利用加减消元法求解即可.【详解】解:原方程组可化为346 3218x yx y-=⎧⎨+=⎩①②,②-①得:6y=12,解得:y=2,代入①中,解得:x=143,∴方程组的解为1432xy⎧=⎪⎨⎪=⎩.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.2、﹣1 < x < 2【分析】分别求出各不等式的解集,再求出其公共解集即可;【详解】解:() 45321023x xxx⎧->-⎪⎨+>⎪⎩①②解不等式①,得x>﹣1,解不等式②,得x< 2,所以,此不等式组的解集为﹣1 < x < 2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、(1)7厘米和2厘米(2)53平方厘米【分析】(1)设小长方形宽为x厘米,长为y厘米,由图象列二元一次方程组,代入消元法求解即可.(2)阴影面积为大长方形ABCD面积减去8个小长方形面积.(1)设小长方形宽为x厘米,长为y厘米,则有BC=4x+y=15,CD=2x+y,AB=9+x∵AB=CD∴2x+y =9+x即x+y=9故有二元一次方程组4159 x yx y+=⎧⎨+=⎩将y=9-x代入4x+y=15有4x+9-x =15解得x=2将x=2代入y=9-x解得y =7故小长方形的长和宽分别是7厘米和2厘米.(2)由(1)问可知大长方形长ABCD 为15cm ,宽为11cm ,则长方形面积为15×11=165cm 2小长方形的面积为2×7=14cm 2由题干知长方形中有8个小长方形故=-8ABCD S S S ⨯阴影小长方形大长方形即=165-814=165-112=53S ⨯阴影【点睛】本题考查了列二元一次方程组,列二元一次方程组解应用题的一般步骤,审:审题,明确各数量之间的关系,设:设未知数(一般求什么,就设什么),找:找出应用题中的相等关系,列:根据相等关系列出两个方程,组成方程组,解:解方程组,求出未知数的值,答:检验方程组的解是否符合题意,写出答案.4、(1)123x y =⎧⎨=⎩(2)21x y =⎧⎨=-⎩【分析】(1)②﹣①得出4y =12,求出y ,再把y =3代入②求出x 即可;(2)整理后①+②得出6x =12,求出x ,再把x =2代入①求出y 即可.(1)3315x y x y -=⎧⎨+=⎩①②, ②﹣①,得4y =12,解得:y =3,把y =3代入②,得x +3=15,解得:x =12,所以方程组的解是123x y =⎧⎨=⎩; (2)3241123x y x y +=⎧⎪+⎨-=⎪⎩, 原方程组化为:324328x y x y +=⎧⎨-=⎩①②, ①+②,得6x =12,解得:x =2,把x =2代入①,得6+2y =4,解得:y =﹣1,所以方程组的解是21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.5、x =-3【分析】根据题意先移项和合并同类项,进而化系数为1即可得解.【详解】解:631524-=+x x移项:6x-15x=24+3合并同类项:-9x=27化系数为1:x=-3【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.。
不等式与不等式组单元测试卷

不等式与不等式组综合检测题一、选择题1、下列各式中不是一元一次不等式组的是( ) A.1,35y y ⎧<-⎪⎨⎪>-⎩ B.350,420x x ->⎧⎨+<⎩ C.10,20a b -<⎧⎨+>⎩ D.50,20,489x x x ->⎧⎪+<⎨⎪+<⎩2、不等式组52110x x -≥-⎧⎨->⎩的解集是( ) A .3≤x B .31≤<x C .3≥x D .1>x3、如图.不等式5234x x -≤-⎧⎨-<⎩的两个不等式的解集在数轴上表示正确的为( )4、把一个不等式组的解集表示在数轴上.如图所示.则该不等式组的解集为( ) A.102x <≤ B.12x ≤ C.102x <≤ D.0x >5、不等式12>-x 的解集是( ) A .13<>x x 或 B .33-<>x x 或 C .31<<x D .33<<-x6.某种商品的价格第一年上升了%10第二年下降了()()5%5>-m m 后,仍不低于原价.则m 的值应为( )A.、111555≤<m B 、111555≤≤m C 、111555<<m D 、111555<≤m 7、若三角形三条边长分别是8,21,3a -,则a 的取值范围是( )A .5->aB .25-<<-aC .25-≤≤-aD .52-<->a a 或8、如果不等式组8x x m <⎧⎨>⎩无解.那么m 的取值范围是( ) A 、8>m B 、8≥m C 、8<m D 、8≤m9、一种灭虫药粉30kg.含药率是15100.现在要用含药率较高的同种灭虫药粉50kg 和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%1210、韩日“世界杯”期间.重庆球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A、B两个出租车队.A队比B队少3辆车.若全部安排乘A队的车.每辆坐5人.车不够.每辆坐6人.有的车未满;若全部安排B队的车.每辆车4人.车不够.每辆坐5人.•有的车未满.则A队有出租车()A.11辆B.10辆C.9辆D.8辆二、填空题11、不等式组123xx-≤⎧⎨-<⎩的解集是___.12、不等式组310,27xx+>⎧⎨<⎩的整数解的个数是___.13、不等式组32482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解是__________.14、若x=23+a.y=32+a.且x>2>y.则a的取值范围是________.15、如果2m、m、1-m这三个实数在数轴上所对应的点从左到右依次排列.那么m的取值范围是 .16、某旅游团有48人到某宾馆住宿.若全安排住宾馆的底层.每间住4人.房间不够;每间住5人.有一个房间没有住满5人.则该宾馆底层有客房间.17、已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是11<<-x,那么()()21-+ba的值等于______.18、把一篮苹果分组几个学生.若每人分4个.则剩下3个;若每人分6个.则最后一个学生最多得3个.求学生人数和苹果数?设有x个学生.依题意可列不等式组为.19、若不等式组1,21x mx m<+⎧⎨>-⎩无解.则m的取值范围是______.20、若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为2<x,则k的取值范围是_______.三、解答题21.解不等式组.并把解集在数轴上表示出来.(1)3(1)(3)8,2111.32x xx x-+--<⎧⎪+-⎨-≤⎪⎩(2)4100,54,11213.xx xx x-<⎧⎪+>⎨⎪-≥+⎩(3)-7≤2(13)7x+≤9. (4)3(1)2(9),3 3.5 1.414.0.50.7x xx x->+⎧⎪-+⎨-≤-⎪⎩22、如果方程组325x y ax y-=+⎧⎨+=⎩的解x、y满足0,0<>yx,求a的取值范围.23、4个男生和6个女生到图书馆参加装订杂志的义务劳动.管理员要求每人必须独立装订.而且每个男生的装订数是每个女生的2倍.在装订过程中发现.女生们装订的总数肯定超过30本.男、女生们装订的总数肯定不到98本.问:男、女生平均每人装订多少本?24、.小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉.10.2千克鸡蛋.计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元.那么按哪一个方案加工.小亮妈妈可获得最大利润?最大利润是多少?25、.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?。
6.11 一次方程组的应用(1)&(2)

练习
3. 六年级(1)班、(2)班各有44人,两个班都
有一些同学参加课外天文小组,(1)班参加天文
小组的人数恰好是(2)班没有参加天文小组的人
数的
(1)班没有参加天文小组的人数的
1 ,(2)班参加天文小组的人数恰好是 3 1
4
,问六年
级(1)班、(2)班没有参加天文小组的各多少
人?
ቤተ መጻሕፍቲ ባይዱ 练习
4. 某车间有28名工人,生产特种螺栓和螺帽, 一个螺栓的两头各套上一个螺帽配成一套,每 人每天平均生产螺栓12个或螺帽18个。问要有 多少工人生产螺栓,其余的工人生产螺帽,才 能使一天所生产的螺栓和螺帽刚好配套。
能力提高
若玩青蛙跳5元每人,玩极速风车15元 每人。其中玩这两项游乐项目共花了40元 。求各有多少人玩青蛙跳和极速风车.
设玩青蛙跳的有a人,玩极速风车的有b人.
可列出方程为?
第六章 一次方程(组) 和一次不等式(组)
6.11 一次方程组的应用(2)
例题
甲、乙、丙三数之和为26,甲数比乙数 大1,甲数的2倍与丙数的和比乙数大18, 求甲、乙、丙三个数.
方案二:6角的邮票 1 张,8角的邮票 4 张。
能力提高
某游乐园的门票规定成人90元/人,儿 童45元/人.现有大人带着孩子(都为 儿童)去游玩,买门票共花了720元.问成 人和孩子各去了多少人?
(1)这个问题中,有几个未知数? (2)能列一元一次方程求解吗? (3)如果设成人有x人,儿童有y人, 你能列出方程吗?
450x + 150(600-x) =210000
等量关系: 低价票的张数
+ 草地票的张数 =600
购买低价票的总价 + 购买草地票的总价 =210000
6.4 一元一次方程的应用(3)

一、直线型行程问题中的 时间、速度、路程间的关系
1.同向而行
甲: 乙:
甲的路程
两人间距 同时同向而行,追上时,
乙的路程
快的人所走路程—慢的人所走路程=两人间距
例题
甲,乙两地相距162千米,甲地有一辆货车, 速度为每小时48千米,乙地有一辆客车,速 度为每小时60千米,求:
(1)若两车同时多长时间两车 相距270千米? (3)若两车相向而行,货车先开1小时, 再过多长时间可以相遇?
第六章 一次方程(组) 和一次不等式(组)
6.4 一元一次方程的应用(3)
行程问题
行程问题:
一、基本数量关系:
路程
= 速度×时间
路程 速度 = 时间
时间
=
路程 速度
一、直线型行程问题中的 时间、速度、路程间的关系
1.相向而行
甲: 乙:
甲的路程
同时相向而行,相遇时,
乙的路程
甲走的路程+乙走的路程=甲乙的间距
总结
同时相向而行,相遇时,
型直 甲走的路程+乙走的路程=甲乙的间距 线
同时同向而行,追上时,
快的人所走路程—慢的人所走路程=两人间距
甲乙同时同地同向而行,第一次相遇时,
环 甲走的路程-乙走的路程=环形跑道周长 形 甲乙同时同地同向而行,第一次相遇时, 甲走的路程+乙走的路程=环形跑道周长
二、环形跑道上的 时间、速度、路程间的关系
甲、乙两人同时由同一起点同向出发。
甲: 乙:
甲乙同时同地同向而行,第一次相遇时,
甲走的路程-乙走的路程=环形跑道周长
二、环形跑道上的 时间、速度、路程间的关系
甲、乙两人同时由同一起点反向出发
沪教版 六年级数学下册 第六章 一元一次方程组及不等式组单元题有测试卷

沪教版六年级下册数学第五章一元一次方程组及不等式组提优测试卷第Ⅰ卷(选择题共18分)一、选择题(每题3分,共18分)在下列方程中,是二元一次方程的是()A. x²+x=2B. xy=﹣1C. 3x=1D. x-3=y2.如果a<b,那么下列不等式正确的是()A.1-a>1-b B. 2a >2b C. a+2>b-2 D a ²>b²3.下列方程中,解是-2的是()A. 3x-1=2+xB. 2-y=0C. x+3=﹣1D. =﹣14.下列方程变形正确的是()A.由8-x=11,得x=11-8 B.由﹣2x=3x-5,得﹣5x=﹣5C.由x=1,得x=D.由5x+1=3x,得5x-3x=15.长方形的周长为14厘米,长比宽的3倍少1厘米,设宽为x cm,依题意列方程,下列正确的是()A. x+(3x+1)=14B. x+(-)=14C.2x+2(3x-1)=14 D.2x+2(3x+1)=146.已知方程4x-3y=7,用含x的式子表示y正确的是()A. x=+B. x=4(7+3y)C. y=-D.y=-第Ⅱ卷(非选择题共82分)ニ、填空题(每题3分,共36分)7.列不等式:x的倒数减去1的差不小于它的2倍。
8.方程﹣2x-1=0的解是。
9.不等式﹣<1的解集是10.不等式组>﹣>的解集是1.﹣<x≤1的正整数解有个。
12.方程组+=--=的解是。
13.如果=-=是方程ax+y=-1的一个解那么a=14.二元一次方程x+3y=8的正整数解是15.如果方程5--++=0是二元一次方程,那么m+n =16.一双皮鞋售价x元,现降价四成出售,现在售价为元(列代数式)17.写出一个解集为ー1<x<2的不等式组:。
18.当x=时,代数式“-与-互为相反数。
三、解答题(第19~22题,每题6分,第23~24题每题7分,第25题8分,共46分)19.解方程:2--=20.解不等式:2(1-x)<﹣(2x+1)-x,并将解集在数轴上表示出来。
沪教版数学六年级(下)一课一练及单元测试卷和参考答案

数学六年级(下)一课一练及单元测试卷目录第五章有理数3 5.1有理数的意义(1) 3 5.2 数轴(1) 7 5.3 绝对值(1) 11 5.4有理数的加法(1) 15 5.5有理数的减法(1) 19 5.6 有理数的乘法(1) 23 5.7 有理数的除法(1) 27 5.8 有理数的乘方(1) 31 5.9 有理数的混合运算(1) 35 5.10 科学记数法(1) 39六年级(下)数学第五章有理数单元测试卷一43第六章一次方程(组)和一次不等式(组)6.1 列方程(1) 47 6.2 方程的解(1) 51 6.3 一元一次方程及其解法(1) 55 6.4 一元一次方程的应用(1) 59 6.5 不等式及其性质(1) 63 6.6 一元一次不等式的解法(1) 67 6.7 一元一次不等式组(1) 716.8 二元一次方程(1) 75 6.9 二元一次方程组及其解法(1) 79 6.10 三元一次方程组及其解法(1) 83 6.11一次方程组的应用(1) 87 第六章一次方程(组)和一次不等式(组)单元测试卷一93第七章线段与角的画法7.1 线段的大小的比较(1) 97 7.2 画线段的和、差、倍(1) 101 7.3 角的概念与表示(1) 105 7.4 角的大小的比较画相等的角(1) 109 7.5 画角的和、差、倍(1) 113 7.6 余角、补角(1) 117 六年级(下)数学第七章线段和角的画法单元测试卷一121第八章长方体的再认识8.1 长方体的元素(1) 125 8.2 长方体直观图的画法(1) 127 8.3 长方体中棱与棱位置关系的认识(1) 129 8.4 长方体中棱与平面位置关系的认识(1) 131 8.5 长方体中平面与平面位置关系的认识(1) 133 六年级(下)数学第八章长方体的再认识单元测试卷一137 参考答案 141数学六年级(下)第五章有理数5.1有理数的意义(1)一、填空题1、在1、﹣1.2、﹣2.5、0、、、3.14中,负数有个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一次方程和一次不等式(组)单元测试
班级 姓名
一、选择题:(每题3分,共18分)
1.在下列方程中,是二元一次方程的是( )
A.22=+x x ;
B.1-=xy ;
C.13=x ;
D.y x =-3.
2.如果b a <,那么下列不等式正确的是( )
A.b a ->-11;
B.b a 22>;
C.22->+b a ;
D.22b a >;
3.下列方程中,解是-2的是( )
A. x x +=-213;
B. 02=-y ;
C. 13-=+x ;
D. 12
-=y ; 4.下列方程变形正确的是( )
A. 由118=-x ,得811-=x ;
B.由532-=-x x ,得55-=-x ;
C.由132=x ,得3
2=x ; D.由 x x 315=+,得135=-x x ; 5.长方形的周长为14厘米,长比宽的3倍少1厘米,设宽为xcm ,依题意列方程,下列正确的是( )
A. 14)13(=++x x ;
B. 14)3
1(=-+x x ; C. 14)13(22=-+x x ; D. 14)13(22=++x x ;
6.已知方程734=-y x ,用含x 的式子表示y 正确的是( ) A. 4
37y x +=
; B. )37(4y x +=; C. 347x y -=; D. 374-=x y ; 二、填空题:(每题3分,共36分)
7.列不等式:x 的倒数减去1的差不小于它的x 的2倍_____________________;
8.方程012=--x 的解是____________;
9.不等式12
<-x 的解集是____________; 10.不等式组⎩⎨⎧>->0
5.1x x 的解集是________________;
11.13
11≤<-x 的正整数解有________个; 12.方程组⎩⎨⎧=--=+5
32132y x y x 的解是___________;
13.⎩
⎨⎧=-=52y x 是方程1-=+y ax 的一个解,那么=a ________; 14.二元一次方程83=+y x 的正整数解是 ;
15.方程0512=+-+-n m y x 是二元一次方程,=+n m _________;
16.一双皮鞋售价x 元,现降价四成出售,现在售价为 元(列代数式).
17.写出一个解集为21<<-x 的不等式组:________________;
18.当x = 时,代数式32x -与5
43-x 互为相反数. 三、解答题(第19—22题,每题6分,第23—24题每题7分,第25题8分,共46分)
19.(6分)解方程:36122x x =--
20.(6分)解不等式:x x x -+-<-)12()1(2,并将解集在数轴上表示出来.
21.(6分)求不等式组:⎪⎩⎪⎨⎧>+-->+x x x x 2
3149的整数解.
22.(6分)解方程组:⎪⎩⎪⎨⎧-=--=+6
2321y x y x .
23.(7分)解方程组:⎪⎩
⎪⎨⎧=-=-+=+-031252z x z y x z y x .
24.(7分)用80元正好可以买12个羽毛球和16个乒乓球,已知羽毛球的单价是乒乓球单价的2倍,求羽毛球和乒乓球的单价各是多少元?
25.(8分)甲、乙两地相距180千米,大车的速度为65千米/小时,小车的速度为85千米/小时.
(1) 两车分别从甲、乙两地同时同向出发(小车在后),几小时后小车追上大车?.
(2) 两车分别从甲、乙两地同时相向出发,几小时后两车之间的距离为20千米?。