新课标人教版第十册数学长方体和正方体的表面积计算
长方体和正方体的表面积和体积公式的推导过程

长方体和正方体的表面积和体积公式的推导
过程
长方体的体积公式是:V = l * w * h,其中l、w、h分别代表长方体的长度、宽度和高度。
长方体的表面积公式是:A = 2lw + 2lh + 2wh,其中lw、lh、wh 分别代表长方体的长宽面、长高面和宽高面。
推导过程:
假设长方体的长为l,宽为w,高为h,体积V表示长方体内部的三维空间大小。
我们可以想象将长方体沿着长度l的方向分成许多小立方体,然
后再将每个小立方体里的的长短和高加起来,就得到了体积的公式V = l * w * h。
长方体的表面积A表示长方体外部所包围的表面大小。
我们可以将长方体展开,得到一个长方形,其中有两个长宽面和
两个长高面以及两个宽高面。
所以表面积的公式为A = 2lw + 2lh +
2wh。
正方体的体积公式是V = a^3,其中a代表正方体的边长。
正方体的表面积公式是A = 6a^2,是指正方体的表面总和。
通过这些公式,我们可以计算出长方体和正方体的体积和表面积,用来解决实际问题和进行建筑设计等工作。
同时,这些概念也可以拓
展到立方体和其他的多面体,通过对公式的推导和理解,可以更深入
地认识空间几何学,对科学技术的工作也有帮助。
长方体与正方体的表面积与体积

长方体与正方体的表面积与体积长方体和正方体是几何体中常见的两个形状。
它们在日常生活中广泛应用于建筑、设计等领域。
本文将探讨长方体和正方体的表面积和体积计算公式,并解释其应用。
一、长方体的表面积与体积长方体是一个具有六个矩形面的立体形状。
其中,有三个对面的边长相等,被称为底面;而另外的三个对面也有相等的边长,被称为侧面。
为了计算长方体的表面积和体积,我们需要知道长方体的边长。
1. 表面积计算公式:长方体的表面积等于底面积与侧面积的和。
底面积等于长乘以宽,而侧面积等于底面的周长乘以高。
表面积 = 2(长×宽 + 长×高 + 宽×高)2. 体积计算公式:长方体的体积等于底面积乘以高。
体积 = 长×宽×高二、正方体的表面积与体积正方体是是一个六个相等正方形面构成的立体形状。
相比于长方体,正方体的特点在于所有的边长都相等。
1. 表面积计算公式:正方体的表面积等于其中一个正方形面的面积乘以6。
表面积 = 6×边长×边长 = 6a²2. 体积计算公式:正方体的体积等于正方形底面积乘以高。
体积 = 底面积×高 = a²×高其中,a代表正方体的边长,高代表正方体的高度。
三、应用举例1. 长方体:假设某个长方体的长为4cm,宽为3cm,高为5cm。
我们可以使用上述的公式计算该长方体的表面积和体积。
表面积 = 2(4×3 + 4×5 + 3×5) = 2(12 + 20 + 15) = 2×47 = 94cm²体积 = 4×3×5 = 60cm³2. 正方体:假设某个正方体的边长为6cm,高度为6cm。
我们可以使用上述的公式计算该正方体的表面积和体积。
表面积 = 6×6×6 = 216cm²体积 = 6×6×6 = 216cm³以上是长方体和正方体表面积与体积的计算公式和应用举例。
长方体和正方体表面积ppt课件

这些方法之间有联系吗?
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×高+宽×高)×2 ③长方体表面积=底面周长×高+长×宽×2
正方体表面积=棱长×棱长×6
这些方法之间有联系吗?
(长+宽)×2×高
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×底高面+周宽长××高高)×2 ③长方体表面积=底面周长×高+长×宽×2
玩一玩
把一个长6厘米、宽3厘米、高2厘米的长方体木块锯成 两个小长方体,表面积会增加多少?
6厘米
2厘米 3厘米
你有什么收获?
设计一个能正好放进两个大小形状完全一样
的长方体(如右图)的纸盒表,这面个积纸怎盒么的算用?料面积
至少是多少? 表面积=长×宽×2+长×高×2+宽×高×2
求物体的表面积,要先判断求几个面,根为据什不同么的这实际么情算况来?进行计算。
因为长方体相对的面面积相等,正方体6个面面积相等。
实际怎么用?
先思考物体有几个面,再根据实际情况来进行计算。
方法1:5×4+5×3×2+4×3×2-4.5 =20+30+24-4.5 =69.5(m2)
方法2:(5+4)×2×3+5×4-4.5 =54+20-4.5 =69.5(m2)
地面不用铺墙纸, 还要将门窗减掉。
方法3:5×4×2+5×3×2+4×3×2-5×4-4.5 =40+30+24-20-4.5 =69.5(m2)
正方体与长方体表面积公式[整理版]
![正方体与长方体表面积公式[整理版]](https://img.taocdn.com/s3/m/faa19d09a200a6c30c22590102020740be1ecd8e.png)
正方体表面积公式:S=6×(棱长×棱长)字母:S=6a²长方体表面积公式:S=(长×宽+长×高+宽×高)×2或:S=长×宽×2+长×高×2+宽×高×2字母:S=2(ab+ah+bh)或:S=2ab+2ah+2bh正方体V:体积a:棱长体积=棱长×棱长×棱长V=a×a×a长方体V:体积a:长b: 宽h:高体积=长×宽×高V=abh圆柱体体积底面积*高V=3.14*R^2*H圆柱体面积公式下面一个圆的周长*高S=3.14*2R*H圆的周长公式C=2π r圆的面积公式S=π r²(π=3.14;r为圆的半径;)7、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?解:将乙的工作效率看作单位1那么甲的工作效率为2乙2天完成1×2=2乙一共生产1×(3+2)=5甲一共生产2×3=6所以乙的工作效率=14/(6-5)=14个/天甲的工作效率=14×2=28个/天一共有零件28×3+14×5=154个或者设甲乙的工作效率分别为2a个/天,a个/天2a×3-(3+2)a=146a-5a=14a=14一共有零件28×3+14×5=154个8、一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?解:甲乙的工作效率和=1/20甲乙的工作时间比=1:2那么甲乙的工作效率比=2:1所以甲的工作效率=1/20×2/3=1/30乙的工作效率=1/20×1/3=1/60甲单独完成需要1/(1/30)=30天乙单独完成需要1/(1/60)=60天甲单独完成需要1000×30=30000元乙单独完成需要550×60=33000元甲乙合作完成需要(1000+550)×20=31000元很明显甲单独完成需要的钱数最少选择甲,需要付30000元工程费。
长方体正方体面积体积公式

长方体正方体面积体积公式长方体公式
长方体是一种具有六个面的三维物体,每个面都是矩形。
其表面积和体积公式如下:
表面积:2(长 x 宽 + 宽 x 高 + 高 x 长)
体积:长 x 宽 x 高
正方体公式
正方体是一种特殊的长方体,其所有边长相等。
其表面积和体积公式如下:
表面积:6(边长)²
体积:边长³
具体实例
假设有一个长方体,其长为 5 cm,宽为 3 cm,高为 2 cm。
表面积:2(5 cm x 3 cm + 3 cm x 2 cm + 2 cm x 5 cm) = 56 cm²
体积:5 cm x 3 cm x 2 cm = 30 cm³
假设有一个正方体,其边长为 4 cm。
表面积:6(4 cm)² = 96 cm²
体积:4 cm³ = 64 cm³
其他公式
除了基本公式外,还有一些适用于特殊情况的附加公式:
侧表面积(长方体):2(长 + 宽) x 高
底面积(长方体):长 x 宽
对角线长度(长方体):√(长² + 宽² + 高²)
对角线面积(正方体):√(3) x 边长
内切球半径(正方体):边长 / 2
应用场景
这些公式在解决涉及长方体和正方体的几何问题时至关重要。
它们可用于计算包装、建筑和工程中的表面积和体积。
长方体和正方体的表面积和体积公式的推导过程

长方体和正方体的表面积和体积公式的推导
过程
长方体和正方体的表面积和体积公式的推导过程如下:
长方体的表面积S=2(lw+lh+wh),其中l、w、h分别为长方体的长、宽、高。
长方体的体积V=lwh。
正方体的表面积S=6s²,其中s为正方体的边长。
正方体的体积V=s³。
长方体推导过程:
长方体有6个面,每个面都是一个矩形,长方体的表面积等于它
所有面积之和。
设长方体的长、宽、高分别为l、w、h,那么长方体的表面积可以表示为S=2lw + 2lh + 2wh。
长方体的体积可以看成是一个长方体的六分之一,即V=lwh。
正方体推导过程:
正方体有6个面,每个面都是一个正方形,正方体的表面积等于6倍其中一个正方形的面积。
设正方体的边长为s,那么正方体的表面积可以表示为S=6s²。
正方体的体积可以表示为一个正方体的体积,即V=s³。
以上就是长方体和正方体的表面积和体积公式的推导过程。
当然,这些公式只适用于长方体和正方体,对于其他形状的立体,需要采用
其他公式来计算表面积和体积。
长方体、正方体的表面积和体积计算

复习三长方体和正方体的表面积和体积计算一、基本公式:正方体表面积= 棱长×棱长×6= 一个面的面积×6正方体体积= 棱长×棱长×棱长长方体表面积= (长×宽+长×高+宽×高)×2长方体体积= 长×宽×高正方体、长方体都有12条棱、6个面。
正方体的棱长和=棱长×12长方体的棱长和=(长+宽+高)×4二、认识表面积和体积做一个长12厘米,宽6厘米,高5厘米的长方体框架,至少需要铁丝多少厘米?在这个框架外糊一层纸,至少需多少平方厘米的纸,这个纸盒占空间多少立方厘米?三、典型习题1、用铁丝焊成图形/绣花边棱长例题:用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米,宽7厘米的长方体框架,它的高应该是多少厘米?2、占地面积即底面的面积例题:有一个长20米,宽15米,深5米的长方体游泳池,该游泳池占地面积有多大?3、贴瓷砖/给墙壁粉刷面积,要注意是几个面,是否要减门窗等例题:天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4例题:一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?5、一物体放置入令一盛水容器体积不变,上升水的体积即该物体的体积例题:有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。
现在把一块石头浸没到水里,水面上升2厘米。
这块石头的体积是多少立方厘米?6、铁块熔铸成另一图形前后体积不变例题:有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?7、切锯后截面积截a次,增加2a个截面,成为a+1段例题:把长1.2米的长方体木料锯成3段,表面积增加48平方分米,原来木料的体积是多少?解题的方法:1、判断是求体积、表面积、棱长、还是单个面的面积?2、根据单位来帮助判断是面积还是体积,还是棱长;练习巩固一、判断1.体积单位比面积单位大,面积单位比长度单位大.()2.正方体和长方体的体积都可以用底面积乘高来进行计算.()3.表面积相等的两个长方体,它们的体积一定相等.()4.长方体的体积就是长方体的容积.()5.如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()6、正方体的棱长扩大3倍,体积就扩大9倍。
有关正方体与长方体的表面积与体积计算

有关正方体与长方体的表面积与体积计算正方体和长方体是我们生活中常见的几何体形状之一。
它们既有共同之处,也存在一些差异。
本文将探讨正方体和长方体的表面积和体积计算方法。
一、正方体的表面积计算公式正方体是一种拥有六个完全相等的平面的立方体。
每个面都是一个正方形。
我们可以使用下面的公式来计算正方体的表面积:表面积 = 正方形的边长 ×正方形的个数由于正方体的每个面都是正方形,所以边长相同。
假设正方体的边长为a,则表面积可以简化为:表面积 = 6a²二、长方体的表面积计算公式长方体有六个面,其中有两个相对面是相同的。
我们可以使用下面的公式来计算长方体的表面积:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)三、正方体的体积计算公式正方体的体积是指正方体所包含的三维空间量。
我们可以使用一个简单的公式来计算正方体的体积:体积 = 正方体的边长³四、长方体的体积计算公式长方体的体积也是指长方体所包含的三维空间量。
我们可以使用下面的公式来计算长方体的体积:体积 = 长 ×宽 ×高五、例题分析现在我们来看两个例子,一个是正方体的表面积和体积计算,另一个是长方体的表面积和体积计算。
例题一:求一个边长为6cm的正方体的表面积和体积。
解:根据上述公式,可以得出该正方体的表面积为6 × 6 × 6 = 216平方厘米,体积为6³ = 216立方厘米。
例题二:求一个长方体,长为10cm,宽为5cm,高为8cm的表面积和体积。
解:根据上述公式,可以得到该长方体的表面积为2 × (10 × 5 + 10 × 8 + 5 × 8) = 220平方厘米,体积为10 × 5 × 8 = 400立方厘米。
六、总结通过对正方体和长方体的表面积和体积计算方法的介绍,我们可以看出,对于正方体和长方体,它们的表面积计算方法略有不同,而体积的计算方法相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
1.使学生理解长方体和正方体表面 积的意义,掌握ቤተ መጻሕፍቲ ባይዱ方体表面积的计 算方法。
2.在引导学生理解和推导长方体表 面积计算方法的过程中,培养学生 的抽象概括能力、推理能力和思维 的灵活性,同时发展他们的空间观 念。
1.填空:
(1)长方体有( ( )相等; )个面,一般都( 6 ),相对的面的 长方形
大小 3
)厘米,宽( 8 )厘米。 )厘米,
(2)这是一个( ),它的长( 长方形 高( )厘米,它们的棱长之和是(
4 60
3厘米
8厘米 4厘米
2.说一说长方体和正方体的相同 点和不同点?
长方体和正方体的面、棱和顶点的数目 都一样;只是正方体的棱长都相等。正方 体可以说是长、宽、高都相等的长方体。
长方体
正方体
上
右
前
上
左
后 前 下
右
上
左
后
右
下
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
前
什么叫长方体的表面积?
长方体6个面的总面积, 叫做它的表面积。
长方体的表面积怎样计算?
上
右
前
长方体的表面积=长×宽+长×高+高×宽
例一:做一个长6厘米,宽5厘米,高4厘
米的长方体纸盒,至少要用多少平方厘米硬纸板?
答:他的表面积是59平方米。
做一做:一个长方体长4
米,宽3米,高2.5米。它的表面 积是多少平方米?(用两种方法 计算。)
2.5米 4米
3米
如此题改为同样尺寸的无盖塑料 盒表面积如何求?
4×3+4×2.5×2+3×2.5×2 =12+20+15 =47(平方米)
答:无盖塑料盒的表面 积是47平方米。
4
厘 米
5厘米
想:长方体有6个面,
6厘米
40 解法二: 解法一: (6×5+6×4+5×4) 6×5×2+6×4×2+5×4×2 × 2 = (30+24+20) =60+48+40 × 2 ×2 =74 =148(平方厘米) =148(平方厘米)
答:至少要用148平方厘米硬纸板。
上下每个面,长 厘米,宽 厘米,面积是 平方厘米;前后每个面,长 6 5 60 厘米,宽 厘米,面积是 平方厘米;左右每个面,长 厘米,宽 厘米, 6 4 48 面积是 平方厘米。
5
4
做一做:一个长方体长4
米,宽3米,高2.5米。它的表面 2.5 米 积是多少平方米?(用两种方法 4米 3米 计算。) 解法一: 解法二: 4×3×2+4×2.5×2+3×2.5×2 (4×3+4×2.5+3×2.5) =24+20+15 ×2 =(12+10+7.5) ×2 =59(平方米) =29.5×2 =59(平方米)