智能材料
7、智能材料概论

17
(7)自调节能力(Self-adjusting)
对不断变化的外部环境和条件,能及时 地自动调整自身结构和功能,并相应地改变 自己的状态和行为,从而使材料系统始终以 一种优化方式对外界变化作出恰如其分的响 应。
18
3、智能材料的构成
12
(1)传感功能(Sensor)
能够感知外界或自身所处的环境条 件,如负载、应力、应变、振动、热、 光、电、磁、化学、核辐射等的强度 及其变化。
13
(2)反馈功能(Feedback)
可通过传感网络,对系统输入与输出信 息进行对比,并将其结果提供给控制系统。
(3)信息识别与积累功能
能够识别传感网络得到的各类信息 并将其积累起来。
31
所以,智能材料在军事应用中具有很 大潜力,它的研究、开发和利用,对未来 武器装备的发展将产生重大影响。
目前,在各种军事领域中,智能材料 的应用主要涉及到以下几个方面:
第七章 智 能 材 料
1
第一节 智能材料基本原理
1、什么是智能材料 2、智能材料的特征 3、智能材料的构成 4、智能材料的分类
2
1、什么是智能材料?
智能材料是二十世纪90年代迅速发展 起来的一类新型复合材料。
智能材料目前还没有统一的定义,不 过,现有的智能材料的多种定义仍然是大 同小异。
3
大体来说,智能材料就是指具有感知 环境(包括内环境和外环境)刺激,对之 进行分析、处理、判断,并采取一定的措 施进行适度响应的智能特征的材料。
6
智能材料又可以称为敏感材料,常用 的有以下几种:
Intelligent material、 Intelligent material and structure、 Smart material、 Smart material and structure、 Adaptive material and structure等。
智能材料的应用与发展

智能材料的应用与发展当今社会科技日新月异,智能材料作为一种材料新兴领域备受瞩目,因其在不同领域中的高应用价值和发展前景广阔而备受人们的关注。
本文将探究智能材料的概念、应用、发展和前景。
一、智能材料的概念智能材料,又称作“智能化材料”或者“功能材料”,是指那些在受到注入外部条件后,能够识别作出响应的特殊材料。
其特征在于强调了材料与信息的融合,即使是普通的材料,只要加以适当的处理后就能表现出智能的性质。
智能材料具有自适应性、自诊断性、自修复性等特点,智能材料能够适应外界环境的变化,及时进行反应。
举例子来说,智能玻璃是一种应用较为广泛的智能材料,其具有透明和不透明两种状态,可以随时自动调节透光度来达到节能的目的。
在建筑、汽车、航空等领域有着广泛应用。
二、智能材料的应用智能材料在生活中的应用十分广泛,可以应用于智能家居、智能交通、医疗、航空航天、工业自动化等各个领域。
1. 智能家居随着物联网的不断发展,智能家居成为智能材料的重要应用领域之一。
智能家居通过感知、识别、控制家庭环境的方式,实现了家庭设备、照明、音乐等设备的自动管理,大大提高了生活质量和智慧生活体验。
目前,智能家居中最广泛应用的智能材料是智能玻璃和智能墙纸。
2. 智能交通智能交通是指交通系统中通过信息化、感知式设备和流程管理等方式,提高交通安全性和效率的交通系统。
智能材料在智能交通中有着广泛的应用。
例如,智能交通中的车载电子系统需要使用机电系统、固态电子芯片等材料,而智能交通指挥中心中的调度系统则需要很多传感器和控制部件。
3. 医疗智能材料应用于医疗领域,可用于医疗器械、医疗设备、体内病灶检测等多个方面。
例如,在光学成像领域,光电材料和光学材料是非常重要的智能材料,与医学成像技术紧密关联;在医用制品中,纳米材料得到了广泛应用,并改善了制品的性能。
4. 航空航天智能材料在航空航天领域的应用,是为了提高飞机飞行、任务完成时间和功能能力。
智能材料的光电传感器和高产能合成材料,极大地促进了干扰、识别等方面的技术应用。
智能材料是什么呢

智能材料是什么呢科学家们一直致力于把高技术传感器或敏感元件与传统的结构材料和功能材料结合在一起,赋予材料崭新的性能,使它们能随着环境的变化而改变自己的性能或形状,就像具有“智能”一样。
那么什么是智能材料呢?智能材料1.形状记忆合金。
它是一种能够记住自己原来形状的特殊金属材料。
用这种合金制成某种形状的器具后,如受到外力的冲击、弯折等作用而变形,只要对它加热就能立刻恢复原状,好像通过加热使它“记忆”起原来的形状一样。
记忆合金有多种用途,如可以制成人造卫星和宇宙飞船自动展开的天线、航空用的记忆铆钉,飞机和航天器的管接头、机器人的手指、人工心脏、汽车保险杠、眼镜架以及能源转换装置等。
2.感温磁钢。
它是一种磁性随温度的高低而变化的磁性材料。
在室温时,感温磁钢具有磁性;当温度升到某一界限时,就失去磁性。
这种性质可用于“热自动控制”,如电饭堡中“饭熟断电限温器”内就装有一块感温磁钢,当饭熟后堡内无水,温度上升到1030C时,感温磁钢就失去磁性,从而导致通电触点分子自动断电,以保证米饭不会因继续升温而烧糊。
3.智能凝胶。
这是一种由分子组成的松散而又有一定凝固力的混合物,只要碰一下,它就会膨胀或收缩,随人所愿地变成各种形状或形态。
高智能的凝胶甚至能膨胀到自身体积的1000倍以上,然后恢复原状。
用这种凝胶制作高尔夫球鞋,通过足部体温的变化导致鞋底改变形状,可以使穿鞋的人感到舒适合脚。
4.自我修复的混凝土。
美国的一位建筑学家正在研制一种自行愈合的混凝土。
他设想把大量的空心纤维埋人混凝土中,当混凝土开裂时,事先装有“裂纹修补剂”的空心纤维也会裂开,并释放出粘结修补剂把裂纹牢牢地焊在一起,防止混凝土断裂。
分类(1)嵌入式智能材料,又称智能材料结构或智能材料系统。
在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。
传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。
(2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。
智能材料.

4,磁致伸缩的应用实例: (1)磁致伸缩液位仪 :
随着科学技术的迅猛发展, 高新技术在各行业中得到了广泛 的应用,高科技含量的磁致伸缩 液位传感器,
应用于各类储罐的液位测量。该种液位仪具有精 度高、环境适应性强、安装方便等特点。因此,广 泛应用于石油、化工等液位测量领域,并逐渐取代 了其它传统的传感器,成为液位测量中的精品。
例如光纤作为智能传感元件用于飞机机翼的智能蒙皮中,或者在武器平台的蒙皮 中植入传感元件、驱动元件和微处理控制系统制成的智能蒙皮,可用于预警、隐身 和通信。
(2)结构监测和寿命预测 智能结构可用于实时测量结构内部的应变、温度、裂纹, 探测疲劳和受损伤情况,从而能够对结构进行监测和寿命预 测。
(3)减振降噪 智能结构用于航空、航天系 统可以消除系统的有害振动, 减轻对电子系统的干扰,提高 系统的可靠性。
2、智能材料的特征
因为设计智能材料的两个指导思想是材料的多功 能复合和材料的仿生设计,所以智能材料系统具有 或部分具有如下的智能功能和生命特征: (1)传感功能:能够感知外界或自身所处的环境 条件,如负载、应力、应变、振动、热、光、电、 磁、化学、核辐射等的强度及其变化。 (2)反馈功能:可通过传感网络,对系统输入与 输出信息进行对比,并将其结果提供给控制系统。 (3)信息识别与积累功能:能够识别传感网络得 到的各类信息并将其积累起来。
(4)环境自适应结构
智能结构制成的自适应机 翼,能够实时感知外界环境的 变化,并可以驱动机翼弯曲、 扭转,从而改变翼型和攻角, 以获得最佳气动特性,降低机 翼阻力系数,延长机翼的疲劳 寿命。
2、与现代医学相联系的智能材料
(1)人造肌肉
因为生物弹性材料能模拟活 体生物,而且其力量和反应速度 均接近于人体的肌肉。所以这种 材料可以应用于人体组织的修复, 而且它们还具有与生物体的相容 性,随着伤口的愈合,这种聚合 物就会在体内逐渐降解,最后将 会消失。
2024年智能材料课件

智能材料课件一、引言智能材料是一种能够对外界刺激做出响应并改变其性能的材料。
这些材料在许多领域都有广泛的应用,包括医疗、建筑、能源和交通运输等。
智能材料的研究和发展是一个跨学科的领域,涉及材料科学、化学、物理学、生物学和工程学等多个学科。
本课件旨在介绍智能材料的基本概念、分类和应用。
二、智能材料的基本概念智能材料是一类具有感知、处理和响应外部刺激能力的材料。
这些外部刺激可以是温度、压力、湿度、光线、电磁场等。
智能材料的响应可以是形状、颜色、硬度、电导率、磁导率等性能的改变。
这种响应是可逆的,即当外部刺激消失时,材料的原始性能可以恢复。
三、智能材料的分类智能材料可以根据其响应机制和性能特点进行分类。
常见的智能材料包括:1.形状记忆材料:这类材料可以在外部刺激的作用下改变形状,并在去除外部刺激后恢复原始形状。
形状记忆合金和形状记忆聚合物是其中的代表。
2.液晶材料:液晶材料具有各向异性的物理性质,可以通过外部刺激(如温度、压力、电磁场等)来改变其光学性质。
液晶显示器就是利用液晶材料的这种性质制成的。
3.酞菁化合物:酞菁化合物是一类具有特殊结构的有机化合物,可以通过外部刺激来改变其颜色和电导率。
酞菁化合物在传感器和显示技术等领域有广泛的应用。
4.磁性材料:磁性材料可以通过外部磁场来改变其磁导率和磁化强度。
这种材料在数据存储和信息处理等领域有重要应用。
四、智能材料的应用1.医疗领域:智能材料可以用于制造可植入的医疗器械和药物输送系统。
例如,智能支架可以通过感知血管内的压力来调节其直径,以保持血管通畅。
2.建筑领域:智能材料可以用于建筑结构的健康监测和修复。
例如,智能混凝土可以通过感知裂缝和损伤来发出警报,并自我修复。
3.能源领域:智能材料可以用于制造高效能源转换和存储设备。
例如,智能窗户可以通过感知外界光线来调节其透光性,以节约能源。
4.交通运输领域:智能材料可以用于制造智能交通工具和交通安全设施。
例如,智能轮胎可以通过感知路面状况来调整其硬度,以提高行驶安全。
智能材料

•
智能材料的常见类型
•
压电材料
压电材料是受到压力作用时会在两端面间出现电压的晶体材料。
•
形状记忆合金
形状记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的 由两种以上金属元素所构成的材料。 电流变液 一种由介电微粒与绝缘液体混合而成的复杂流体。在没有外电场时,它的 外观很像机器用的润滑油,一般由基础液、固体粒子和添加剂组成。
压电材料
具有压电性的晶体对称性较低,当受 到外力作用发生形变时,晶胞中正负 离子的相对位移使正负电荷中心不再 重合,导致晶体发生宏观极化,而晶 体表面电荷面密度等于极化强度在表 面法向上的投影,所以压电材料受压 力作用形变时两端面会出现异号电荷。 反之,压电材料在电场中发生极化时, 会因电荷中心的位移导致材料变形。 利用压电材料的这些特性可实现机械 振动和交流电的互相转换。
•
自然界的材料都具有自适应、自诊断、自修复的功能。如所有的 动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修 复。 现有材料功能单一,无法面对复杂环境的冲击,相信在不久的将 来智能材料会为高科技的发展和提高人类文明进步而提供动力。
•
智能材料
智能材料的定义
智能材料的常见 类型及发展趋势
智能材料的定义
•
智能是一种能感知外部刺激,能够判断并适当处理且本身可执行 的新型功能材料。
•
智能材料是继天然材料、合成高分子材料、人工设计材料之后的 第四代材料,是现代高技术新材料发展的重要方向之一,将支撑 未来高技术的发展,使传统意义下的功能材料和结构材料之间的 界线逐渐消失,实现结构功应
《智能材料》PPT课件

智能材料在能源转换中作用机制
光热转换智能材料
吸收太阳光并转换为热 能,应用于太阳能热水 器、光热发电等领域。
光电转换智能材料
吸收太阳光并直接转换 为电能,如染料敏化太 阳能电池、有机太阳能 电池等。
压电转换智能材料
将机械能转换为电能, 应用于振动能收集、压 力传感器等领域。
智能材料在能源存储中作用机制
特定应用需求。
关键设备与技术应用
关键设备
智能材料制备过程中涉及的关键设备包括混料机、成型机、固化设备等。这些设备 需要具备高精度、高稳定性和高效率的特点,以确保智能材料的制备质量。
技术应用
在智能材料制备过程中,需要应用先进的制备技术,如纳米技术、3D打印技术等。 这些技术可以提高智能材料的性能,降低制造成本,并为其在各个领域的应用提供 有力支持。
仿生智能材料
柔性智能材料
借鉴自然界生物体的结构和功能,发展具有 生物活性的仿生智能材料,实现更高程度的 智能化。
随着可穿戴设备和柔性电子技术的快速发展, 柔性智能材料将在医疗、运动、娱乐等领域 得到广泛应用。
智能复合材料
智能化制造技术
通过复合不同性质的材料,实现智能材料的 多功能化和高性能化,满足不同领域的需求。
智能材料特性
01
具有感知、驱动和响应外部环境刺激的能力。
在传感器中作用
02
作为敏感元件,将外部环境刺激转换为电信号输出。
典型智能材料
03
压电材料、形状记忆合金、光纤光栅等。
典型案例分析
压电传感器
利用压电材料的压电效应,将机械能转换为电能,广泛应用于力、 压力、加速度等测量领域。
形状记忆合金传感器
利用形状记忆合金的形状记忆效应和超弹性特性,实现温度、力等 参量的测量。
智能材料

包括导电材料、磁性材料、光纤和半导体材料等。
智能材料 如:将光导纤维、形状记忆合金和镓砷化合物半导体 控制电路埋入复合材料中。
光导纤维 半导体控制电路 形状记忆合金
传感元件 (检测结构中的 应变和温度)
控制系统 (根据传感元件的信 息驱动元件动作)
执行元件 (使结构动作 改变性状)
智能材料
识别
分析
常用敏感材料:形状记忆材料、压电材料、光纤 材料、磁致伸缩材料、电致变色 材料、电流变体、磁流变体和液 晶材料等。
(3)驱动材料 因为在一定条件下驱动材料可产生较大的应变和 应力,所以它担负着响应和控制的任务。 常用有效驱动材料:形状记忆材料、压电材料、 电流变体和磁致伸缩材料等。 (4)其它功能材料
(3)座椅
用毫微塑料制作的坐椅不仅功能将大大增加,而且也将增 加舒适程度。
使用毫微塑料能改变椅座面的柔韧性和弹性,也可以形成 各种型式的椅座面。 毫微塑料可以形成所需的任何图案或结构,还能改变座椅 本身的结构。
由于不同年龄段的人对温度舒适性的要求有很大区别,座 椅还可以随心所欲地升温和降温,甚至对人们喜爱的舒适 温度具有记忆功能。
玻璃组分中 加入卤化银 高温熔融冷却
对光散射很小(高透明状态)
析出亚微米尺 度的卤化银 无光照
银离子化合成卤化银
光化学反应
光照(紫外到蓝紫波段)
室温热激活 去除光照 析出游离态银离子 对光散射强(着色状态)
智能材料 光色玻璃的应用:
图18 变色太阳镜 汽车、飞机、船舶的前向玻璃或观察窗玻 璃,起防眩作用等。
智能材料 智能窗的应用:
图20 法拉利首款自动硬顶敞篷车
玻璃车顶采用了利用电场变化来改变颜色的电致变色 技术,可对透过率进行5级调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能材料及其在医学领域的应用目录1、智能材料的概述1.1智能材料的定义和基本特征........................................................1.2智能材料的构成............................................................................1.3智能材料的分类............................................................................1.4智能材料的制备............................................................................2、智能材料的应用领域2.1智能材料的研究方向...................................................................2.2智能材料在医学上的应用............................................................2.3智能材料在医疗方法中的应用....................................................2.4智能材料在医学器械方面的应用.................................................3、结束语....................................................................4、参考文献................................................................摘要本文综合评述了智能材料的研究、应用和进展。
对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。
关键词智能材料;医学应用;发展1智能材料的概述1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。
智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。
科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。
基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:(1)传感功能(Sensor)能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。
(2)反馈功能(Feedback)可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。
(3)信息识别与积累功能能够识别传感网络得到的各类信息并将其积累起来。
(4)响应功能能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。
(5)自诊断能力(Self-diagnosis)能通过分析比较系统的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。
(6)自修复能力(Self-recovery)能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。
(7)自调节能力(Self-adjusting)对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。
1.2智能材料的构成一般来说,智能材料由基体材料、敏感材料、驱动材料、和信息处理器四部分。
1、基体材料:基体材料担负着承载的作用,一般宜选用轻质材料。
一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。
其次也可选用金属材料,以轻质有色合金为主。
2、敏感材料:敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、pH值等)。
常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。
3、驱动材料:驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。
常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。
可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。
4、其它功能材料包括导电材料、磁性材料、光纤和半导体材料等。
智能材料的基本构成和工作原理1.3智能材料的分类作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。
这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。
智能材料可分为两大类:(1)嵌入式智能材料,又称智能材料结构或智能材料系统。
在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。
传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。
(2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。
这只是一种比较笼统的分类方法,由于智能材料还在不断的研究和开发之中,因此相继又出现了许多具有智能结构的新型的智能材料。
如,英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果1.4智能材料的制备物理方法:(1)物理气相沉积法物理气相沉积法( 简称PVD) 是高温加热金属使其蒸发然后沉积于基材上, 形成一定厚度( 约100m) 的致密薄膜。
加热金属的方法有电阻加热、电子束加热、等离子加热及利用气体等离子的溅射等方法。
(2)喷涂法喷涂法是把金属、陶瓷等的粉末及它们的混合物用高温气焰或等离子加热使之熔融或半熔, 然后喷涂到基体表面形成膜层的表面处理技术。
常用的有火焰喷涂、爆震喷涂、等离子喷涂等。
(3)烧结法烧结法是粉末冶金的一种方法, 该法是把金属或陶瓷等粉末置于用石墨制成的模中, 然后加压、加热或加压后加热烧结的方法。
目前应用的有放电烧结法、激光烧结法、微波烧结法、等离子烧结法等。
(4)注射成型法金属注射成型技术是将金属粉末悬浮于由树脂( 塑料) 与蜡组成的混合物黏结剂中, 这种混合物熔化后于高压下注射入模子中。
经过模注成型之后, 脱除黏结剂, 经过烧结而制成“生坯”元件, 因为这种生坯的气孔率极低, 故而性能极接近于铸造材料。
金属注射成型元件的尺寸精度很高, 所以节省了机械加工费用。
注射成型技术是20世纪70年代后期由美国发明的, 在技术上尚未十分成熟, 还有待于理论研究的深入和生产工艺的改进。
2、智能材料的应用领域1、在军事领域中的应用2、与现代医学相联系的智能材料3、主动震动声控2.1研究方向智能材料是一种集材料与结构、智然处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。
它的设计与合成几乎横跨所有的高技术学科领域。
构成智能材料的基本材料组元有压电材料、形状记忆材料、光导纤维、电(磁)流变液、磁致伸缩材料和智能高分子材料等。
智能材料的出现将使人类文明进入一个新的高度,但距离实用阶段还有一定的距离。
今后的研究重点包括以下六个方面:(1)智能材料概念设计的仿生学理论研究(2)材料智然内禀特性及智商评价体系的研究(3)耗散结构理论应用于智能材料的研究(4)机敏材料的复合-集成原理及设计理论(5)智能结构集成的非线性理论(6)仿人智能控制理论2.2智能材料在医学上的应用(1)人造皮肤1944年意大利比萨大学的科研人员为了使机器人与真人更接近,让它的皮肤具有感觉功能,研制成功一种人造皮肤智能材料,这种材料可以感知温度、热流的变化以及各种应力的大小,并且有良好的空间分辨力。
这种智能材料还可以分辨表面状况,例如,粗糙度、摩擦力等。
2004年日本北里大学黑柳能光教授研制出一种新型人造皮肤,为重度烧伤及褥疮患者带来了福音。
该人造皮肤是一层由胶原和透明质酸制成的特殊海绵,海绵上附有志愿者提供的皮肤细胞。
随着科技的发展,学科的交叉渗透,相信这种人造皮肤智能材料会得到进一步的开发和利用。
(2)人造肌肉因为生物弹性材料能模拟活体生物,而且其力量和反应速度均接近于人体的肌肉。
所以这种材料可以应用于人体组织的修复,而且它们还具有与生物体的相容性,随着伤口的愈合,这种聚合物就会在体内逐渐降解,最后将会消失。
(3)在药物自动投入系统中的应用智能型水凝胶作为医药控制释放材料是近年来研究的热点。
科学家正在研制一种能根据血液中的葡萄糖浓度而扩张收缩的聚合物,这种聚合物可制成人造胰细胞,将它注入糖尿病患者的血液中,小球就可模拟胰细胞工作,使病人的血糖浓度始终保持在平常的水平上。
(4)智能材料的抗癌作用有两种方法:Ⅰ、用高分子聚合物抗癌药物胶囊,即药物“导弹”。
疏水性药物载体形成了“导弹”的疏水内核,而亲水性部分则在内核周围形成了一个水化物外壳。
所形成的这种高分子聚合物胶囊是一种智能型药物载体,它能自动避免被机体内单核吞噬细胞捕获而有效的到达癌细胞所在地。
Ⅱ、20世纪90年代后期,研制出用对电磁场敏感的铁氧体包覆Ti-Ni形状记忆合金丝制成了癌症温热疗法用针。
首先,通过导管将这种针植入病人癌变部位,由于形状记忆作用,这种针会发生弯曲变形现象;其次,在通过涡流效应产生高频电磁场作用下,形状记忆合金针将能够产生一定的热量而使癌变区得到萎缩。
2.3智能材料在医疗方法中的应用(1)打靶疗法药物打靶疗法就是将药物按照事先设计的、有选择性的输送到人体的某一病变位置,在那里药物能最大地发挥某药理作用并同时能够有效地抑制药物的毒副作用。
智能型药物释放系统的载体材料设计应能够使得药物载体具有三种功能:a):药物释放量的控制功能;b):病灶部位特异的识别与传感功能;c):身体异常感知的传感功能。
(2)替代疗法这种治疗方法的构思是利用具有生物适应性的智能材料所制成的人造器官取代已丧失应有功能的病变器官。
此外,在发展具有生物相容性和内部自控性的新型功能材料以替代外部控制的假体材料,在人工组织和血管等方面,智能材料也可以提供广泛的应用前景。