考研数学专题训练:中值定理

合集下载

(完整版)有关中值定理的证明题

(完整版)有关中值定理的证明题

中值定理证明题集锦1、已知函数()f x 具有二阶导数,且0()lim0x f x x→=,(1)0f =,试证:在区间(0,1)内至少存在一点ξ,使得()0.f ''ξ= 证:由0()lim0x f x x→= ,可得0lim ()0x f x →=,由连续性得(0)0f =,由此又得00()(0)()(0)lim lim 00x x f x f f x f x x→→-'===-,由(0)(1)0f f ==及题设条件知()f x 在[0,1]上满足罗尔中值定理条件,因此至少存在一点 (0,1)c ∈,使得()0f c '=,又因为(0)()0f f c ''==, 并由题设条件知()f x '在[0,]c 上满足拉格朗日中值定理的条件,由拉格朗日中值定理知,在区间(0,1)内至少存在一点ξ,使得()0.f ''ξ=2、设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0.f f ξξξ'+=证:分析:要证结论即为:[()]0.x xf x ξ='=令()()F x xf x =,则()F x 在[0,]a 上连续,在(0,)a 内可导,且(0)()0F F a ==,因此()()F x xf x =在[0,]a 上满足罗尔中值定理的条件,故存在一点(0,)a ξ∈,使得()0F ξ'=,即()()0.f f ξξξ'+= 注1:此题可改为:设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0.nf f ξξξ'+=分析:要证结论()()0nf f ξξξ'+=等价于1()()0n n n f f ξξξξ-'+=(给()()0nf f ξξξ'+=两端同乘以1n ξ-),而1()()0n n n f f ξξξξ-'+=即为[()]0.nx x f x ξ='= 故令()()nF x x f x =,则()F x 在[0,]a 上满足罗尔中值定理的条件,由此可证结论. 注2:此题与下面例题情况亦类似:设()f x 在[0,1]上连续,在(0,1)内可导,且(0)0f =,(0,1)x ∀∈,有()0f x ≠,证:n N +∀∈,(0,1)ξ∃∈,使得()(1)()(1)nf f f f ξξξξ''-=-成立.分析:要证结论可变形为()(1)()(1)0nf f f f ξξξξ''---=,它等价于1()()(1)()(1)0n n nf f f f f ξξξξξ-''---=(给()(1)()(1)0nf f f f ξξξξ''---=两端同乘以1()n f ξ-),而1()()(1)()(1)0n n nf f f f f ξξξξξ-''---=即为[()(1)]0n x f x f x ξ='-=,用罗尔中值定理.以上三题是同类型题.3、已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)(1)0f f ==,1()12f =,证明: (1)存在一点1(,1)2ξ∈,使().f ξξ= (2)存在一点(0,)ηξ∈,使() 1.f η'=(3)存在一点0(0,)x ξ∈,使000()1(()).f x f x x λ'-=- 证:(1)分析:要证结论即为:()0.f ξξ-=令()()F x f x x =-,则只需证明()F x 在1(,1)2内有零点即可。

专升本拉格朗日中值定理例题

专升本拉格朗日中值定理例题

专升本拉格朗日中值定理例题根据你给出的题目,我将按照例题的形式来解答。

拉格朗日中值定理是微积分中的一个重要定理,具有广泛的应用。

它是拉格朗日的名字命名的,拉格朗日是18世纪的法国数学家,他在这个定理的证明与应用方面做出了卓越的贡献。

本文将通过一个例题来说明拉格朗日中值定理的基本原理和应用方法。

例题:已知函数f(x)=x^2在闭区间[1,5]上连续且可导,求函数f(x)在该区间上至少有多少个零点。

解析:首先,我们要明确拉格朗日中值定理的表述:对于一个连续函数f(x),如果在闭区间[a,b]上可导,则在开区间(a,b)内至少存在一个数c,使得函数的导数f'(c)等于函数在这个区间的平均斜率。

根据题目中给出的函数f(x)=x^2,可以求出该函数的导函数f'(x)=2x。

由于函数f(x)在闭区间[1,5]上是连续可导的,我们可以使用拉格朗日中值定理来解决此题。

根据拉格朗日中值定理的原理,我们要找到一个数c,使得函数的导数f'(c)等于函数在闭区间[1,5]上的平均斜率。

首先计算函数f(x)在闭区间[1,5]上的平均斜率:平均斜率 = (f(5) - f(1)) / (5 - 1)= (25 - 1) / 4= 6接下来,我们要找到一个数c,使得函数的导数f'(c)等于平均斜率6。

由于函数f(x)的导函数f'(x)=2x,我们可以设2c=6,即c=3。

因此,函数f(x)在闭区间[1,5]上至少有一个零点。

综上所述,函数f(x)=x^2在闭区间[1,5]上至少有一个零点。

这个例题通过拉格朗日中值定理来计算函数f(x)在闭区间[1,5]上的零点个数,充分展示了该定理在实际问题中的应用价值。

拉格朗日中值定理不仅仅用于求函数的零点,它还可以用于证明函数的性质、研究函数的变化趋势等方面,是微积分中的基础定理之一。

当然,上述的例题只是拉格朗日中值定理的一个简单应用,实际应用中可能会遇到更加复杂的情况。

考研数学中值定理 证明题

考研数学中值定理 证明题

考研数学中值定理证明题考研数学中经常出现定理的证明题,其中中值定理是一个常见的题型。

中值定理是高等数学中一个非常重要的定理,它有着广泛的应用,在计算机科学、物理学、工程学等领域都有着广泛的应用。

中值定理有两种形式:罗尔中值定理和拉格朗日中值定理。

其中罗尔中值定理是拉格朗日中值定理的特例,在下文中以罗尔中值定理为例来介绍中值定理的证明方法。

罗尔中值定理是一个非常简单的定理,它的内容是:如果一个函数$f(x)$在闭区间$[a,b]$上连续,在开区间$(a,b)$上可导,并且$f(a)=f(b)$,那么存在一个$\xi \in (a,b)$, 使得$f'(\xi)=0$。

那么该如何证明罗尔中值定理呢?下面就来介绍一下证明的过程。

证明:首先,根据$f(a)=f(b)$, 可得函数$f(x)$在$[a,b]$上至少存在一个极值点。

如果该极值点在$(a,b)$内,则此极值点即为所求的$\xi$,满足$f'(\xi)=0$;如果该极值点在$\{a,b\}$上,则此时存在一个开区间$(c,d) \subseteq (a,b)$,使得$f(x)$在$(c,d)$上可导,从而可以使用拉格朗日中值定理。

接下来,我们通过反证法来证明假设“不存在这样的$\xi$”是不成立的。

我们假设不存在一个$\xi \in (a,b)$,使得$f'(\xi)=0$。

因为$f(x)$在$[a,b]$上连续,在$[a,b]$上有最大值和最小值,由于假设不存在$\xi$,使得$f'(\xi)=0$,因此最大值和最小值都不在$(a,b)$内。

那么最大值和最小值只能发生在$a$和$b$处,即$f(a)=f(b)$是$f(x)$的最大值或最小值。

假设$f(x)$在$[a,b]$上为最大值,则有$f(x) \leq f(a) = f(b),\forall x \in [a,b]$。

又因为$f(x)$在$(a,b)$上可导,即$\forall x \in (a,b)$,有$f'(x)$存在,所以$f(x)$在$(a,b)$上单调递减,即$\forall x_1,x_2 \in (a,b)$,如果$x_1 < x_2$,则$f(x_1) >f(x_2)$。

中值定理证明练习题

中值定理证明练习题

中值定理证明练习题中值定理是微积分中的一个重要定理,它给出了函数在某个区间内存在一个点,该点处的导数等于函数在该区间两个端点处导数的平均值。

在本文中,我将给出中值定理的证明练习题,帮助读者更好地理解和掌握这个定理的应用。

题目一证明:若函数f(x)在区间[a, b]上连续,在区间(a, b)内可导,且f(a) ≠ f(b),则存在一个点c ∈ (a, b),使得f'(c) = [f(b) - f(a)] / (b - a)。

解答:根据中值定理的条件,我们可以先定义一个新的函数g(x),使得g(x) = f(x) - [(f(b) - f(a)) / (b - a)] * (x - a)。

这里,我们先把中值定理的结论作为一个已知条件,然后通过构造g(x)来证明中值定理。

因为根据题目中的条件,f(x)在[a, b]上连续,在(a, b)内可导,所以函数g(x)在区间[a, b]上连续,在(a, b)内可导。

首先,计算g(a)和g(b):g(a) = f(a) - [(f(b) - f(a)) / (b - a)] * (a - a) = f(a)g(b) = f(b) - [(f(b) - f(a)) / (b - a)] * (b - a) = f(b) - (f(b) - f(a)) = f(a)由于f(a) ≠ f(b),所以g(a) ≠ g(b)。

接下来,我们利用罗尔定理(Rolle's theorem)来证明函数g(x)在区间[a, b]上存在一个点x0,使得g'(x0) = 0。

根据罗尔定理,在区间[a, b]上,如果函数g(x)在(a, b)内可导,且满足g(a) = g(b),则必定存在一个点x0 ∈ (a, b),使得g'(x0) = 0。

因为g(a) ≠ g(b),所以我们可以得出结论:函数g(x)在区间[a, b]上必有一个点x0,使得g'(x0) = 0。

数学《中值定理》练习题

数学《中值定理》练习题

第六章 中值定理与泰勒公式1. 证明: 10x x ++=3只有一个实根且在(1,0)-中.2.证明:若函数f 在区间I 上可导,且()0f x '≡,x I ∈, 则f 在I 上恒为常数.3. 求分段函数()f x 的导数. [说明定理的作用]sin ,()ln(1),x x x f x x x ≤⎧+=⎨>+⎩20,0,4. 设sin , () 0,x x f x xx ⎧≠⎪=⎨⎪=⎩210,0,求(00)f '+,(0)f '.5. 考察2()f x x =,3()g x x =,[1,1]x ∈-相应的中值形式.6. 1) 设f 在闭区间[,]a b (0)a >上连续,(,)a b 内可导, 则存在(,)a b ξ∈, 使得()()ln()()bf b f a f aξξ'-=⋅⋅.2) 对函数()f x x =2确定()()()f x h f x h f x h θ'+-=⋅+中的θ, 1()2θ=.7. 证明: 对任何x R ∈,arctan arccot x x π+=2.8. 设函数f 对任何,x h R ∈,2()()f x h f x Mh +-≤,0M >为常数,则f 为常值函数.9. 证明0h >时,2arctan 1hh h h <<+10. 1)证明: 方程sin cos 0x x x +⋅=在(0,)π内有实根.2)证明: 方程32432+ax bx cx a b c ++=+在(0,1)内有实根.11.证明: 1) 1x x >+e ,()0x ≠;2) ()()22ln 1221x x x x x x -<+<-+. 0x >.12. 证明: 0x >时,sin x x x >-33!.13. 1) x >12时,2ln(1)arctan 1x x +>-.2) tan (0)sin 2x x x x x π<<<.14. 用中值定理证明:sin sin x y x y -≤-,,x y R ∀∈.15. 证明: 若函数g f ,在区间],[b a 上可导,且)()(),()(a g a f x g x f ='>', 则在],(b a 内有)()(x g x f >.16. 设f 在[,]a b 上二阶可导,且()()0f a f b ==,且存在点(,)c a b ∈使得()0f c >,证明: 至少存在一点(,)a b ξ∈使得"()0f ξ<.17. 试问函数32)(,)(x x g x x f ==在区间]1,1[-上能否应用Cauchy 中值定理得到相应的结论, 为什么?18. 设函数f 在点a 的某个领域具有二阶导数, 证明: 对充分小的h ,存在θ,10<<θ,使得2)()()(2)()(2h a f h a f ha f h a f h a f θθ-''++''=--++.19. 若f 在[,]a b 上可微,则存在(,)a b ξ∈, 使得22'2[()()]()()f b f a b a f ξξ-=-.20. 设f 在[,]a b 上连续, (,)a b 上可导,且()()0f a f b ==,证明:对任何R λ∈,存在c R ∈,使得 '()()f c f c λ=.21. 设0,>b a .证明方程b ax x ++3=0不存在正根.22. 1) 0sin lim x xx→ 2) 132lim 1x x x x x x →-+--+3323) lim (arctan )x x x π→+∞-2 4) 21cos lim cos tan x xx x π→++5) 0lim x +→ 6) 012limln(1)xx e x x →-++122()7) 20ln(1sin 4)lim arcsin x x x x →++() 8) 02lim sin x x x e e xx x -→---(过程不要,直接写答案)23. 1) cos lim x x x x →∞+ 2) 0sinlim sin x x x x →⋅21 3) 0ln(sin )limln(sin )x ax bx → 4) 2tan lim tan 3x xx π→24. 1) 011lim()sin x x x →- 2) 11lim()-1ln x x x x→-.25. 1) 111lim xx x-→ 2) ()21lim cos x x x →.26. 1) ln lim ()xx x →+∞+1 2) ln 0lim(cot )xx x +→1.27. 证明2()x f x x e -=3为R 上的有界函数.28 1) 011lim()1x x x e →-- 2) 111lim x x x -→3) sin 0lim(tan )x x x → 4) 22011lim()sin x x x→- 29.3) 30tan sin limx x x x →- 4) 201cot lim x x x x →⎛⎫- ⎪⎝⎭5) ln lim(ln )xx x x x →+∞ 6) 10(1)lim xx x e x→+-7) 20()lim x x x a x a x→+- 8) 10lim()x xx x e →+必须记住的泰勒公式(peano 型)1) 1!nxn x x e x o x n =+++++2...()2!2) ()11sin 1 (1)(1)!m m m x x x x o x m --=-+++-+-35223!5!2 3) 1cos 1...(1)(2)!m m m x x x x o x m +=-+++-+2422()2!4! 4) 1ln(1)1...(1)nn n x x x x o x n-+=-+++-+23()23 5)11n n x x x o x x=+++++-21...() 6) (1)(1)1(1)1!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++++2()...()2!1(1)(23)!!1(2)!!n nn n x x x o x n ---=+++++211!!...()24!! 习题:1.求2cos x 的具Peano 余项的Maclaurin 展式;2.当[0,2]x ∈时,() ()f x f x ''≤≤1,1, 证明: |'()| 2.f x ≤3. 证明:若函数f 在点a 处二阶可导,且()f a ''≠0,则对Lagrange 公式()()()f a h f a f a h h θ'+-=+⋅ 01θ<<中的θ,有0lim h θ→=12.4. 、设函数f 在[0,]a 上具有二阶导数,且"()f x M ≤,f 在(0,)a 内取最大值,求证''(0)()f f a Ma +≤.5. .有一个无盖的圆柱形容器,当给定体积为V 时,要使容器的表面积为最小, 问底的半径与容器高的比例应该怎样?6. 讨论函数()f x =()arctan g x x =的凸凹性。

高数考研中值定理的应用

高数考研中值定理的应用

同理有x (b 2 , b), 使
f ( x) f (b) x b
0, 即f ( x) f (b),
f (a), f (b)都不是f ( x)在[a, b]上的最大值,
f ( x)在[a, b]上连续, f ( x)在[a, b]上必有最大值和最小值,
则f ( x)的最大值必在(a, b)内取得,
1, f (3) 1 在(c, 3) 内可导 ,
例5. 设函数 f (x) 具有二阶导数,且 lim f ( x) 0, f (1) 0, 试证必存在 (0,1) , 使 f ( ) 0. 证: lim
x 0
x 0
x
f ( x) x
0, f (0) 0, f (0) 0,
则1 (a, b)使f (1 ) 0; 2 (b, c)使f (2 ) 0;
对f ( x)在[1 , 2 ]上用罗尔定理即得结论.
例3. 设 f ( x)在[ a, b]上可导, f (a) f (b) 0, 且 求证: (a, b), 使f ( ) 0. 证明: 不妨设f (a) 0, f (b) 0,
f (b ) f (a ) F (b ) F (a ) f ( ) F ( ) .
4) 判别 f ( x ) C 的方法 若 f ( x ) 0 ,则 f ( x ) C 5) 三个定理之间的内在联系 柯西中值定理
f (b ) f (a ) F (b ) F (a ) f ( ) F ( )
证明: 令 F ( x )
f (x) x ,
由已知条件知 F ( x ) 在[ a , b ] 上连续, 在 ( a , b ) 内可导, 且 F ( a ) 0 F (b ) 故由罗尔定理知, ( a , b ), 使 F ( ) 0 , 即

拉格朗日中值定理练习题

拉格朗日中值定理练习题

拉格朗日中值定理练习题拉格朗日中值定理是微积分中的一项重要定理,它通过中值定理的形式,给出了函数在某个区间内的平均变化率与其导数在该区间内某点的取值之间的关系。

本文将结合几个练习题来深入理解拉格朗日中值定理及其应用。

练习题一已知函数 f(x) 在闭区间 [a,b] 上连续,且在开区间 (a,b) 内可导。

证明:在开区间 (a,b) 内至少存在一点 c,使得f’(c) = (f(b) - f(a))/(b - a) 成立。

解:根据题目中的条件,我们知道函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导。

因此,根据拉格朗日中值定理,我们可以找到一个点c ∈ (a,b),使得f’(c) = (f(b) - f(a))/(b - a) 成立。

练习题二已知函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,且f’(x) ≠ 0,即导函数在开区间 (a,b) 内不为零。

证明:在开区间 (a,b) 内至少存在一点 c,使得f’(c) = (f(b) - f(a))/(b - a) 成立。

解:根据题目中的条件,我们知道函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,并且导函数不为零。

因此,根据拉格朗日中值定理,我们可以找到一个点c ∈ (a,b),使得f’(c) = (f(b) - f(a))/(b - a) 成立。

练习题三已知函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导。

证明:在开区间 (a,b) 内至少存在两个点 c1 和 c2,使得f’(c1) = f’(c2)。

解:根据题目中的条件,我们知道函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导。

根据拉格朗日中值定理,我们可以找到一个点c ∈ (a,b),使得f’(c) = (f(b) - f(a))/(b - a) 成立。

我们再次应用拉格朗日中值定理在同一区间 (a,b) 上,可以找到另一个点d ∈ (a,b),使得f’(d) = (f(b) - f(a))/(b - a) 成立。

D考研基础班中值定理及其应用专题

D考研基础班中值定理及其应用专题

对F(x)在[ ,1]上用罗尔定理:
2 ( ,1) (0,1)使F(2 ) 0即f (2 ) 0.
证毕
例2. 设f ( x)C[0,1]且 1 f ( x)dx 0, g( x)在[0,1]上有连续导数
在(0,1)内g(x)
0, 又
1 0
0
f ( x)g( x)dx
0,证明:不同1 , 2
在(0,1)内g( x) 0,又
1 0
0
f ( x)g( x)dx
0,证明:不同1,2 (0,1)
使f (1 ) f (2 ) 0
分析:若证f ( ) 0,可用零点定理,罗尔定理.
证明 : 令F(x)
x
f (t)dt,
0
0
1
(欲证结论,需找a, b, c [0,1],使F(a) F(b) F(c) 0)
(n 1) !
(
x
x0
)n1
o((
x
x0
)n
)
当 x0 0 时为麦克劳林公式 .
f ( x) f (0) f (0)x f (0) x2 f (n)(0) xn ( xn )
2!
n!
第2页/共34页
2
微分中值定理之间的相互关系
罗尔定理
f (a) f (b) 拉格朗日中值定理
f ( ) 0
f (a) F (a)
,
第1页/共34页
1
泰勒中值定理:若函数
内具有 n + 1 阶导数,
f
(x)
f ( x0) f ( x0 )( x x0 ) f
f
(n) ( x0 n!
)
(
x
x0
)n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
中值定理
【本章定位】
本部分内容属于考研数学中的难点内容,而且经常被考生所忽略,往往受到课本中的误导,低估了其难度和重要性,事实证明,在历年考研中,虽不是年年必考,但是出现的几率很大,且一般作为区分题加大了试卷的难度,如 201年的真题中“证明拉格朗日中值定理”的题目,让人无从下手,有人将此归结为看书不仔细,实际上是对本该好好研究学习的内容没有认真把握和总结,没有掌握中值定理的方法和技巧。

所以,请考生务必重视!
1、 所证式仅与ξ相关 ①观察法与凑方法
1 ()[0,1](0)(1)(0)0
2() (,)()1 ()()2()0(1)
()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ
'''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口
因为()(1) ()()[()()]0()()[()]0
()(1)()()
f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=⇒--='=--,那么把式变一下:
这时要构造的函数就看出来了②原函数法
⎰-⎰-⎰
===⇒=⇒+=⇒='ζζζ=ζ'∈ζ∃==⎰dx
x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )()
()(
)
()()(),( ],[)()()( ),(],[)( 2 很明显了
,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法
造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分00
2
③一阶线性齐次方程解法的变形法
0 ()()()[,](,)()0
()()
(,)()()()()0 [()()]pdx pdx
f pf p x u x e F x f e f x a b c a b f c f f a a b f b a
f f a f b a
f f a '+=⎰⎰==⋅'∈=ξ-'ξ∈ξ=
-ξ-'ξ-=-'⇒ξ-对于所证式为型,(其中为常数或的函数)
可引进函数,则可构造新函数例:设在有连续的导数,又存在,使得求证:存在,使得分析:把所证式整理一下可得:11[()()]00 () C=0()[()()]
()() ()0()() x x
dx b a b a b a f f a f pf b a u x e e F x e f x f a f b f a f c f b f a b a ---'-ξ-=+=-⎰==--'==⇒=---,这样就变成了型引进函数=(令),于是就可以设注:此题在证明时会用到这个结论 2、所证式中出现两端点
①凑拉格朗日
a
b a af b bf f f F x xf x F f f a
b a af b bf b a b a b a x f --=ζ'ζ+ζ=ζ'=ζ'ζ+ζ=--∈ζ)()()()()( ),()( )()()()(),( ),(],[)( 3 下
用拉格朗日定理验证一可以试一下,不妨设
证的式子的特点,那么分析:很容易就找到要使得证明至少存在一点内可导
上连续,在在设例
②柯西定理 数就很容易证明了
用柯西定理设好两个函没有悬念了于是这个式子一下变得分子分母同除一下是交叉的,变换一下,发现容易看出来了
这题就没上面那道那么的式子分析:先整理一下要证,使得
至少存在一点可导,证明在在,设例 )
()( )()( )()()
()()()()
()( ),(],[)( 4 1212212121212121111
012121221212121x x x x x x x x x x x x x x x x e e
e
x f e x f e
x f e x f e c f c f e
e x
f e x f e c f c f x f x f e e e e c x x x x x f x x ---'-=--'-=-<<+ ③k 值法
3 。

,用罗尔定理证明即可记得回带,验证可知那么进入第二步,设还是一样的称式,也是说互换
很容易看出这是一个对整理得设量的这个式子
的形式了,现在就看常以此题为例已经是规范两边
常量的式子分写在等号第一步是要把含变量与值法
方法叫做在老陈的书里讲了一个呢?
很好上面那题该怎么办对柯西定理掌握的不是分析:对于数四,如果仍是上题
k x F x F k x f e x F x x k x f e k x f e k e
e x
f e x f e k x x x x x x x )
()(])([)( ])([])([ )
()( 21212112212121=-=-=-=-----④泰勒公式法
有一句话说,管它是什么,先泰勒展开再说。

当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η①两次中值定理
)]()([)( )( )]()([ )()()( )
()(])([)]()([ )]()([)]()([),(
)()( ),(],[)( 5 η'+η=--==ζ'=----=η'+η--=η'='η=η'+η=η'+ηηζ=η'+η∈ηζ==ηζ
ζη
ηηζ
ηζ-ηf f e a b e e e G e x G e a b e e a b e e f f e a
b a f e b f e F x f e x F f e f f e e f f e f f e b f a f b a b a x f a
b x a
b a b a b x 得到
则再用拉格朗日定理就令这个更容易看出来了,的关系就行了与只要找到再整理一下利用拉格朗日定理可得,设很容易看出子下手试一下
那么可以先从左边的式一下子看不出来什么,分开,那么就有与分析:首先把使得,试证存在内可导,上连续,在在例1101
②柯西定理(与之前所举例类似)
有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用。

相关文档
最新文档