气浮法
气浮法设计计算

气浮法设计计算一.气浮法分类及原理处理方法按产气方式分类常用方式原 理气 浮 法气浮法压力溶气 全溶气气浮法部分回流溶气气浮法用水泵将废水提升到溶气罐,加压至0.3~0.55MPa (表压)同时注入压缩空气,使之过饱和。
然后瞬间减压,骤然释放出大量密集的微细气泡,从而使气泡和被去除物质的结合体迅速分离,上浮至水面。
气浮法细碎空气 喷射气浮法叶轮气浮法(韦姆科气浮法)利用高速喷射的水流或高速旋转的叶轮,将吸入水中的空气剪切成微细气泡,从而使气泡与被去除物质的结合体迅速上浮与水分离。
二.气浮法设计参数全溶气气浮法 部分回流溶气气浮法1流 程 示 意 图2 进水水质 pH=6.5~8.5含油量<100mg/l pH=6.5~8.5含油量<100mg/l3投加药剂(品种和数量根据实际水质筛选决定) 聚合铝25~35mg/l 或硫酸铝60~80mg/l 或聚合铁15~30mg/l 或有机高分子凝聚剂1~10mg/l 聚合铝15~25mg/l 或硫酸铝40~60mg/l 或聚合铁10~20mg/l 或有机高分子凝聚剂1~8mg/l 4混凝反应管道和水泵混合无反应室管道混合,阻力损失≥0.3m 或机械混合,搅拌浆叶线速度0.5m/s 左右,混合时间气 浮 方式参 数 序 号三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。
气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。
气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。
气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。
气浮法

化学药剂的投加对气浮效果的影响
一般的疏水性或亲水性的物质,均需投加化学药剂, 以改变颗粒的表面性质,增加气泡与颗粒的吸附。这些化学 药剂分为下述几类: 混凝剂
浮选剂
助凝剂 抑制剂
浮选剂使亲水性物质转化为疏水性物质, 从而能使其与微细气泡相粘附。 浮选剂的种类有松香油、石油、表面活 性剂、硬脂酸盐等。
原因有二
气泡本身具有自动降低表面自由能的倾向,即气 泡合并, ΔE变小,这种合并趋势的存在,使气 泡很难做到极细的分散度(微气泡)。 纯气泡上升到水表面时,由于气泡表面水分子层 薄,会很快破灭而得不到稳定的水表“气浮泡沫 层”,致使污染物脱落而重新返回水中。 一定量表面活性剂的存在使气泡表面带同种电荷, 不易合并。同时,一定量表面活性剂的存在使水 面气泡表面有一定厚度的水膜而不易破灭,从而 有利于收集除去。
一定温度下,溶解度与压力成正比。
加 压 溶 气 的 两 种 方 式
存在问题: 填料长膜; 压缩气含油; 调节不便; 时而需放气。
存在问题: 设备较复杂; 造价偏高。
部分溶气加压气浮法
全溶气气浮工艺流程 部分溶气气浮工艺流程 回流加压溶气气浮工艺流程
回流加压溶气流程:即部分气浮池出水进行 回流溶气,实际上属于部分溶气流程。 特点:可避免废水中的高浓度悬浮物堵塞溶 气罐填料。
调节剂
化学药剂的投加对气浮效果的影响
一般的疏水性或亲水性的物质,均需投加化学药剂, 以改变颗粒的表面性质,增加气泡与颗粒的吸附。这些化学 药剂分为下述几类: 混凝剂
浮选剂
助凝剂 抑制剂 作用是提高悬浮颗粒表面的水密性,以 提高颗粒的可浮性,如聚丙烯酰胺。
调节剂
化学药剂的投加对气浮效果的影响
气浮

(一)基本概念气浮处理法就是向废水中通人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水(一)基本概念气浮处理法就是向废水中通人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水的目的。
浮选法主要用来处理废水中靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。
(二)气浮的基本原理1.带气絮粒的上浮和气浮表面负荷的关系粘附气泡的絮粒在水中上浮时,在宏观上将受到重力G浮力F等外力的影响。
带气絮粒上浮时的速度由牛顿第二定律可导出,上浮速度取决于水和带气絮粒的密度差,带气絮粒的直径(或特征直径)以及水的温度、流态。
如果带带气絮粒中气泡所占比例越大则带气絮粒的密度就越小;而其特征直径则相应增大,两者的这种变化可使上浮速度大大提高。
然而实际水流中;带气絮粒大小不一,而引起的阻力也不断变化,同时在气浮中外力还发生变化,从而气泡形成体和上浮速度也在不断变化。
具体上浮速度可按照实验测定。
根据测定的上浮速度值可以确定气浮的表面负荷。
而上浮速度的确定须根据出水的要求确定。
2.水中絮粒向气泡粘附如前所述,气浮处理法对水中污染物的主要分离对象,大体有两种类型即混凝反应的絮凝体和颗粒单体。
气浮过程中气泡对混凝絮体和颗粒单体的结合可以有三种方式,即气泡顶托,气泡裹携和气粒吸附。
显然,它们之间的裹携和粘附力的强弱,即气、粒(包括絮废体)结合的牢固程度与否,不仅与颗粒、絮凝体的形状有关,更重要的受水、气、粒三相界面性质的影响。
水中活性剂的含量,水中的硬度,悬浮物的浓度,都和气泡的粘浮强度有着密切的联系。
气浮运行的好坏和此有根本的关联。
气浮法在污水处理中的应用

针对传统气浮装置存在的缺陷,研究者开发出多种新型气浮装置,如高效浅层气浮装置、 多功能组合式气浮装置等,这些新型装置具有更高的处理能力和更好的节能效果。
气浮法与其他工艺的联合应用
为了进一步提高污水处理效果,研究者将气浮法与其他工艺进行联合应用,如气浮-活性 污泥法、气浮-生物膜法等,实现了优势互补,提高了整体处理效果。
气浮法的分类
按产生气泡的方式可分为
按设备类型可分为
溶气气浮法、充气气浮法和电解气浮 法。
平流式气浮机、竖流式气浮机和辐流 式气浮机。
按处理方式可分为
沉淀气浮法、过滤气浮法和化学气浮 法。
C处理中的应用
01
02
03
去除悬浮物
气浮法可以有效去除生活 污水中含有的悬浮物,如 泥沙、悬浮颗粒物等,提 高水质。
回收油类物质
气浮法可以用于含油污水 中的油类物质回收,实现 资源回收利用。
CHAPTER 03
气浮法处理污水的优势与局限性
气浮法处理污水的优势
高效去除悬浮物和胶体
气浮法能够有效地去除污水中的悬浮物和胶 体,提高水质。
易于自动化
气浮法可以通过自动化控制系统实现连续稳 定的运行,提高污水处理效率。
低能耗
通过向废水中通入空气或其它气体,使废水中的悬浮颗粒或 油类附着在气泡上,随气泡一起上浮到水面,形成浮渣或泡 沫,从而把污染物从废水中分离出来。
气浮法的原理
当压力小于水面的大气压时,溶解在水中的气体就会释放出来,形成微小气泡。 气泡在上升过程中会吸附水中的悬浮颗粒或油类,使它们一起上浮到水面。
通过刮渣设备可以将浮在水面上的浮渣或泡沫去除,从而达到净化废水的目的。
环境效益与经济效益
气浮法设计计算

气浮法设计计算一.气浮法分类及原理处理方法按产气方式分类常用方式 原 理气 浮 法气浮法压力溶气全溶气气浮法部分回流溶气气浮法用水泵将废水提升到溶气罐,加压至0.3~0.55MPa 表压同时注入压缩空气,使之过饱和;然后瞬间减压,骤然释放出大量密集的微细气泡,从而使气泡和被去除物质的结合体迅速分离,上浮至水面;气浮法细碎空气喷射气浮法叶轮气浮法韦姆科气浮法利用高速喷射的水流或高速旋转的叶轮,将吸入水中的空气剪切成微细气泡,从而使气泡与被去除物质的结合体迅速上浮与水分离;二.气浮法设计参数全溶气气浮法 部分回流溶气气浮法1流 程 示 意 图2 进水水质 pH=6.5~8.5含油量<100mg/lpH=6.5~8.5含油量<100mg/l 3投加药剂品种和数量根据实际水质筛选决定 聚合铝25~35mg/l 或硫酸铝60~80mg/l 或聚合铁15~30mg/l 或有机高分子凝聚剂1~10mg/l 聚合铝15~25mg/l 或硫酸铝40~60mg/l 或聚合铁10~20mg/l 或有机高分子凝聚剂1~8mg/l4混凝反应管道和水泵混合无反应室管道混合,阻力损失≥0.3m 或机械混合,搅拌浆叶线速度0.5m/s 左右,混合时间气 浮 方式参 数 序 号三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方;气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮;取:取U J2=7.5mm/s=27m/h接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m扩散段水平倾角α=35°,扩散段高:h K=1.7-0.7tan35°=0.7m扩散段容积:V K=〔1.7+0.7/2〕×0.7×2=1.68m3接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3接触区底部上升段高:h D=V J-V K/F J1=2.25-1.68/1.4=0.4m分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m<沉淀池长5.5m气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3空压机额定排气量:Q P=kQ K/60=1.5×1.515/60=0.038m3/min选用无油空气压缩机,数量3台,2用1备;型号:ZW0.05/7,排气量:0.05m3/min,排气压力:0.7MPa,电机功率:0.75Kw,外形尺寸:长×宽×高=825×368×651mm;●溶气罐:溶气罐采用具有高效溶气效率的喷淋填料式,数量2台,碳钢制作;溶气接触停留时间2~4min,取T R=2.5min,溶气罐容积:V R=Q R T R/60=15×2.5/60=0.625m3填料式溶气罐断面负荷一般为1000~2000m3/m2d,即40~80m3/m2h,取q=75m3/m2h溶气罐直径:D R=〔4×15/75/3.1416〕0.5=0.5m溶气罐有效高:h=0.625/0.52×3.1416/4=3.2m气液传质填料选用溶气效率较高的塑料阶梯环,规格:φ25米字内筋,尺寸:外径×高×壁厚=25×17.5×1mm,装填高1.3m,容积0.25m3;,,,使/h●刮渣机:采用逆向刮渣,行车行走速度3~5m/min,数量2台;减速机型号:BWD11-71-0.55链条、链轮传动,电机功率:0.55Kw;●其它:扶梯、平台、阀门、瞬时流量计、水表等●各项性能参数略相关数据见计算结果;。
气浮法

对σ水-气影响较大的主要是物质表面的亲水基团,亲水基 越多,则σ水-气越小,越不易被气浮处理(如乳化油及洗涤
废水等);同时亲水基越多,污染粒子乳化严重,表面电 位增高也影响粘附。
泡沫的稳定性
由上面的讨论可知,水中表面活性剂的存 在对气浮处理有不利影响。 但是,气浮处理时,一般又要求水中含有 一定量的表面活性剂,以保证气泡具有足 够的稳定性。如果表面活性剂含量过低, 则应投加一定量的起泡剂。 为什么?
水-粒 水-气 cos(180 ) 粒-气
式中:θ——接触角(也称湿润角)。
由此可得:
E 水-气(1 cos )
上式表明,并不是水中所有的污染物质都能与气 泡粘附,是否能产生较好的粘附,与该类物质的接触
角θ 、水的表面张力σ水-气有关。
当θ>900时,颗粒为疏水表面。θ→180°时, cosθ→ -1,ΔE→2σ水-气,这类物质憎水性强(称憎
污水处理技术中,浮上法固-液或液-液分离技术应 用的几方面:
石油、化工及机械制造业中的含油污水的油水分离;
工业废水处理;
污水中有用物质的回收;
取代二次沉淀池,特别是用于易产生活性污泥膨胀的 情况;
剩余活性污泥的浓缩。
水中颗粒与气泡的粘附条件
悬浮颗粒能否与气泡粘附主要
取决于颗粒表面的性质。颗粒
b
B H1
L
3 2 1
5
8
8
7
4
6
i
L2
L2
图 8-5 双室平流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出口水位调节器; 5-刮渣机;6-浮渣室;7-排渣阀;8-污泥排除口
分散空气浮上法
气浮法设计计算

气浮法设计计算一.气浮法分类及原理二.气浮法设计参数全溶气气浮法 部分回流溶气气浮法1流 程示 意 图2进水水质pH=6.5~8.5含油量<100mg/lpH=6.5~8.5含油量<100mg/l 3投加药剂(品种和数量根据实际水质筛选决定)聚合铝25~35mg/l或硫酸铝60~80mg/l或聚合铁15~30mg/l或有机高分子凝聚剂1~10mg/l聚合铝15~25mg/l 或硫酸铝40~60mg/l 或聚合铁10~20mg/l 或有机高分子凝聚剂1~8mg/l 4混凝反应管道和水泵混合无反应室管道混合,阻力损失≥0.3m或机械混合,搅拌浆叶线速度0.5m/s 左右,混合时间 4混凝反应管道和水泵混合无反应室2~3min ;机械反应室(一级机械搅拌)或平流反应室或旋流反应室或涡流 反应室,水流线速度从方 式参数序 号三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。
气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。
气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。
气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。
●结构尺寸:取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3分离区清水下降时间:t F=h Y/U3=1.5/9=0.167h=10min取分离区安全超高h A=0.5m,气浮池高H F=1.5+0.5=2m复核分离停留时间:t F′=V F/Q3=16.5/90=0.183h=11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。
气浮法——精选推荐

1. 5.4气浮法的优缺点与沉淀法相比较,气浮法具有以下优缺点:1.气浮法的优点(1)气浮过程增加了水中的溶解氧,浮渣含氧,则不易腐化,有利于后续处理。
(2)气浮池表面负荷高,水力停留时间短,池深浅,体积小。
(3)浮渣含水率低,一般低于96%,排渣方便。
(4)投加絮凝剂处理废水时,气浮法需药量较少。
2.气浮法的缺点(1)耗电多,比沉淀法耗电多0.02~0.04kw²h/m3废水,运营费偏高。
(2)废水悬浮物浓度高时,减压释放器容易堵塞,管理复杂。
1.5.5气浮法在废水处理中的应用气浮处理技术已在石油化工、纺织、印染、机械化工、拆船和食品等行业废水处理中获得广泛应用,在淋浴废水和城市污水处理中的应用亦逐步增多。
1.6过滤通过过滤介质的表面或滤层截留水体中悬浮固体和其他杂质的过程称为过滤。
由于我国水资源紧缺已对居民生活和经济发展造成严重影响,水的再生与回用已成为解决水荒的重要途径。
城市污水二级处理出水一般经混凝沉淀后再进入滤池,滤池出水有的经消毒后直接利用,有的还需经活性炭吸附、超滤和反渗透等工艺处理。
过滤已成为水的再生与回用处理中不可缺少的过程。
过滤有以下三方面作用:第一是去除二级处理出水中的生物絮体,进一步降低水中的悬浮物、有机物、磷、重金属、细菌和病菌的浓度;第二是为后续处理装置创造有利条件,保证后续处理构筑物的稳定运行以及处理效率的提高;第三是由于过滤液悬浮物和其他干扰物质浓度的降低,可提高杀菌效率,节省消毒剂用量。
另外,过滤还可作为废水混凝所产生的絮体的分离装置。
1.6.1过滤原理在粒状滤料过滤中存在悬浮颗粒从水流向滤料表面迁移、附着在滤料上和从滤料表面脱附这三个过程。
1.迁移被水携带的颗粒随水流运动的过程中,悬浮颗粒向滤料表面的迁移一般是在直接拦截、布朗运动、颗粒的惯性、重力沉淀、流体效应以及范德华力等诸多因素共同作用下发生的。
(1)直接拦截:尺寸较大的颗粒,可被滤料直接拦截下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“颗粒-气泡”复合体的上浮速度
当流态为层流时,即Re<1时,则“颗粒-气泡”复合体
的上升速度可按斯托克斯公式计算:
v上
g
18
(L
S) d
2
式中:d——“颗粒-气泡”复合体的直径; ρs——“颗粒-气泡”复合体的表观密度。
上述公式表明,v上取决于水与复合体的密度差与复合体
的有效直径。 “颗粒-气泡”复合体上粘附的气泡越多,则
变小,利于气粒结合。
对σ水-气影响较大的主要是物质表面的亲水基团,亲水基 越多,则σ水-气越小,越不易被气浮处理(如乳化油及洗涤
废水等);同时亲水基越多,污染粒子乳化严重,表面电 位增高也影响粘附。
泡沫的稳定性
由上面的讨论可知,水中表面活性剂的存 在对气浮处理有不利影响。 但是,气浮处理时,一般又要求水中含有 一定量的表面活性剂,以保证气泡具有足 够的稳定性。如果表面活性剂含量过低, 则应投加一定量的起泡剂。 为什么?
表面易被水湿润,该颗粒属亲 水性;如不易被水湿润,属疏 水-粒
水性。亲水性与疏水性可用气、
液、固三相接触时形成的接触
角大小来解释。 在气、液、固三相接触时,固、
水-气
液界面张力线和气液张力线之
间的夹角称为湿润接触角以θ
表示。
水
粒
粒-气
气
σ1.2
σ1.2
气泡
σ2..3
σ1.3
θ
σ2..3
原因有二
气泡本身具有自动降低表面自由能的倾向,即气 泡合并, ΔE变小,这种合并趋势的存在,使气 泡很难做到极细的分散度(微气泡)。
纯气泡上升到水表面时,由于气泡表面水分子层 薄,会很快破灭而得不到稳定的水表“气浮泡沫 层”,致使污染物脱落而重新返回水中。
一定量表面活性剂的存在使气泡表面带同种电荷, 不易合并。同时,一定量表面活性剂的存在使水 面气泡表面有一定厚度的水膜而不易破灭,从而 有利于收集除去。
的界面能E2及其缩小值ΔE分别为:
E2 气-粒
E E1 E2 水-粒 水-气 粒-气
这部分能量差即为挤开气泡和颗粒之间的水膜所做的功,此值 越大,气泡与颗粒粘附得越牢固。
水中的悬浮颗粒是否能与气泡粘附,与水、气、颗粒 间的界面能有关。当三者相对稳定时,三相界面张力的关 系式为:
水和废水的浮上法处理是将空气以微小气泡形式 通入水中,使微小气泡与在水中悬浮的颗粒粘附,形 成水-气-颗粒三相混合体系,颗粒粘附上气泡后,密 度小于水即上浮水面,从水中分离,形成浮渣层。
浮上法处理工艺必须满足下述基本条件: 必须向水中提供足够量的细微气泡;
必须使污水中的污染物质能形成悬浮状态;
必须使气泡与悬浮的物质产生粘附作用。
水性物质),易与气泡粘附,宜用气浮法去除。
当θ<900时,颗粒为亲水表面。而θ→0时,即 cosθ→1,ΔE→0,这类物质亲水性强,无力排开水
膜,不易与气泡粘附,不能用气浮法去除。
这时,有cos 水-粒 粒-气 水-气
θ受σ水-气(水的表面张力)而改变, σ水-气增大则cosθ
颗粒
亲水性
颗粒
θ
σ1.3
疏水性
界面能E与界面张力的关系如下: E S
式中:σ ——界面张力系数; S ——界面面积。
气泡沫与悬浮颗粒粘附前,颗粒与气泡的单位面积上的界面能分
别为σ水-粒×1和σ水-气×1,这时单位面积上的界面能之和E1为:
E1 水-粒 水-气
当气泡与悬浮颗粒粘附后,界面能缩小,粘附面的单位面积上
分散空气浮上法用于矿物浮选,也用于含油脂、羊毛 等污水的初级处理及含有大量表面活性剂的污水处理
气 浮法
气浮的基本原理
r>1 重力沉淀——沉淀池 r<1 上 浮——隔油池 r≈1 微细( d小)油珠或悬浮物,不能单靠
比重差进行沉淀或上浮。
改变密度—气浮
疏水性物质:乳化油、羊毛脂等
改变粒径—混凝沉淀
亲水性物:纸浆细小纤维、煤灰、微细粘土、蛋白质等
混凝—气浮组合法
污水处理技术中,浮上法固-液或液-液分离技术应 用的几方面:
石油、化工及机械制造业中的含油污水的油水分离;
工业废水处理;
污水中有用物质的回收;
取代二次沉淀池,特别是用于易产生活性污泥膨胀的 情况;
剩余活性污泥的浓缩。
水中颗粒与气泡的粘附条件
悬浮颗粒能否与气泡粘附主要
取决于颗粒表面的性质。颗粒
水-粒 水-气 cos(180 ) 粒-气
式中:θ——接触角(也称湿润角)。
由此可得:
E 水-气(1 cos )
上式表明,并不是水中所有的污染物质都能与气 泡粘附,是否能产生较好的粘附,与该类物质的接触
角θ 、水的表面张力σ水-气有关。
当θ>900时,颗粒为疏水表面。θ→180°时, cosθ→ -1,ΔE→2σ水-气,这类物质憎水性强(称憎
电解浮上法产生的气泡小于其他方法产生的 气泡,故特别适用于脆弱絮状悬浮物。电解浮上 法的表面负荷通常低于4m3/(m2·h)。
电解浮上法主要用于工业废水处理方面,处 理水量约在10~20m3/h。由于电耗高、操作运行 管理复杂及电极结垢等问题,较难适用于大型生 产。
电 解 浮 上 法
平流式电解气浮池
b
B H1
L
3 2
5
8
8
7
4
6
i
L2
L2
图 8-5 双室平流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出口水位调节器; 5-刮渣机;6-浮渣室;7-排渣阀;8-污泥排除口
分散空气浮上法
微气泡曝气浮上法
剪切气泡浮上法
压缩空气引入到靠近池底 处的微孔板,并被微孔板 的微孔分散成细小气泡
将空气引入到一个高速旋 转混合器或叶轮机的附近, 通过高速旋转混合器的高 速剪切,将引入的空气切割 成细小气泡
ρs越小,d越大,因而上浮速度亦越快。
气泡与悬浮颗粒的粘附形式
浮上法的类型
按生产细微气泡的方法分
分散空气浮上法
电解浮上法 溶解空气浮上法
微气泡曝 气浮上法
剪切气泡 浮上法
真空 浮上法
加压溶气 浮上法
电解浮上法
电解废水可同时产生三种作用: 电解氧化还原; 电解混凝; 电气浮。
电解浮上法
电解浮上法是将正负极相间的多组电极浸泡 在废水中,当通以直流电时,废水电解,正负两 级间产生的氢和氧的细小气泡粘附于悬浮物上, 将其带至水面而达到分离的目的。