浙江历年高考真题导数
高考数学舟山卷导数的应用历年真题解析

高考数学舟山卷导数的应用历年真题解析1. 2019年真题解析题目描述:设函数y=f(x)满足条件f'(x)=x^2+1,且f(0)=2,求f(x)。
解析:根据题目给出的条件,我们知道f'(x)是f(x)的导函数。
我们需要先求出f(x)的原函数,即f(x) = ∫(x^2+1)dx = (1/3)x^3 + x + C,其中C为常数。
根据已知条件f(0)=2,代入得2 = (1/3) * 0^3 + 0 + C,解得C=2。
所以f(x) = (1/3)x^3 + x + 2。
2. 2018年真题解析题目描述:已知函数y=f(x)在区间[0,1]上连续,且f'(x)为非负函数,求证函数y=f(x)在区间[0,1]上单调递增。
解析:由题目已知条件可知,f'(x) ≥ 0,即导数非负。
根据导数的定义可知,在[0,1]区间上,导数不小于0,说明函数y=f(x)上任意一点的斜率不小于0。
要证明函数y=f(x)在区间[0,1]上单调递增,只需证明函数上任意两点之间的斜率大于等于0即可。
假设存在x1 < x2,且f(x1) > f(x2)。
根据拉格朗日中值定理,存在c∈(x1,x2),使得f'(c) = [f(x2) - f(x1)] / (x2 - x1)。
根据已知条件f'(c) ≥ 0,可得 [f(x2) - f(x1)] / (x2 - x1) ≥ 0。
由于x1 < x2,所以x2 - x1 > 0,此时可以得到 f(x2) - f(x1) ≥ 0。
但题目中假设了f(x1) > f(x2),与以上推导矛盾,所以假设不成立。
因此可以得出结论,函数y=f(x)在区间[0,1]上单调递增。
3. 2017年真题解析题目描述:已知函数f(x) = e^x + 2x,求证f(x)在任意区间上都有且仅有一个零点。
解析:首先,我们需要证明f(x)在任意区间上至少有一个零点。
浙江高考数学第三章导数及其应用3.1导数的概念及运算课件

-4知识梳理 双击自测
1.平均变化率 ������(������2 )-������(������1 ) ������2 -������1 函数y=f(x)从x1到x2的平均变化率为 若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为 2.导数的概念
f(x0 + ������x)-f(x0 ) Δ������ →0 ������x
-17-
考点一
考点二
对点训练(1)(2018重庆第三次诊断)设函数f(x)=sin x-cos x,f(x)的 导函数记为f'(x),若f'(x0)=2f(x0),则tan x0=( )
A.-1
B.
1 3
C.1
D.3
关闭
根据题意,得f'(x)=cos x+sin x,由f'(x0)=2f(x0),得cos x0+sin x0=2sin x02cos x0,化简可得sin x0=3cos x0,即tan x0=3,故选D. D
解析
关闭
-22答案
考点一
考点二
类型二 求切点坐标 【例3】 曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则点 P的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3)
关闭
f'(x)=3x2-1,令f'(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验, 点(1,3),(-1,3)均不在直线y=2x-1上,故选C. C
⑤y'=(22x+1)'+[ln(3x+5)]'
=(22 x+1 · ln 2)(2x+1)'+
高考数学真题分项汇编专题05 导数选择、填空(理科)(解析版)

十年(2014-2023)年高考真题分项汇编导数选择、填空目录题型一:导数的概念及其几何意义 ..................................... 1 题型二:导数与函数的单调性 ......................................... 8 题型三:导数与函数的极值、最值 ..................................... 9 题型四:导数与函数的零点 .......................................... 14 题型五:导数的综合应用 ............................................ 16 题型六:定积分 (20)题型一:导数的概念及其几何意义一、选择题1.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e a b <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y ′=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t −=−,即()1t ty e x t e +−, 由题意可知,点(),a b 在直线()1t t y e x t e +−上,可得()()11t tt b ae t e a t e =+−=+−,令()()1t f t a t e =+−,则()()t f t a t e ′=−.当t a <时,()0f t ′>,此时函数()f t 单调递增, 当t a >时,()0f t ′<,此时函数()f t 单调递减,所以,()()max a f t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max a b f t e <=, 当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .2.(2020年高考课标Ⅰ卷理科·第0题)函数43()2f xx x =−的图像在点(1(1))f ,处的切线方程为( )A .21y x =−− B .21y x =−+ C .23y x =− D .21y x =+ 【答案】B【解析】()432f x x x =− ,()3246f x x x ′∴=−,()11f ∴=−,()12f ′=−, 因此,所求切线的方程为()121y x +=−−,即21y x =−+. 故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 3.(2020年高考课标Ⅲ卷理科·第0题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D解析:设直线l在曲线y =(0x ,则00x >,函数y =的导数为y ′=,则直线l的斜率k =,设直线l的方程为)0y x x −−,即00x x −+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍), 则直线l 的方程为210x y −+=,即1122y x =+. 故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019·全国Ⅲ·理·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e −=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =−,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
浙江省2019届高考数学总复习 专题03 导数优质考卷分项解析

专题03 导数一.基础题组1。
【浙江省“七彩阳光”联盟2019届高三期初联考】设为正数,,若在区间不大于0,则的取值范围是( )A. B. C. D.【答案】A【解析】【分析】求导得到函数在区间递增,只要满足就可以算出结果【详解】【点睛】运用导数求得函数的单调性,然后满足题意列出不等式即可算出结果,本题较为基础。
2。
【浙江省“七彩阳光”联盟2019届高三期初联考】已知函数,则函数的最小的极值点为___________;若将的极值点从小到大排列形成的数列记为,则数列的通项公式为______。
【答案】或【解析】【分析】求导后令导函数等于零求出最小极值点,结合三角函数的零点分类求出数列的通项公式【详解】,或,显然数列的,当为偶数时,当为奇数时,综上所述,【点睛】本题考查了含有三角函数的极值问题,运用导数求导后结合三角函数的周期性求出极值,按照要求分类讨论出极值点的通项,还是需要探究出其规律。
3.【浙江省杭州市第二中学2018届高三6月热身考】如图,可导函数在点处的切线为,设,则下列说法正确的是()A.是的极大值点B.是的极小值点C.不是的极值点D.是的极值点【答案】B【解析】分析:从图像看,在上,为增函数,在上,是减函数,故可判断为的极小值点.点睛:函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低"的特性,用数学语言描述则是:“在的附近的任意,有()” .另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点.4。
.【浙江省“七彩阳光”联盟2019届高三期初联考】函数的图象大致是( ) A. B.C. D.【答案】A【解析】【分析】利用导数法分析函数的单调性,再结合函数的零点个数,排除错误答案即可【详解】【点睛】本题主要考查了函数的图像,依据函数求出零点,运用导数判断其单调性和极值,从而得到答案5。
【浙江省杭州市学军中学2018年5月高三模拟】已知不等式对任意实数恒成立,则的最大值为()A. B. C. D.【答案】A【解析】分析:先转化为,再转化为,再求g(x)的最大值得解.详解:原不等式可以化为,设f(x)=,所以,所以只有a+4〉0,才能有恒成立.此时,设g(x)=所以所以故答案为:A点睛:(1)本题主要考查利用导数求函数的单调性和最值,考查利用导数解答恒成立问题,意在考查学生对这些知识的掌握能力和分析推理能力.(2)解答本题的关键有两点,其一是原不等式可以化为,求,其二是设g(x)=求g(x)的最大值。
高考十(文科)分项版 专题03 导数(浙江专版)(原卷版)

一.基础题组1.【2013年.浙江卷.文8】已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示,则该函数的图象是().2.【2013年.浙江卷.文8】已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示,则该函数的图象是().3.【2007年.浙江卷.文15】曲线32242y x x x=--+在点(1,一3)处的切线方程是___________4.【2006年.浙江卷.文6】32()32f x x x=-+在区间[]1,1-上的最大值是(A)-2 (B)0 (C)2 (D)45.【2005年.浙江卷.文9】函数21y ax=+的图象与直线y x=相切,则a=( )(A)18(B)14(C)12(D)1二.能力题组1. 【2011年.浙江卷.文10】设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是三.拔高题组1. 【2014年.浙江卷.文21】(本小题满分15分)已知函数()33||(0)f x x x a a =+->,若()f x 在[1,1]-上的最小值记为()g a .(1)求()g a ;(2)证明:当[1,1]x ∈-时,恒有()()4f x g a ≤+.2. 【2013年.浙江卷.文21】(本题满分15分)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若|a |>1,求f (x )在闭区间0,2|a |]上的最小值.3. 【2012年.浙江卷.文21】已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.4. 【2011年.浙江卷.文21】(本题满分15分)设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,]x e ∈恒成立(注:e 为自然对数的底数)5. 【2010年.浙江卷.文21】(本题满分15分)已知函数2()()f x x a =-(a-b )(,,a b R a ∈<b)。
2017-2021年浙江省高考数学真题分类汇编:导数(附答案解析)

数.
(Ⅰ)证明:函数 y=f(x)在(0,+∞)上有唯一零点;
(Ⅱ)记 x0 为函数 y=f(x)在(0,&(ⅱ)x0f(e )≥(e﹣1)(a﹣1)a.
第 2页(共 21页)
4.(2019•浙江)已知实数 a≠0,设函数 f(x)=alnx+ (Ⅰ)当 a=﹣ 时,求函数 f(x)的单调区间;
>
x1+ .
(注:e=2.71828⋯ 是自然对数的底数) 【考点】利用导数研究函数的单调性;利用导数研究函数的最值. 【专题】转化思想;综合法;导数的综合应用;数学运算. 【分析】(Ⅰ)对函数 f(x)求导,然后分 b≤0 及 b>0 两种情况讨论即可得出单调性情 况;
(Ⅱ)易知只需
即可,计算可知 对 任 意 b > 2e2 均 成 立 , 记
(Ⅰ)求函数 f(x)的单调区间; (Ⅱ)若对任意 b>2e2,函数 f(x)有两个不同的零点,求 a 的取值范围; (Ⅲ)当 a=e 时,证明:对任意 b>e4,函数 f(x)有两个不同的零点 x1,x2,满足 x2
>
x1+ .
(注:e=2.71828⋯ 是自然对数的底数)
第 1页(共 21页)
3.(2020•浙江)已知 1<a≤2,函数 f(x)=ex﹣x﹣a,其中 e=2.71828…为自然对数的底
2017-2021 年浙江省高考数学真题分类汇编:导数
一.选择题(共 1 小题) 1.(2020•浙江)已知 a,b∈R 且 ab≠0,对于任意 x≥0 均有(x﹣a)(x﹣b)(x﹣2a﹣b)
≥0,则( )
A.a<0
B.a>0
C.b<0
D.b>0
二.解答题(共 5 小题) 2.(2021•浙江)设 a,b 为实数,且 a>1,函数 f(x)=ax﹣bx+e2(x∈R).
浙江历年高考真题导数

浙江历年高考真题导数.已知浙江高考)1. (07 .??22kxxx??x1?f?的解;k =2,求方程(I)若??0?fx上有两个解(0,2)在(II)若关于x的方程??0f?x的取值范围,并证明x,求kx,11214 xx122. (08浙江高考)已知a是实数,函数. ??2axxf()?x?(1)=3,求a的值及曲线在点1f(Ⅰ)若(1,f()?yf(x1))处的切线方程;(Ⅱ)求在区间[0,2]上的最大值。
)f(x3.(09浙江高考)已知函数.)b(a,?R(I)若函数的图象过23bx?a?2)(1?a)x?a(?x(fx)?原点,且在原点处)xf(的切线斜率是,求的值;3?b,a(II)若函数在区间上不单调,求的)f(x1,1)(?a...取值范围.4.(10浙江高考)已知函数(a-b)2)?a?f(x)(x<b)。
a?R,(a,b(I)当a=1,b=2时,求曲线在点(2,))x)f(fy?(x 处的切线方程。
(II)设是的两个极值点,是的一个xxx,)(xxf()f123零点,且,x?xxx?2313证明:存在实数,使得按某种顺序排列xx,,xx,x42134后的等差数列,并求x45.(11浙江高考)22?ax,a??a0lnx?x)f(x设函数)xf((的单调区间I)求??ex?1,2e?)(??e1fxa对恒成立。
)求所有实数II(,使为自然对数的底数。
e注:6.(12浙江高考)已知函数,Ra?2.a?ax)x?4x2?f(⑴求的单调区间)f(x时,⑵证明:当0.?a2?xf()|?|1x0??7.(13浙江高考)知a∈R,函数f(x)=2x3-3(a2+6xax.+1)(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.时,2)当k=1. (Ⅰ)解:(1 ??22kx?1??xf?xx 时,方程化1≤①当≥1或-时,即xx201x??为20?2x2x?1??3??3?,故舍去,所以,因为解得??x01?23?1?.?x2当②方程化为<<1时,时,-12x0?1?2x0??1x,1解得?x?2的解所以=2时,方程①②由得当k??0f?3?1?1.或?x?x?22 2,x<x<0 (II)解:不妨设<212?12x?kx?1 ?x?因为???xf?1kx?1 x???](0,1是单调函数,故在在所以(0,1]????0x?fxf 上至多一个解,=x2,则x<x<1<0若1<x,故不符题2121?2≤1<x<2.x意,因此0<211由得,所以;1??k??0xf???k1x171;所以,得由??0?fx x?k?21????k22x22.7上有两个故当2)时,方程在(0,??0?fx1?k???2解.时,≤1<x<21 x,<当0221?k?0?kx?2x1?消去k得20x??x?2xx2121,所以2<1111.,因为22x1即x24??2x??2xxxx2211)解:2. .2ax)?3x?2f'(x因为,3?3?2a?f'(I).所以0a?,又当时,0a?3?1,f'(I)f(I)?线曲处的切线方程为所以(I)))在(1,f?yf(x.02=3x-y-a2 II)解:令.,解得(?0,xx?0)?xf'(213a2上单调2]在[0,,即a≤0时,当0?)xf(3递增,从而.a4(2)?8?ff?max2a时,即a≥3时,在[0当,2]上单2?)xf(3调递减,从而.0(0)??ff max2aa2,即,当在上单调递??3a??00,2??0)xf(??33??2a上单调递增,从而减,在??2,??3??8?4a,0?a?2.? ??f?max3.??a0, 2??8?4a, a?2.??综上所述,f??max2.0, a???3. 解析:(Ⅰ)由题意得)(2(31)2()2??xa?afaxx???0b?(0)?f,解得,或又?1a?3b?0?a???32)???0)?a(a?f(?(Ⅱ)函数在区间不单调,等价于)1,(x)1(?f导函数在既能取到大于0的?)1(?1f,(x)实数,又能取到小于0的实数即函数在上存在零点,根据零?)1(?1f(x),点存在定理,有,即:??0)f(1)f?(?1[3?2(1?a)?a(a?2)][3?2(1?a)?a(a?2)]?0整理得:,解得0)15()(1)(21??a?5??aa??a?时,a=1,b=2)4. Ⅰ解:当-1)(3x-5) 因为f'(x)=(x 故f'(2)=1f(2)=0,y=x-2)处的切线方程为2,0在点(f(x)所以.b2a?),=(Ⅱ)证明:因为f′(x)3(x-a)(x-3. 由于a<b.故a<ba?23 a,x.=所以f(x)的两个极值点为x=b2a[3=xx=a,不妨设b2a?,213 f(x)的零点,x 因为x≠,x≠x,且x是32133.bx=故3又因为bb2a?a?2-,(b)-a=233=x 1a?b2b2a?+a()=,4323b?a2ba?2依次成等差数列,,所以a,,b33. =满足题意,且x b?2a x所以存在实数4435. ,,其中(Ⅰ)解:因为220x axx?a?lnxxf()?所以。
浙江省2020版高考数学第四章导数及其应用第1节导数的概念与导数的计算习题(含解析)

第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= Δy Δx=f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [常用结论与易错提醒]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同.2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2x )′=x ·2x -1.( )(4)若f (x )=e 2x,则f ′(x )=e 2x.( )解析 (1)f ′(x 0)是函数f (x )在x 0处的导数,(f (x 0))′是常数f (x 0)的导数即(f (x 0))′=0;(3)(2x )′=2xln 2; (4)(e 2x)′=2e 2x.答案 (1)× (2)√ (3)× (4)× 2.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x解析 y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 答案 B3.(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________. 解析 ∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 y =2x4.(2019·南通一调)若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.解析 因为y ′=ln x +1, 所以(ln 1+1)(ln t +1)=-1, ∴ln t =-2,t =e -2. 答案 e -25.定义在R 上的函数f (x )满足f (x )=12f ′(1)e 2x -2+x 2-2f (0)x ,则f (0)=________;f (x )=________.解析 ∵f (x )=12f ′(1)e 2x -2+x 2-2f (0)x ,∴f ′(x )=f ′(1)e2x -2+2x -2f (0),∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f ′(1)=2e 2,∴f (x )=e 2x+x 2-2x . 答案 1 e 2x+x 2-2x6.已知曲线y =e -x,则其图象上各点处的切线斜率的取值范围为________;该曲线在点(0,1)处的切线方程为________.解析 由题意得y ′=-e -x,则由指数函数的性质易得y ′=-e -x∈(-∞,0),即曲线y =e -x的图象上各点处的切线斜率的取值范围为(-∞,0).当x =0时,y ′=-e -0=-1,则曲线y =e -x在(0,1)处的切线的斜率为-1,则切线的方程为y -1=-1·(x -0),即x +y -1=0.答案 (-∞,0) x +y -1=0考点一 导数的运算【例1】 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x ex ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln(2x -5).解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x. (3)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x·1x=⎝ ⎛⎭⎪⎫ln x +1x e x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x .考点二 导数的几何意义多维探究角度1 求切线的方程【例2-1】 (1)(2019·绍兴一中模拟)已知函数f (x )=e x+2sin x ,则f (x )在点(0,f (0))处的切线方程为( ) A.x +y -1=0 B.x +y +1=0 C.3x -y +1=0D.3x -y -1=0(2)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________.解析 (1)因为f (x )=e x+2sin x ,所以f ′(x )=e x+2cos x .所以f ′(0)=3,f (0)=1.由导数的几何意义可知,函数f (x )在点(0,f (0))处的切线方程为y -1=3x ,即为3x -y +1=0,故选C.(2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=x 2,得y ′|x =x 0=x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2, 解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4. 故所求的切线方程是y -83=x -2或y -83=4(x -2),即3x -3y +2=0或12x -3y -16=0.答案 (1)C (2)3x -3y +2=0或12x -3y -16=0 角度2 求参数的值【例2-2】 (1)(2019·嘉兴检测)函数y =x 3-x 的图象与直线y =ax +2相切,则实数a =( ) A.-1 B.1 C.2D.4(2)(2019·杭州质检)若直线y =x 与曲线y =e x +m(m ∈R ,e 为自然对数的底数)相切,则m =( ) A.1 B.2 C.-1D.-2解析 (1)由题意得⎩⎪⎨⎪⎧y ′=3x 2-1=a ①,y =x 3-x =ax +2 ②,将①代入②,消去a 得x 3-x =(3x 2-1)x +2,解得x =-1,则a =2,故选C. (2)设切点坐标为(x 0,e x 0+m).由y =ex +m,得y ′=ex +m,则切线的方程为y -e x 0+m =e x 0+m(x-x 0) ①,又因为切线y =x 过点(0,0),代入①得x 0=1,则切点坐标为(1,1),将(1,1)代入y =ex +m中,解得m =-1,故选C.答案 (1)C (2)C 角度3 公切线问题【例2-3】 (一题多解)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·苏州调研)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 的值为( ) A.-1或-2564B.-1或214C.-74或-2564D.-74或7解析 (1)f ′(x )=3ax 2+1x,则f ′(1)=3a +1=2,解得a =13.(2)由y =x 3得y ′=3x 2,设曲线y =x 3上任意一点(x 0,x 30)处的切线方程为y -x 30=3x 20(x -x 0),将(1,0)代入得x 0=0或x 0=32.①当x 0=0时,切线方程为y =0,由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9得ax 2+154x -9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564. ②当x 0=32时,切线方程为y =274x -274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得ax 2-3x -94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564.答案 (1)13(2)A基础巩固题组一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A.2 B.0 C.-2D.-4解析 ∵f ′(x )=2f ′(1)+2x ,∴令x =1,得f ′(1)=-2, ∴f ′(0)=2f ′(1)=-4. 答案 D2.设曲线y =e ax-ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A.0 B.1 C.2D.3解析 ∵y =e ax-ln(x +1),∴y ′=a e ax-1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax-ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 答案 D3.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 答案 C4.(2019·诸暨统考)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( )A.x 2-x ln x +x B.x 2-x ln x -x C.x 2+x ln x +xD.x 2+2x ln x +x解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x,即⎣⎢⎡⎦⎥⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C.答案 C5.(一题多解)(2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A.y =-2xB.y =-xC.y =2xD.y =x解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以 -1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D. 答案 D6.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案 B 二、填空题7.(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e x ln x +e x·1x,则f ′(1)=e.答案 e8.(2018·全国Ⅲ卷)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________. 解析 y ′=(ax +1+a )e x,由曲线在点(0,1)处的切线的斜率为-2,得y ′|x =0=(ax +1+a )e x|x =0=1+a =-2,所以a =-3. 答案 -39.(2018·台州调考)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为__________;f (x )在x =1处的切线方程为________. 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f (x )=3x ln x ,f (1)=0,∴f (x )在x =1处的切线方程为y =3(x -1),即为3x -y -3=0.答案 3 3x -y -3=010.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)在点P 处的切线垂直,则P 的坐标为________.解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题11.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′min =-1,y =53, ∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 12.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.能力提升题组13.(2018·萧山月考)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A.-sin x -cos xB.sin x -cos xC.-sin x +cos xD.sin x +cos x解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 018(x )=f 2(x )=-sin x +cos x ,故选C.答案 C14.(2019·无锡模拟)关于x 的方程2|x +a |=e x有3个不同的实数解,则实数a 的取值范围为________.解析 由题意,临界情况为y =2(x +a )与y =e x 相切的情况,y ′=e x =2,则x =ln 2,所以切点坐标为(ln 2,2),则此时a =1-ln 2,所以只要y =2|x +a |图象向左移动,都会产生3个交点,所以a >1-ln 2,即a ∈(1-ln 2,+∞).答案 (1-ln 2,+∞)15.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1). y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1, 解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 216.(2019·湖州适应性考试)已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________.解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时,由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在(0,1)上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]17.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.18.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k ,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解 (1)设点P k -1的坐标是(x k -1,0), ∵y =e x ,∴y ′=e x, ∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1 =e x k -11(x -x k -1),令y =0,则 x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1),∴|P k Q k |=e xk =e -(k -1), 于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e -(n -1) =1-e -n 1-e -1=e -e 1-n e -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-n e -1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (07浙江高考)已知()221f x x x kx =-++. (I)若k =2,求方程()0f x =的解;
(II)若关于x 的方程()0f x =在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明12
11
4x x +<
>
2. (08浙江高考)已知a 是实数,函数()2
()f x x
x a =-.
(Ⅰ)若f 1(1)=3,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线 方程;
(Ⅱ)求)(x f 在区间[0,2]上的最大值。
|
)
3.(09浙江高考)已知函数3
2
()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...
,求a 的取值范围.
]
4.(10浙江高考)已知函数2
()()f x x a =-(a-b )(,,a b R a ∈<b)。
(I )当a=1,b=2时,求曲线()y f x =在点(2,()f x )处的切线方程。
(II )设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且31x x ≠,32x x ≠ 证明:存在实数4x ,使得1234,,,x x x x 按某种顺序排列后的等差数列,并求4x
~
)
5.(11浙江高考)设函数
22
()ln ,0f x a x x ax a =-+> (I )求()f x 的单调区间
(II )求所有实数a ,使2
1()e f x e -≤≤对[]1,x e ∈恒成立。
注:e为自然对数的底数。
(
-
6.(12浙江高考)已知,a R ∈函数2()42.f x x ax a =-+
⑴求()f x 的单调区间
⑵证明:当01x ≤≤时,()20.f x a +->||
(
7.(13浙江高考)知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax . (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.
^
1. (Ⅰ)解:(1)当k =2时,()221f x x x kx =-++
① 当2
10x -≥时,即x ≥1或x ≤-1时,方程化为22210x x +-=
解得12x -±=
1012-<<
,故舍去,所以12
x --=. ②当210x -<时,-1<x <1时,方程化为210x +=,解得1
2
x =-
由①②得当k =2时,方程()0f x =
的解所以12x -=或1
2
x =-. (II)解:不妨设0<x 1<x 2<2,
因为()22 1 x 11 x 1
x kx f x kx ⎧+->⎪
=⎨+≤⎪⎩
所以()f x 在(0,1]是单调函数,故()0f x =在(0,1]上至多一个解, 若1<x 1<x 2<2,则x 1x 2=1
2
-<0,故不符题意,因此0<x 1≤1<x 2<2. 由()10f x =得1
1
k x =-,所以1k ≤-; 】
由()20f x =得2212k x x =-, 所以7
12
k -<<-; 故当7
12
k -
<<-时,方程()0f x =在(0,2)上有两个解. 当0<x 1≤1<x 2<2时,1
1k x =-
,2
22210x kx +-= 消去k 得2
121220x x x x --=
即
212112x x x +=,因为x 2<2,所以12
11
4x x +<. 2. )解:2
'()32f x x ax =-. 因为'(I)323f a =-=, 所以 0a =.
又当0a =时,(I)1,'(I)3f f ==,
所以曲线()(1,(I))y f x f =在处的切线方程为 3x y --2=0.
"
(II )解:令'()0f x =,解得1220,3
a x x ==. 当
203
a
≤,即a ≤0时,()f x 在[0,2]上单调递增,从而 max (2)84f f a ==-.
当
223
a
≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而 max (0)0f f ==.
当2023a <
<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤
⎢⎥⎣⎦
上单调递增,从而 max
84,0 2.
0,2 3.
a a f a -<≤⎧⎪=⎨<<⎪⎩ 综上所述,max 84, 2.
0, 2.
a a f a -≤⎧⎪=⎨>⎪⎩
3. 解析:(Ⅰ)由题意得)2()1(23)(2
+--+='a a x a x x f
又⎩⎨
⎧-=+-='==3
)2()0(0
)0(a a f b f ,解得0=b ,3-=a 或1=a
(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于
、
导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数
即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有
0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2
<-++a a a ,解得15-<<-a 4. Ⅰ)解:当a=1,b=2时, 因为f’(x)=(x -1)(3x-5) 故f’(2)=1 f(2)=0,
所以f(x)在点(2,0)处的切线方程为y=x-2
(Ⅱ)证明:因为f ′(x )=3(x -a )(x -
23
a b
+), /
由于a <b . 故a <
23
a b
+. 所以f (x )的两个极值点为x =a ,x =23
a b
+. 不妨设x 1=a ,x 2=
23
a b
+, 因为x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点, 故x 3=b .
又因为23a b +-a =2(b -23a b
+),
x 4=12(a +23a b +)=23
a b +,
所以a ,23a b +,23
a b
+,b 依次成等差数列,
所以存在实数x 4满足题意,且x 4=23
a b
+.
、
5. (Ⅰ)解:因为22()ln f x a x x ax =-+,其中0x ,
所以2()(2)'()2a x a x a f x x a x x
-+=+=-。
由于0a
,所以()f x 的增区间为(0,a ),减区间为(a,+∞)
(Ⅱ)证明:由题意得, (1)11f a c =-≥-,即a c ≥ 由(Ⅰ)知()f x 在[1,e]恒成立,
要使2
1()e f x e -≤≤对[1,]x e ∈恒成立,
只要222
(1)11
()f a e f e a e ae e
=-≥-⎧⎨=-+≤⎩ 解得a e =。
6. (Ⅰ)
由题意得2()122f x x a '=- 当0a ≤时,()0f x '≥恒成立,此时()f x 的单调递增区间为(,).-∞+∞
)
当0a >时,()12(f x x x '=此时函数()f x 的
单调递增区间为(,-∞和),+∞单调递减区间为[ (Ⅱ)
由于01,x ≤≤故 当2a ≤时,33()|2|422442;f x a x ax x x +-=-+≥-+
当2a >时,333()|2|42(1)244(1)244 2.f x a x a x x x x x +-=+--≥+--=-+
设32()221,01, ()626(g x x x x g x x x x '=-+≤≤=-=-
则于是
故 3()|2|4420.f x a x x +-≥-+>
7. 解:(1)当a =1时,f ′(x )=6x 2-12x +6,
所以f ′(2)=6.
又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. …
f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得到x 1=1,x 2=a .
比较f (0)=0和
f (a )=a 2(3-a )的大小可得
g (a )=23, 3.a a a ⎧⎨(-)>⎩
当
得综上所述,f (x )在闭区间[0,2|a |]上的最小值为g (a )=231,1,0,13,3, 3.a a a a a a -<-⎧⎪
<≤⎨⎪(-)>⎩。