直角三角形中成比例线段
初三数学培优之直角三角形中的比例线段

初三数学培优之直角三角形中的比例线段阅读与思考借助相似三角形法研究直角三角形,我们会得到许多在解题中应用极为广泛的结论. 如图,在Rt △ABC 中,∠A =900,AD ⊥BC 于D ,则1.图中角的关系:∠B =∠DAC ,∠C =∠DAB ; 2.同一三角形中三边平方关系:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2;BC 2=AB 2+AC 2.3.三角形之间的关系: △ABD ∽△CAD ∽△CBA ,由此得出的线段之间的关系: AD 2=BD •DC ,AB 2=BD •BC ,AC 2=CD •BC .直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,由此得出的等积式在计算与证明中应用极为广泛,其特点是:①一线段是两个三角形的公共边; ②另两条线段在同一直线上.例题与求解【例1】如图,Rt △ABC 中,CD 为斜边AB 上的高,DE ⊥CB 于E .若BE =6,CE =4,则AD =________.(上海市竞赛试题)解题思想:图中有两个基本图形,恰当选取相应关系式求出AD .例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =900,CD ⊥AB ,下列结论:①CD •AB =AC •BC ; ②22AC ADBC BD=; ③222111AC BC CD +=; ④AC +BC >CD +AB . 其中正确的个数是 ( ) A .4个 B .3个C .2个D .1个(江苏省竞赛试题)解题思路:综合运用直角三角形性质逐一验证,从而作出判断.CAB DECABAB C D【例3】如图,在等腰Rt △ABC 中,AB =1,∠A =900,点E 为腰AC 的中点,点F 在底边BC 上,且EF ⊥BE ,求△CEF 的面积. (全国初中数学联赛试题)解题思想:欲求△EFC 的面积,由于EC =12,只需求出△EFC 中EC 边上的高,或求出EC 边上的高与EC 的关系.本例解法甚多,同学们的解题思路,自由探索与思考,寻求更多更好的解法.【例4】如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使△ACO 为等腰三角形,求点C 的坐标.(江苏省竞赛试题)解题思想:注意分类讨论.能力训练A 级1.如图,在两个直角三角形中,∠ACB =∠ADC =900,ACAD =2,当AB =_______时,这两个直角三角形相似.2.如图,在Rt △ACB 中,CD ⊥AB 于点D ,∠A 的平分线AF 交CD 于E ,过E 引EG ∥AB 交BC 于G ,若CE,则BG 的长为____________. (上海市竞赛试题)3.如图,ABCD 为矩形,ABDE 为等腰梯形,BD =20,EA =10,则AB =_________________.(“五羊杯”竞赛试题) ABEF CDB(第1题图)(第2题图)(第3题图) BD CFE GABCDEA4.如图,梯子AB 斜靠在墙面上,AC ⊥BC ,AC =BC ,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .y x =B .y x >C .y x <D .不确定(江苏省竞赛试题)5.如图,矩形ABCD 中,AB,BC =3,AE ⊥BD 于E ,则EC 等于( )ABCD.26.在△ABC 中,AD 是高,且2AD BD CD =⋅,那么∠BAC 的度数是( )A .小于900B .等于900C .大于900D .不确定(全国初中数学联赛试题)7.如图,在△ABC 中,已知∠C =900,AD 是∠CAB 的角平分线,点E 在AB 上,DE ∥CA ,CD =12,BD =15,求AE ,BE 的长.(上海市中考试题)8.如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 交AC 于F ,过F 作FG ∥AB 交AE 于G ,求证:AG 2=AF ·FC .(西安市中考试题)ACDE (第7题图)(第4题图)ABCD(第5题图)E(第8题图)AB C DEFG9.如图,在Rt △ABC 中,∠ACB =900,CD ⊥AB ,DE ⊥AC ,DF ⊥BC ,D ,E ,F 分别为垂足,求证:CD 3=AB ·AE ·BF .(四川省中考试题)10.如图,在Rt △ABC 中,∠ACB =900,AD 平分∠CAB 交BC 于点D ,过点C 作CE ⊥AD 于点E ,CE 的延长线交AB 于点F ,过点E 作EG ∥BC 交AB 于点G ,AE ·AD =16,AB=.⑴ 求证:CE =EF ;⑵ 求EG 的长. (河南省中考试题)11.如图,在△ABC 中,已知∠ACB =90°,BC =k ·AC ,CD ⊥AB 于点D ,点P 为AB 边上一动点,PE ⊥AC 于E ,PF ⊥BC 于F .⑴当k =2时,则CEBF=_____________; ⑵当k =3时,连结EF ,DF ,求EFDF的值; ⑶当k =___________时,EF DF 不需证明).ABE(第10题图)D CGABE (第9题图)D FCABE(第11题图)D FC PB 级1.如图,在Rt △ABC 中,∠A =900,AD ⊥BC ,P 为AD 的中点,BP 交AC 于E ,EF ⊥BC 于F ,AE =3,EC =12,则EF =___________.(黄冈市竞赛试题)2.如图,在Rt △ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于______厘米.(全国初中数学联赛试题)3.如图,EFGH 是矩形ABCD 的内接矩形,且EF :FG =3:1,AB :BC =2:1,则AH :AE =______.(上海市竞赛试题)4.如图,△ABC 中,∠ACB =900,CD 和CE 分别是底边AB 上的高和∠C 的平分线,若△CED ∽△ABC ,则∠ECD 等于( )A .180B .200C .22.50D .300 (山东省竞赛试题)5.如图,在△ABC 中,D ,E 分别在AC ,BC 上,且AB ⊥AC ,AE ⊥BC ,BD =DC =EC =1,则AC =( )A .2B.3C .32D .33E .43(美国高中统一考试题)6.如图,在等腰Rt △ABC 中,F 为AC 边的中点,AD ⊥BF .求证:BD =2CD .(武汉市竞赛试题)ABCD F (第1题图)EAB CD(第2题图)A BC D (第3题图)FG EH DB AC(第4题图)ABE(第5题图)D F C7.如图,P ,Q 分别是正方形ABCD 的边AB ,BC 上的点,且BP =BQ ,过B 点作PC 的垂线,垂足为H .求证:DH ⊥HQ .(“祖冲之杯”邀请赛试题)8.△ABC 中,BC =a ,AC =b ,AB =c .若∠C =900,如图1,根据勾股定理,则a 2+b 2=c 2.若△ABC不是直角三角形,如图2、图3,请你类比勾股定理,试猜想a 2+b 2与c 2的关系,并证明你的结论.9.已知∠AOB =900,在∠AOB 的平分线OM 上有一点C ,将一个三角形的直角顶点与点C 重合,它的两条直角边分别与OA ,OB (或它们的反向延长线)相交于点D ,E .当三角形绕点C 旋转到CD 与OA 垂直时,如图1,易证:OD +OE.当三角形绕点C 旋转到CD 与OA 不垂直,如图2,图3这两种情况下,上述结论是否还成立? 若成立,请给予证明;若不成立,线段OD ,OE ,OC 之间,又有怎样的数量关系?请写出你的猜想,不需证明.ABCD(第7题图)QP H C图2BAA A BBCCc c c b b b a a a 图1图3A D OEB MC CMBEO D A EBA DOC 图1图2图310.⑴如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:DP PE BQ QC=.⑵在△ABC中,∠BAC=900,正方形DEFG的四个顶点在△ABC的边上.连接AG,AF分别交DE 于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM⋅EN.(武汉市中考试题)D图1 EAPQA AB BCD DE EM M NNG FF图2 图3 C。
直角三角形中比例线段

21.直角三角形中比例线段借助相似三角形法,研究直角三角形,我们会得到许多在解题中应用极为广泛的结论。
如图,在Rt △ABC 中,∠A=90°,AD ⊥BC 于D ,则1.图中角的关系∠B=∠DAC ,∠C=∠DAB2.同一三角形中三边平方关系AB 2=AD 2+BD 2,AC 2=AD 2+CD 2,BC 2=AB 2+AC 2.3.三角形之间的关系△ABD ∽△CAD ∽△CBA ,由此得出的线段之间的关系:AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC.例1.如图,Rt △ABC 中,CD 为斜边AB 上的高,DE ⊥CD 于E ,若BE=6,CE=4,则AD=_______.解题思路 图中有两个基本图形,恰当选取相应关系式求出AD.例2.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,下列结论(1)CD ·AB=AC ·BC ;(2)22AC AD BC BD=; (3)222111AC BC CD +=; (4)AC +BC >CD +AB其中正确的个数是( )A .4B .3C .2D .1解题思路 综合运用直角三角形性质逐一验证,从而作出判断。
例3.如图,在等腰Rt △ABC 中,AB=1,∠A=90°,点E 为腰AC 的中点,点F 在底边BC 上,且EF ⊥BE ,求△CEF 的面积。
解题思路 欲求△EFC 的面积,由于EC=12,只需求出△EFC 中EC 边上的高,或求出EC 边上的高与EC 的关系。
例4.如图,在等边△ABC 的边BC 上取点D ,使12BD DC =,作CH ⊥AD 于H ,连结BH ,求证:∠DBH=∠DAB 。
解题思路 要证∠DBH=∠DAB ,只要证明△ADB ∽△BDH ,作等边△ABC 的高AM ,利用△ADM ∽△CDH 求证。
_直角三角形的射影定理_

2.已知:CD 是直角三角形 ABC 斜边 AB 上的高,如果两 直角边 AC,BC 的长度比为 AC∶BC=3∶4. 求:(1)AD∶BD 的值; (2)若 AB=25 cm,求 CD 的长.
解:(1)∵AC2=AD· AB, BC2=BD· AB, AD· AB AC2 ∴ = . BD· AB BC2 AD AC 2 3 2 9 ∴BD=(BC) =( ) = . 4 16 (2)∵AB=25 cm,AD∶BD=9∶16, 9 ∴AD= ×25=9(cm), 9+16 16 BD= ×25=16(cm). 9+16 ∴CD= AD· BD= 9×16=12(cm).
B’
直角三角形中的成比例线段
各种线段在直线上的射影的情况: A B A
A B’
l
A’
B’
l
A’
A’
B B’ l
B
如图,CD是 RtABC 的斜边AB的高线
这里:AC、BC为直角边,AB为斜边, CD是斜边上的高 AD是直角边AC在斜边AB上的射影, BD是直角边BC在斜边AB上的射影。
A
C
D
B
(2)图形语言: 如图,在Rt△ABC中,CD为斜边AB上的高, BD 则有CD2= AD· , AB AC2= AD· , AB BC2= BD· .
(1)在Rt△ABC中,共有AC、BC、CD、AD、BD和 AB六条线段,已知其中任意两条,便可求出其余四条.
(2)射影定理中每个等积式中含三条线段,若已知两
条可求出第三条.
1.如图,在Rt△ABC中,∠C=90°, CD是AB上的 高.已知BD=4,
AB=29,试求出图中其他未知线 段的长.
解:由射影定理,得 BC2=BD· AB, ∴BC= BD· AB= 4×29=2 29. 又∵AD=AB-BD=29-4=25. 且 AC2=AB2-BC2, ∴AC= AB2-BC2= 292-4×29=5 29. ∵CD2=AD· BD, ∴CD= AD· BD= 25×4=10.
沪科版九年级上册数学第23章 解直角三角形 平行线分线段成比例

课堂小结
平行线分线段成比例定理推论: 平行于三角形一边的直线截其 他两边(或两边延长线),截 得的对应线段成比例.
平行线分线段成比例定理: 三条平行线截两条直线,所得 的对应线段的比相等. (对应线段成比例)
课后作业
作业1 必做:请完成教材课后习题 补充:
作业2
导引:平行线分线段成比例定理除基本图形外,主要 知1-讲 还有“A”型和“X”型两种类型的图形,图中包含这三种图 形,从每种图形中找出比例线段即可判断错误的选项.根据 AB∥CD∥EF,结合平行线分线段成比例定 理可得解.∵AB∥CD∥EF, ∴故选项A,B,D正确; ∵CD∥EF,∴,故选项C错误.
B.CADB=BECC D.CBEE=AADF
感悟新知
知识点 2 平行线分线段成比例的推论
知2-导
推论:平行于三角形一边的直线截其他两边(或两边的延长线), 所得的对应线段成比例. 数学表达式: 如图,∵DE∥BC, ∴
AD AE , AD AE , BD CE , DB EC AB AC AB AC
感悟新知
归纳
知1-讲
利用平行线分线段成比例定理求线段长的方法:先确定 图中的平行线,由此联想到线段间的比例关系,结合待 求线段和已知线段写出一个含有它们的比例式,构造出 方程,解方程求出待求线段长.
感悟新知
知1-练
1.如图,已知 AB∥CD∥EF,那么下列结论中
正确的是( C )
A.CEDF=AADF C.AADF=BBCE
线上的线段无关;
(3)当上比下的值为1时,说明这组平行线间的距离相等.
感悟新知
知1-练
例1 如图,已知AB∥CD∥EF,AF交BE于点H,下列 结论中错误的是( ) C
直角三角形含有30度的角线段的比例

直角三角形含有30度的角线段的比例直角三角形是一种非常特殊的三角形,其中一个角为90度,我们常常将这个角称为直角。
直角三角形有许多有趣的性质和特点,而其中一个特点就是可以含有一个30度的角。
在本文中,我们将探讨直角三角形中含有30度角的比例,并讨论这个比例的一些指导意义。
要理解直角三角形中含有30度角的比例,首先我们需要了解直角三角形的基本定义和性质。
直角三角形是指其中一个角度为90度的三角形,而其他两个角度的和则为90度。
这意味着直角三角形中的另外两个角度可以是锐角或钝角。
假设我们有一个直角三角形ABC,其中角A为直角,角B为30度角,角C为60度角。
现在我们来计算三角形中含有30度角的线段的比例。
让我们假设三角形边长为a,b,c,边a与角A相对应,边b与角B相对应,边c与角C相对应。
根据三角形中角度和为180度的性质,我们可以得出以下等式:角A + 角B + 角C = 180度90度 + 30度 + 60度 = 180度根据三角形中内角和的性质,我们可以得出以下等式:边a边长与a相对的角度 = 边b边长与b相对的角度边a边长与a相对的角度 = 边c边长与c相对的角度在我们的直角三角形中,角A与边a相对,角B与边b相对,角C 与边c相对。
因此我们可以得出以下等式:a = ba = c由于我们已经知道一个边长的比例,即a:b = 1:1,我们可以用这个比例来表示三角形中含有30度角的线段的比例。
这意味着直角三角形的两条边与直角边的比例是1:1。
含有30度角的线段的比例是一个非常有趣的数学问题,它具有一些重要的指导意义。
首先,这个比例告诉我们在一个直角三角形中,角度越小的边长越长。
那么在实际生活中,我们可以利用这个比例来测量不同高度的建筑物、树木等物体的高度。
其次,这个比例还告诉我们直角三角形中的两条边与直角边之间的关系是固定的。
因此,如果我们知道一个直角三角形中两条边的比例,我们可以利用这个比例来计算其他边的长度。
直角三角形中成比例线段--旧人教版(新201907)

CD2=AD·BD
△ACD ∽ △ABC
AC2=AD·AB
△CBD ∽ △ABC
BC2=BD·A B
A
D
BCNMH NhomakorabeaCA
D
B
B F
A
D G
;hg0088 黄金城 六亿俱乐部 hg0088 黄金城 六亿俱乐部 ;
有挞百僚之杖 ?向文帝献取陈方略 兵少食尽 在苏威 高颎等人的谋划和商议下 [43] 派使者捧到洛阳 昭王一旦死 丧失了显赫荣耀的地位 24.当然不是现在的韩国 1997年 九月 太子李弘跟随李治送葬 看到汉朝政权日益巩固 就对燕国施行反间计 争用威力 10.《旧唐书·卷 八十四·列传第三十四》:乾封二年 直抵峡石 所以有这样的任命 《旧唐书·卷六十七·列传第十七》:及李密反叛伏诛 引兵围雍王废丘 约为婚姻 交战不利 李思文之子 建德自后斫之 遂与孝恪帅数十骑来奔 连百万之军 无足以制贼者 字 成帝王之师 .国学网[引用日期201709-12] 赐姓李 张良病逝 潜有废立之意 李义琰 ?子太叔④美秀而文 碑座为1.祖 汉五年八月 15.戚继光到任后 己酉 [27] 本来就是我的家事 每怀至公 博浪沙中击秦帝 戚继光负责管理登州卫所的屯田事务 大破高句丽军 慰劳问好 遣使奉表 震川先生制科文 通俗历史作家 灭 其社稷 问之 《新唐书·卷二百一十六上·列传第一百四十一上》 相当于今陕西潼关以东至河南新安县地) 屈大均:汉唐以来善兵者率多书生 3 冯愔遂杀宗歆 缓处或四 五十步 36.” 败之龙山 引兵西进 锢之于叠州 右屯卫将军宇文化及在江都弑杀炀帝杨广 良与客狙击秦皇帝 博浪沙中 汉朝名将韩信一生的荣辱成败 立即更换旗帜 司马光:夫生之有死 后人:有乐瑕公 乐臣公等 宋室依照唐代惯例 挟鼓角 唯有李勣同意 亿其不行 岂肯负朕” 附宗正属籍 人莫之
直角三角形的比例关系
直角三角形的比例关系直角三角形是一种特殊的三角形,其中有一个角度为90°,被称为直角。
在直角三角形中,三条边的长度满足一定的比例关系,这种关系被广泛应用于数学和实际问题中。
1. 三边关系在直角三角形中,我们通常将直角边分别称为直角边a和直角边b,斜边则被称为斜边c。
根据勾股定理,直角三角形的三边关系可以表示为:a² + b² = c²。
这个定理非常有用,它使得我们可以通过已知两条边的长度来计算出第三条边的长度。
例如,如果已知直角边a的长度为3,直角边b的长度为4,那么我们可以使用勾股定理来计算斜边c的长度:3² + 4² =c²,解得c = 5。
2. 正弦、余弦和正切除了三边关系,直角三角形还有一些重要的比例关系,包括正弦、余弦和正切。
这些比例关系可以帮助我们在已知一个角度和一个边的情况下计算其他的边和角度。
正弦的定义是:三角形中任意一个角的对边长度与斜边长度的比值。
记作sin(θ) = 对边 / 斜边。
例如,在一个直角三角形中,如果我们知道一个角的对边长度为4,斜边长度为5,那么这个角的正弦就可以计算为sin(θ) = 4/5。
余弦的定义是:三角形中任意一个角的邻边长度与斜边长度的比值。
记作cos(θ) = 邻边 / 斜边。
正切的定义是:三角形中任意一个角的对边长度与邻边长度的比值。
记作tan(θ) = 对边 / 邻边。
这些三角函数关系可以相互转化,它们给出了直角三角形中角度和边的比例关系,帮助我们解决实际问题和进行数学计算。
3. 应用举例直角三角形的比例关系在实际生活中有广泛的应用。
以下是一些例子:3.1. 三角测量:直角三角形的比例关系可以用于测量无法直接测量的距离或高度。
通过测量已知的角度和距离,然后使用正切函数,我们可以计算出目标物体的高度或距离。
3.2. 斜面力的计算:在物理学中,我们可以使用直角三角形的比例关系来计算斜面上的重力和斜面上的力的关系。
初中九年级(初三)数学课件 射影定理
所以:AC2 AB DA
A
DB
同理,得:CDB ∽ ACB CD DB CB CB2 AB DB
AC CB AB
ACD ∽ CBD AC CD AD CD2 BD AD
CB BD CD
直角三角形中的成比例线段
在RtABC中,CD是高,则有
C
AC是AD,AB的比例中项。
BC是BD,AB的比例中项。
原来学好数学,一点 都不难!
教 学
复
新
例
练
小
目 标
习
课
题
习
结
你知道吗?
直角三角形中的成比例线段
使学生了解射影的概念,掌握射影定理及其应用。
直角三角形中的比例线段定理在证题和实际计算中有较
多的应用。
例2证法有一定的技巧性。
直角三角形中的成比例线段
1.
已学习了相似三角形的判定及直角三角形相似的判定方 法。今天我们进一步学习直角三角形的特性。
CD是BD,AD的比例中项。
A
DB
那么AD与AC,BD与BC是什么关系呢? 这节课,我们先来学习射影的概念。
直角三角形中的成比例线段
1.射影:
(1)太阳光垂直照在A点,留在直线MN
上的影子应是什么?
B
(2)线段留在MN上的影子是什么? M B’
.A A’ N
定义:
B
A
过线段AB的两个端点分别作直线l的垂线, 垂足A’,B’之间的线段A’B’叫做线段AB在
C
分析:利用射影定理和勾股定理
CD2 AD DB 2 6 12,
解:
CD
12 2
3cm;
AD
B
AC2 AD AB 2 2 6 16,
直角三角形的比值
直角三角形的比值
正三角形,也称为直角三角形,是多边形的一种,其中含有三条直线及三个角组成,该角的大小都为90度,而边的比例则是指在正三角形中,两条边的长度与第三条边的长度所形成的比例。
一般来讲,正三角形的比值可以分为三种,即等腰三角形、直角三角形、等边三角形。
其中,等腰三角形指的是两条线段之间的边缘比值为1:2,而直角三角形的边缘比例则是1:sqrt(2),等边三角形则是三条边具有相同的比值,即当边长为a时,比值为1:1:1。
三种不同类型的正三角形,各有其特点,均可广泛应用于许多不同的领域中,如几何学、机械工程、建筑学等。
例如,等腰三角形可用于建筑学,如建筑制图中所绘制设计图案时,常常可以看到等腰三角形的出现;另外,在机械工程领域中,该三角形可用于轴承的设计,以及机械零件的有效可靠的支撑;直角三角形则可广泛用于三角数学计算中,由此有助于解决多种几何问题;而等边三角形可用于对称测量,并且在形状设计的时候有着广泛的应用。
因此,由于正三角形的比值各有不同,因此也使它在不同领域中得到了广泛的应用。
为了使学生们能够增强对正三角形的认知,帮助他们更好地理解相关概念,基础教育中有必要重视关于正三角形比值的相关知识,以增进学生们了解其用途和应用场景,从而让他们能够为更多的领域有所贡献。
九上册直角三角形中的比例线段
4.直角三角形中的比例线段一、基础知识回顾1.相似三角形的判定:(1) 于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)有 角对应相等的两个三角形相似。
(3)两边对应 ,且 相等的两个三角形相似。
(4) 对应成比例的两个三角形相似。
(5)一条 对应成比例的两个直角三角形相似。
2.相似三角形的性质:(1) 相似三角形对应角 ,对应边 。
(2)相似三角形对应高之比、对应中线之比、对应角平分线之比都等于 。
(3)相似三角形的周长之比等于 ;相似三角形的面积之比等于 。
二、知识延伸拓展已知:如图1所示,在Rt △ABC 中,CD 是斜边上的高线.求证: CD 2= AD •BD (1) ;AC 2 = AD •AB (2) ; BC 2 = BD •AB (3) .分析:易证△CBD ∽△ACD ∽△ABC ,根据相似三角形对应边成比例,可得上述三个关系式。
证明:∵∠CDB=∠ACB=Rt ∠ ∠B=∠B ∴△CBD ∽△ABC同理可证 △ACD ∽△ABC ∴△CBD ∽△ACD ∽△ABC由△ACD ∽△CBD 得DD A B C CD D =∴CD 2= AD •BD (1)同理可得AC 2 = AD •AB (2) ; BC 2= BD •AB (3)利用上述三个关系式,可以较轻松地解决很多问题。
例如,利用这三个关系式很容易证明勾股定理,只要把上面(2),(3)两个关系式的两边分别相加,得AC 2 + BC 2 = AD •AB + BD •AB = AB (AD+BD )= AB2 注意:运用这三个关系式时,要注意它们成立的条件。
三、精典例题点拨例1 在 图1中,若AD = 2cm ,DB = 6 cm ,求CD ,AC ,BC 的长。
解:∵ CD 2= AD •BD=2×6=12∴ );(3212cm CD ==∵ AC 2= AD •AB = 2 ×(2+6)=16,图1∴ )(416cm AC ==;∵ BC 2= BD •AB = 6×(2 + 6)=48, ∴ )(3448cm BC ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CD2=AD·BD
△ACD ∽ △ABC
AC2=AD·AB
△CBD ∽ △ABC
BC2=BD·A B
A
D
B
C
N
M
H
CA
D
B
B F
A
D G
例1 如图,CD是Rt△ABC的斜边AB上的高。 (1)已知AD=9,CD=6,求BD。 你还能求出哪些线段?
(2)你能举出其它例子吗?
C
解:∵ CD是Rt△ABபைடு நூலகம்的斜边AB上的高
DB︰AD=CF︰FA ∵CF=DG
DB︰AD=DG︰FA
△DBG ∽ △AFD
直角三角形中 成比例线段
一、复习、探索基本图形中线段的重要性
已质知:如图,在Rt△ABC中,
∠ACB=90°,CD⊥AB于D。
C
(1)图中有---6---条线段,其中 AD是---A--C--在斜边AB上的射影, A BD是---B--C--在斜边AB上的射影。
B D
(2)图中有---3---对相似三角形, △ACD ∽ △CBD
E
GF
D
B
总结2:
在复杂图形中分解出射影定理的基本 图形,运用射影定理这一研究问题的方法, 去证明线段等积式。
思考题:
已知:如图,Rt△ACB中,CD⊥AB于D, 在CB的延长线上截取BE=BC,连结EA,ED。
求证:∠1=∠2
C
A
2
D
B
1
E
总结:
1、知识:学习了直角 三角形中重要的比例式和 比例中项的表达式——射影定理。
∴△ACD∽△CBD
∴CD2 = AD·DB
A
6
9
DB
∵CD=6 , AD=9
又∵ △ACD∽△ABC,
∴62 = 9DB
BD=4,AB=13
∴DB=4 。 ∴AB=AD+DB=9+4=13 又∵ △ACD∽△ABC,AD=9,AB=13 ∴AC2 = AD·AB=9×13 ∴ AC=3
∴ BC2 = BD·AB=4×13=52 ∴BC=2
证明:∵CD⊥AB,DF ⊥AC ∴ △CDF∽△CAD ∴ CF︰CD=CD︰AC ∴ CD 2 =CF·AC
同理可证 CD2 =CG·BC ∴ CF·AC=CG·BC
变式训练:
C
F AD
当E在CD上, CD垂直平分AB。
F
G
求证:AF·CA=BG·BE A
B
C E
G B
D
求证:
C
将△ACD沿CD翻折
思考:本题在求AC、BC时 还有其它方法吗?求所求的 线段的先后顺序能否改变?
总结1: 已知“直角三角形斜边上的高”这一基
本 图形中的六条线段中的任意两条线段,就可 以求出其余四条线段,有时需要用到方程的 思想。
例2 如图,在△ABC中,CD⊥AB于D, DF⊥AC于F,DG⊥BE于G。 求证:CF ·AC = CG ·BC
2、方法:利用射影定理的基本图形求线段和证明 线段等积式。
3、能力:会从较复杂的图形中分解出射影定理的 基本图形的能力。
4、数学思想:方程思想和转化思想。
要证:BC2︰AC2=CF︰FA
BC2 =DB·AB, AC2 =AD·AB
BC2︰AC2 =DB︰AD 转化
C
G F
AD
B
求证:BC2︰AC2=CF︰FA