最大气泡压力法

最大气泡压力法
最大气泡压力法

溶液表面张力及吸附分子横截面积的测定

实验目的

1. 学习用最大气泡压力法测定溶液的表面张力σ。

2.了解用吉布斯方程在溶液表面吸附中的实验应用。

3.了解溶液表面吸附分子的横截面积的测量方法 。

实验原理

1. 溶液表面的过剩物质的量Γ

表面张力σ(或比表面Gibbs 函数)是表面化学热力学的重要性质之一。纯溶剂中溶入溶质形成溶液后,溶液的表面张力不同于纯溶剂。按照溶液表面张力随溶质浓度的变化规律可把溶质分为三种情况。溶液的表面张力随溶质浓度的增加而增大;溶液的表面张力随溶质浓度的增加而减小;溶液的表面张力最初随溶质浓度的增加而急剧减小,当达到某一临界浓度时,溶液的表面张力不再随溶质浓度的增加而变化,见图3-30。定量地描

本实验研究正吸附的情况。只要获得了溶

液表面张力随溶质浓度的变化曲线,就可用微 分法得到某一浓度下的(d σ/d c )T

,,然后依据方程(3-63)得到表面过剩物质的量Γ。 2。饱和表面过剩物质的量与吸附分子的横截面积

对于正吸附的情况,溶质分子在溶液表面过剩物质的量Γ取决于溶质在溶液本体的浓度。在本体浓度较小时,Γ随c 的增加而增大,当溶液表面已经盖满一层溶质分子时,Γ达到最大,用符号Γ∞表示。称为饱和表面过剩物质的量。

若以1/Γ 对π(称为表面压力)作图则得图3-31;π的定义如式(3-64):

π=σ0 -σ (3-64)

述这一规律的方程是Gibbs 等温吸附方程 ()

c RT c ΓT

d d σ-= (3-63) 式(3-63)中,Γ被Gibbs 称为表面过剩物质的

量,单位为mol·m -2。对某些溶液系统(如电解质溶液系统)式中的浓度c 有时要用活度a 代换。由图3-30,对曲线A ,(d σ/d c )T >0,Γ<0,这种情况称为负吸附。对曲线B 和C ,(d σ/d c )T <0,Γ>0,这种情况称为正吸附。

由图3-31看出,当π较大时(即浓度c 较小时)

1/Γ趋向于一个定值,此定值即1/Γ∞。由此可求得Γ∞。然后由式(3-65)计算吸附分子的

横截面积A c 。

L ΓA ∞=1C (3-65) 式(3-65)中L 为Avogadro 常量。

图3-30溶液的表面张力随溶质浓度的变化

浓度c σ

1/Γ1/Γ∞ 图3-31 1/Γ ~π关系曲线

3.最大气泡压力法测定液体的表面张力

测定液体表面张力的方法有最大气泡压力法、落球法、扭称法、滴重法及毛细管上升法等。本实验采用最大气泡压力法。

仪器和药品

最大气泡压力法表面张力测定仪(见实验34);下口瓶;恒温水浴;无水乙醇(AR)

实验步骤

1.用去离子水和无水乙醇配制下列无水乙醇水溶液

2.将待测液体15~30mL装入洗净烘干的磨口瓶1中,盖好磨口瓶盖;将自来水注入下口瓶8中,关好两通阀10;如图连接好各部分(方法见实验34);将磨口瓶1放入恒温槽中并用夹子夹牢,使整体垂直向下;将恒温槽温度控制在25℃,恒温10~15分钟后,打开下口瓶8的放水活塞10,调整放水速率,使测量瓶的毛细管端每隔6秒左右鼓出一个气泡(一次只能鼓一个气泡,不可连续鼓泡!);测量毛细管鼓泡时的最大压差(方法同实验34),分别测出p细和p粗,然后有Δp=p细-p粗。

3.用2的方法依次测量表3-8中各液体样品的Δp。

数据处理

1、手工处理数据

(1)从教材附录中查出纯水的表面张力;用实验34的方法计算各无水乙醇水溶液的表面张力。

(2)将各样品的表面张力填入表3-9中。

(3)用微分法求取σ~ c曲线上每一个浓度下的斜率,即(dσ/d c)T。

(4)用式(3-64)计算π。

(5)用式(3-63)计算各表面过剩物质的量Γ,并计算1/Γ。

(6)作(1/Γ)~ π图,由图中求出Γ∞。

(7)用式(3-65)计算吸附乙醇分子的横截面积A c。

(8)将上述计算的各个量填入表3-9。

表3-9 无水乙醇水溶液表面张力测定数据表实验温度:25℃

思考题

1.那些溶质能在液态溶液表面发生正吸附,那些溶质发生负吸附?

2.溶液表面吸附法测定吸附分子的横截面积对溶液的浓度有限制么?

3、用最大气泡压力法测定液体的表面张力对鼓泡速度有什么要求?连续鼓泡产生哪些不利影响?

最大气泡法实验报告

竭诚为您提供优质文档/双击可除最大气泡法实验报告 篇一:最大气泡法测表面张力实验报告 最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量,由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加

分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 ?w=???A 如果ΔA为1m2,则-w′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是n·m-1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。(4)由于表面张力的存在,产生很多特殊界面现象。3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

最大气泡压力法测溶液表面张力数据处理

最大气泡压力法测定溶液表面张力 实验日期:2013/4/1 一、数据记录 室温:24.5℃ 压强:82.83kPa 测量温度:25±0.1℃ 单位:Pa 项目 组数 1 2 3 ave 电导水 676 671 676 674.33 0.01M 659 657 657 657.67 O.O25M 631 630 630 630.33 0.05M 573 574 573 573.33 0.1M 513 516 516 515.00 0.15M 464 464 464 464.00 0.2M 430 431 433 431.33 0.25M 401 402 401 401.33 0.5M 313 311 315 313.00 二、数据处理 1、电导水的气泡压力 次数 1 2 3 平均值 压强差/Pa 676 671 676 674 由化学手册查得20℃下,水的表面张力为0.0728 N/m , △P=610 Pa ,求得毛细管常数 2、正丁醇气泡压力 浓度/ mol/L 气泡最大压力差 △P/ Pa 表面张力σ N/m 1 2 3 平均值 0.01 659 657 657 657.67 7.10E-02 0.025 631 630 630 630.33 6.81E-02 0.05 573 574 573 573.33 6.19E-02 0.10 513 516 516 515.00 5.56E-02 0.15 464 464 464 464.00 5.01E-02 0.20 430 431 433 431.33 4.66E-02 0.25 401 402 401 401.33 4.33E-02 0.50 313 311 315 313.00 3.38E-02 计算正丁醇表面张力的公式: m P K 41008.1674 0728 .0-?==?=σP *K ?=σ

最大气泡法测表面张力

最大气泡法测表面张力

液体的表面张力的一些影响因素: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 附加压力与表面张力的关系用拉普拉斯方程表示:(表面张力的公式)式中σ为表面张力,R为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况。 毛细现象: ●毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液 在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力?P = ρ g h,通过测量液柱高度即可求出液体的表面张力。 ●这就是毛细管上升法测定溶液表面张力的原理。 ●此方法要求管壁能被液体完全润湿,且液面呈半球形。 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如图所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当

此压力差——附加压力(Δp =p大气-p系统) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式: 在定温下纯液体的表面张力为定值,只能依靠缩小表面积来降低自身的能量。而对于溶液,既可以改变其表面张力,也可以减小其面积来降低溶液表面的能量。通常以降低溶液表面张力的方法来降低溶液表面的能量。

最大气泡压力法测定溶液表面张力.

物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12 T=286.15K P=85.02kPa 一、实验目的 1.掌握最大气泡法测定溶液表面张力的原理和方法 2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量 3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解 二、实验原理 处于溶液表面的分子,受到不平衡的分子间力的作 用而具有表面张力s. 气泡最大压力法测定表面张力装置见实物;实验中 通过滴水瓶滴水抽气使得体系压力下降,大气压与体系 压力差△p逐渐把毛细管中的液面压至管口,形成气泡。 如果毛细管半径很小,则形成的气泡基本上是球形的; 当气泡开始形成时,表面几乎是平的,这时曲率半径最 大;随着气泡的形成,曲率半径逐渐变小,直到形成半球 形,这时曲率半径R和毛细管半径r相等,曲率半径达 最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。气泡进一步长大,R变大,附加压力则变小, 直到气泡逸出。 加入表面活性物质时溶液的表面张力会下降,溶质 在表面的浓度大于其在本体的浓度,此现象称为表面吸 附现象; 单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc). 对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc 朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞ Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞) 三、仪器与试剂 恒温槽装置;数字式微压差计; 抽气瓶l个;表面张力测定仪 烧杯(1000mL);T形管1个; 电导水; 正丁醇(A.R.)及其不同浓度的标准溶液; 四、实验步骤 1.仪器常数的测定 将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。 2.测定正丁醇溶液的表面张力 用同样的方法测定不同浓度的正丁醇溶液的最大压差,由稀到浓依次测定;每个浓度的溶液测量前,表面张力测定仪和毛细管一起用该溶液荡洗二至三次;每份溶液恒温至少3-5min之后,开始读数。 3. 重复测定电导水的数据。 注意事项:仪器系统不能漏气;测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定的流过,而使压差计读数不稳定,如发生此种现象,毛细管应重洗;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插;在数字式微压差测量仪上,应读出气泡单个逸出是的最大压力差;正丁醇溶液要准确配置,使用过程防止挥发损失;从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有关,因此要等溶液恒温后再测量。

实验七-最大气泡压力法测定溶液表面张力

一、实验目的 1.掌握最大气泡压力法测定表面张力的原理与技术。 2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力与吸附量关系的理解。 二、实验原理 1、在一定温度下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质与加入量的多少。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度与压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式: Γ = –(c/RT)*(dγ/dc)① 式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。 根据朗格谬尔(Langmuir)公式: Γ =Γ∞Kc/(1+Kc)② Γ∞为饱与吸附量,即表面被吸附物铺满一层分子时的Γ∞ c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③ 以c/Г对c作图,则图中该直线斜率为1/Г∞。 由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。 2、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示: 图1、最大气泡压力法测量表面张力的装置示意图 1、恒温套管; 2、毛细管(r在0.15~0.2mm); 3、U型压力计(内装水); 4、分液漏斗; 5、吸滤瓶; 6、连接橡皮管。

将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统)在毛细管端面上产生的作用力稍大于毛细管液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为: ΔP=2γ/R ④ 式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。 如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时的曲率半径R与毛细管的半径r相等,曲率半径最小值,根据上式这时附加压力达最大值。气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。 根据上式,R=r时的最大附加压力为: ΔP最大= 2γ/r ⑤ 实际测量时,使毛细管端刚与液面接触,则可忽略气泡鼓起所需克服的静压力,这样就可以直接用上式进行计算。 当将其它参数合并为常数K时,则上式变为: γ=KΔP最大⑥ 式中仪器常数K可用已知表面张力的标准物质测得。 三、仪器药品 1、仪器:最大泡压法表面张力仪1套,洗耳球1个,移液管(50ml与10ml)各一支,烧杯(500mL)。 2、药品:正丁醇(分析纯),蒸馏水。 四、实验步骤 1、仪器的准备与检漏 将表面张力仪容器与毛细管先用洗液洗净,再顺次用自来水与蒸馏水漂洗,烘干后按图5-9接好,检查是否漏气。 2、仪器常数的测定 调节液面与毛细管相切,并调节分液漏斗,使气泡由毛细管尖端成单泡逸出,且速度控制在每分钟形成气泡5~10个(数显微压差测量仪为5~10s),当气泡刚脱离管端的一瞬间,压力计中液位差达到最大值,当显示的最大值比较稳定时,记下数据,重复调节2次并记下相应的数值。再由手册查出实验温度时水的表面张力,求得仪器常数K。 3、表面张力随溶液浓度变化的测定

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

实验七 最大气泡法测定液体的表面张力

实验七 最大气泡法测定液体的表面张力 卓冶13 李金阳 (一)、实验目的 1.掌握最大气泡法测定液体的表面张力的原理和方法。 2.熟悉表面张力的意义和性质,测定不同浓度液体的表面张力。 3.熟悉表面吸附的性质及与表面张力的关系。 (二)、实验原理 溶剂中加入溶质后,溶剂的表面张力要发生变化,加入表面活性物质(能显著降低溶剂表面张力的物质)则它们在表面层的浓度要大于在溶液内部的浓度,加入非表面活性物质则它们在表面层的浓度比溶液内部低。这种表面浓度与溶液内部浓度不同的现象叫溶液的吸附。显然,在指定的温度压力下,溶质的吸附量与溶液的表面张力及溶液的浓度有关。从热力学可知,它们之间的关系遵守吉布斯吸附等温方程: T dc d RT c ??? ??- =Γσ (7—1) 式中:Γ—为溶质在单位面积表面层中的吸附量(mol ·m - 2); σ—为溶液的表面张力(N ·m -2 ); c —为溶液浓度(mol ·m -3 );; R —气体常数,8.314J ·mol -1·K -1 ; T —为绝对温度(K )。 当 )/(dc d σ< 0时,Γ > 0,即溶液的表面张力随着溶液浓度的增加而下降时,吸附量为 正值,称为正吸附,反之,当)/(dc d σ> 0时,Γ< 0称为负吸附。吉布斯吸附等温方程式 应用范围很广,但上述形式只适用于稀溶液。通过实验测得不同浓度溶液的表面张力1σ、 2σ……即可求得吸附量Γ。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。试验装置如图(7—1) 所示。 图7—1 表面张力测定装置 1—样品管 2—毛细管 3—压瓶 4—精密数字压力计 5—大气平衡管 6—活塞 图7—2 气泡曲率半径的变化规律 将欲测表面张力的溶液装入样品管中,使毛细管的端口与液面相切,液体即沿毛细管上升,打开减压瓶3的活塞6,使里面的水慢慢的滴出,则系统内的压力慢慢减小,毛细管2液面上受到一个比样品管中液面上大的压力,此时毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡。开始时气泡表面很平,曲率半径很大,随着气泡的形成,曲率半

最大气泡法测表面张力实验数据与处理

五、实验数据记录与处理 室温:24.3℃ 大气压:100.73Pa 1、乙醇水溶液的折光率 利用文献数据作n~c 工作曲线,依据实验测定数据,计算样品的浓度c 。 (1)将25℃时乙醇-水溶液的浓度与折光率关系表(表一),绘制成溶液浓度与折光率的工作曲线(图一)。 25℃恒温水浴下测得水的折射率为:1.3322/1.3323/1.3323 求得平均值为:1.332266667 利用水的折射率校正: n c/(mol/L) 图一 溶液浓度与折光率的工作曲线 (2)实验配制的乙醇溶液折光率数据如表二所示。

(3)将校正后的乙醇的折光率代入拟合直线方程中,得到各乙醇溶液的真实浓度。如表三所示。 2、待测液体的表面力 将实验测得的水和乙醇溶液的最大△P max值代入公式: γ测=(△P max,测*γ水)/△P max,水 (查阅附表,得γ水= 0.07197N/m) 表四待测样品的表面力测定 3、作γ~c曲线,求出各浓度下的斜率。 (1)作γ~c拟合曲线。γ,c的相关数据如表五所示,拟合直线见图二。

γ/(N /m ) c (mol/L) 图二 γ~c 拟合曲线 (2)用origin 作出γ~c 拟合曲线的斜率曲线,如图三所示。 0510 -0.02 -0.01 0.00 D e r i v a t i v e Y 1 Derivative X1 图三 γ~c 拟合曲线的斜率曲线 (3)将各乙醇溶液浓度代入斜率曲线,求出待测样品的(?γ/?c)T ,P 数据。数据见表六。

T ,P 4、利用吉布斯吸附等温方程式,计算出各溶液的Γ。 Gibbs 公式: Γ=P T c ,)(RT c -??γ 其中,R=8.314J/(mol*K), T=25.0+273.15=298.15K 将表六中数据代入公式,求出各溶液的Γ如表七所示。 5、做c/Γ~c 图,求出直线斜率,由斜率求出Γ∞,直线如图三所示。 5.0x101.0x101.5x102.0x102.5x10 3.0x10 c /Γ c (mol/L) 图三 c/Γ~c 图

实验七-最大气泡压力法测定溶液的表面张力

宁波工程学院 物理化学实验报告 实验名称最大气泡压力法测定溶液的表面张力 一、实验目的 1.掌握最大气泡压力法测定表面张力的原理和技术。 2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。 二、实验原理 1、表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式: Γ = –(c/RT)*(dγ/dc)① 式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。 根据朗格谬尔(Langmuir)公式: Γ =Γ∞Kc/(1+Kc)② Γ∞为饱和吸附量,即表面被吸附物铺满一层分子时的Γ∞ c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③ 以c/Г对c作图,则图中该直线斜率为1/Г∞。 由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。 2、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示: 图1、最大气泡压力法测量表面张力的装置示意图 1、恒温套管; 2、毛细管(r在0.15~0.2mm); 3、U型压力计(内装水); 4、分液漏斗; 5、吸滤瓶; 6、连接橡皮管。

将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统),附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为: ΔP=2γ/R ④ 式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。 根据上式,R=r时的最大附加压力为: ΔP最大= 2γ/r ⑤ 实际测量时,使毛细管端刚与液面接触,则可忽略气泡鼓起所需克服的静压力,这样就可以直接用上式进行计算。 当将其它参数合并为常数K时,则上式变为: γ=KΔP最大⑥ 式中仪器常数K可用已知表面张力的标准物质测得。 三、仪器药品 1、仪器:最大泡压法表面张力仪1套,洗耳球1个,移液管(50ml和10ml) 各一支,烧杯(500mL)。 2、药品:正丁醇(分析纯),蒸馏水。 四、实验步骤 1、仪器的准备与检漏 将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图5-9接好,检查是否漏气。 2、仪器常数的测定 调节液面与毛细管相切,并调节分液漏斗,使气泡由毛细管尖端成单泡逸出,且速度控制在每分钟形成气泡5~10个(数显微压差测量仪为 5~10s),当气泡刚脱离管端的一瞬间,压力计中液位差达到最大值,当显示的最大值比较稳定时,记下数据,重复调节2次并记下相应的数值。再由手册查出实验温度时水的表面张力,求得仪器常数K。 3、表面张力随溶液浓度变化的测定 在上述体系中,按浓度从高到低的顺序依次测定预先配好的正丁醇溶液的△P最大值,每次置换溶液前都先用溶液润洗2次,再按2方法 测定。 五、实验数据记录及处理 1、实验数据的记录

最大气泡法测定溶液中的吸附作用和表面张力的测定精

最大气泡法测定溶液中的吸附作用和表面张力的测定 1.1 实验目的及要求 1.了解表面张力的性质,表面能的意义以及表面张力和吸附的关系。 2.掌握一种测定表面张力的方法——最大气泡法。 3.学会计算乙醇水溶液的表面张力、表面吸附量及乙醇分子的横截面积。 1.2实验原理 1.物体表面分子和内部分子所处的境遇不同,表面层分子受到向内的拉力,所以液体表面都有自动缩小的趋势。如果把一个分子由内部迁移到表面,而增大表面积就需要对抗拉力而做功。在温度、压力和组成恒定时,可逆地使表面增加dA 所需对体系做的功,叫表面功。可以表示为: -δw '=σdA (1) 式中σ为比例常数,反映液体表面自动缩小趋势的能力。 显然σ在数值上等于当T 、p 和组成恒定的条件下增加单位表面积时所必须对体系做的可逆非膨胀功,也可以说是每增加单位表面积时体系自由能的增加值。环境对体系作的表面功转变为表面层分子比内部分子多余的自由能。因此,σ称为表面自由能,其单位是2 -?m J 。此单位可化为牛顿每米(1 /-m N ),据此可把σ看作是液体表面单位长度上的力,它导致缩小液体的表面积,此力称为表面积张力。表面张力是液体的重要特性之一,与所处的温度、压力、浓度以及共存的另一相的组成有关。纯液体的表面张力通常是指该液体与饱和了其本身蒸气的空气共存的情况而言。 2.液体表面层的组成与内部层相同,因此,纯液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。对于溶液则由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。 根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度应比溶液内部来得大。反之溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度来得低,这种表面浓度与溶液内部浓度不同的现象叫“溶液表面的吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。1878年,Gibbs 用热力学的方法推导出它们之间的数量关系式: T dc d RT c ??? ??- =Γσ (2) 式中Γ为溶液在表面层中的吸附量,即表面超量( )3 -?dm mol 单位 ;σ为溶液的表面张力( )2 -?m J ; T 为热力学温度;c 为溶液浓度()3-?dm mol 单位;R 为气体常数。 当0Γ称为正吸附;反之,当0>??? ??T dc d σ时,0<Γ称为负吸附。前者表明加入溶质使液体表面张力下降,此类物质称表面活性物质。后者表明加入溶质使液体表面张力升高,此类物质

最大气泡法测定表面张力

【目的要求】 1. 了解表面自由能、表面张力的意义及表面张力与吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 3. 通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横载面积。 4. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 5. 求正丁醇分子截面积和饱和吸附分子层厚度。 【基本原理】 在液体的内部任何分子周围的吸引力是平衡的。可 是在液体表面层的分子却不相同。因为表面层的分子, 一方面受到液体内层的邻近分子的吸引,另一方面受到 液面外部气体分子的吸弓I,而且前者的作用要比后者大。 因此在液体表面层中,每个分子都受到垂直于液面并指 向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液 体的最小面积。要使液体的表面积增大就必须要 图1分子间作用力示意图 反抗分子的内向力而作功增加分子的位能。所以 说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值ΔG称为单位表面的表面能其单位为J. m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力, 其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗 的可逆功A为: -A= ΔG= σΔS 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体 不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降 低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的 表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(GibbS)表示: ⑴式 式中,Γ为表面吸附量(mol.m-2); σ为表面张力(J.m-2); T为绝对温度(K) ;C为溶液浓度(mol/L ); 表示在一定温度下表面张力随浓度的改变率。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力 一、实验目的 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 二、实验原理 1、表面张力的产生 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大, 因此在液体表面层中,每个分子都受到垂直 于液面并指向液体内部的不平衡力,如图所 示,这种吸引力使表面上的分子自发向内挤 促成液体的最小面积。 在温度、压力、组成恒定时,每增加单位 表面积,体系的表面自由能的增值称为单位表面的表面能(J·m-2)。若看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。 液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 由于表面张力的存在,产生很多特殊界面现象。

2、弯曲液面下的附加压力 静止液体的表面在某些特殊情况下是一个弯曲表面。由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。 弯曲液体表面平衡时表面张力将产生一合力P s ,而使弯曲液面下的液体所受实际压力与外压力不同。当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为: P ' = P o - P s ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为: P ' = P o + P s 。这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率 中心。 附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。 3、毛细现象 毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力 P=gh ,通过测量液柱高度即可求出液体的表面张力。这就是毛细管上升法测定溶液表面 张力的原理。 此方法要求管壁能被液体完全润湿,且液面呈半球形。 4、最大泡压法测定溶液的表面张力 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(Δp = p 大气 - p 系统 ) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱 出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:R p σ2=?. P s = 2σ R

最大泡压法测定

数据记录参考格式(计算时注意单位换算) 温度: 24℃水的表面张力:0.07218N/m 仪器常数K:0.1104 0 0.05 0.1 0.15 0.2 0.25 0.3 0.654 0.604 0.55 0.486 0.403 0.346 0.29 0.07191 0.05568 276 0.05070 45 0.04480 434 0.03715 257 0.03189 774 0.0267351 0 0.05 0.1 0.15 0.2 0.25 0.3 0.07191 0.05568 3 0.05070 5 0.04480 4 0.03715 3 0.03189 8 0.026735 0 0.05 0.1 0.15 0.2 0.25 0.3 -0.2153 -0.18997 -0.1646 4 -0.1393 1 -0.1139 8 -0.0886 5 -0.0633 2 0 3.831400 4465E-06 6.64106 7216E-0 6 8.42900 03085E- 06 9.19519 9724E-0 6 8.93966 54625E- 06 7.66239 7524E-0 6 0 0.05 0.1 0.15 0.2 0.25 0.3 0 3.81E-0 6 6.64E-0 6 8.43E-0 6 9.20E-0 6 8.94E-0 6 7.66E-06

六.注意事项: 1.所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。 2.读取压力计的压差时,应取气泡单个逸出时的最大压力差。 3.手动做切线时,可用镜面法。 七.思考题: 1.毛细管尖端为何必须调节得恰与液面相切? 如果毛细管端口插入液面有一定深度,对实验数据有何影响? 答:如果将毛细管末端插入到溶液内部,毛细管内会有一段水柱,产生压力P ˊ,则测定管中的压力Pr会变小,△pmax会变大,测量结果偏大。 2.最大泡压法测定表面张力时为什么要读最大压力差?如果气泡逸出的很快,或几个气泡一齐出,对实验结果有无影响? 答:如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯(Laplace)公式,此时能承受的压力差为最大:△pmax = p0 - pr = 2σ/γ。气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。最大压力差可通过数字式微压差测量仪得到。 如气泡逸出速度速度太快,气泡的形成与逸出速度快而不稳定;致使压力计的读数不稳定,不易观察出其最高点而起到较大的误差。 3.本实验为何要测定仪器常数?仪器常数与温度有关系吗? 答:因为用同一支毛细管测两种不同液体,其表面张力为γ1,γ2,压力计测得压力差分别为△P1,△P2,则γ1/γ2=△P1/△P2 ,若其中一液体γ1已知,则γ2=K×△P2其中K=γ1/△P1,试验中测得水的表面张力γ1,就能求出系列正丁醇的表面张力。 温度越高,仪器常数就越小 实验总结: 通过本次试验我基本掌握了实验仪器的基本操作!增强了实验数据的分析处理!

最大气泡压力法

溶液表面张力及吸附分子横截面积的测定 实验目的 1. 学习用最大气泡压力法测定溶液的表面张力σ。 2.了解用吉布斯方程在溶液表面吸附中的实验应用。 3.了解溶液表面吸附分子的横截面积的测量方法 。 实验原理 1. 溶液表面的过剩物质的量Γ 表面张力σ(或比表面Gibbs 函数)是表面化学热力学的重要性质之一。纯溶剂中溶入溶质形成溶液后,溶液的表面张力不同于纯溶剂。按照溶液表面张力随溶质浓度的变化规律可把溶质分为三种情况。溶液的表面张力随溶质浓度的增加而增大;溶液的表面张力随溶质浓度的增加而减小;溶液的表面张力最初随溶质浓度的增加而急剧减小,当达到某一临界浓度时,溶液的表面张力不再随溶质浓度的增加而变化,见图3-30。定量地描 本实验研究正吸附的情况。只要获得了溶 液表面张力随溶质浓度的变化曲线,就可用微 分法得到某一浓度下的(d σ/d c )T ,,然后依据方程(3-63)得到表面过剩物质的量Γ。 2。饱和表面过剩物质的量与吸附分子的横截面积 对于正吸附的情况,溶质分子在溶液表面过剩物质的量Γ取决于溶质在溶液本体的浓度。在本体浓度较小时,Γ随c 的增加而增大,当溶液表面已经盖满一层溶质分子时,Γ达到最大,用符号Γ∞表示。称为饱和表面过剩物质的量。 若以1/Γ 对π(称为表面压力)作图则得图3-31;π的定义如式(3-64): π=σ0 -σ (3-64) 述这一规律的方程是Gibbs 等温吸附方程 () c RT c ΓT d d σ-= (3-63) 式(3-63)中,Γ被Gibbs 称为表面过剩物质的 量,单位为mol·m -2。对某些溶液系统(如电解质溶液系统)式中的浓度c 有时要用活度a 代换。由图3-30,对曲线A ,(d σ/d c )T >0,Γ<0,这种情况称为负吸附。对曲线B 和C ,(d σ/d c )T <0,Γ>0,这种情况称为正吸附。 由图3-31看出,当π较大时(即浓度c 较小时) 1/Γ趋向于一个定值,此定值即1/Γ∞。由此可求得Γ∞。然后由式(3-65)计算吸附分子的 横截面积A c 。 L ΓA ∞=1C (3-65) 式(3-65)中L 为Avogadro 常量。 图3-30溶液的表面张力随溶质浓度的变化 浓度c σ 1/Γ1/Γ∞ 图3-31 1/Γ ~π关系曲线

表面张力的测定——最大气泡法

溶液表面张力的测定测定 姓名:夏胜军学号:2015011944 班级:材52同组:韦尧洁 实验日期:2016年11月17日提交报告日期:2016年11月22日 助教:段炼 1 引言 1.1 实验目的 1.1.1 测定不同浓度正丁醇溶液的表面张力。 1.1.2 根据吉布斯公式计算正丁醇溶液的表面吸附量。 1.1.3 掌握用最大气泡法测定表面张力的原理和技术。 1.2 实验原理 在液体内部,任何分子受周围分子的吸引力是平衡的。可是表面层的分子受内层分子的吸引与受表面层外介质的吸引并不相同,所以,表面层的分子处于力不平衡状态,表面层的分子比液体内部分子具有较大势能,如欲使液体产生新的表面,就需要对其做功。在温度、压力和组成恒定时,可逆地使表面积增加dA 所需做的功为 γdA =δW - (1) 比例系数γ表示在等温等压下形成单位表面所需的可逆功,其数值等于作用在界面上每单位长度边缘的力,称为表面张力。 纯物质表面层的组成与内部的组成相同,因此纯液体降低表面自由能的唯一途径是尽可能缩小其表面积。对于溶液,由于溶质使溶剂表面张力发生变化,因此可以调节溶质在表面层的浓度来降低表面自由能。 根据能量最低原则,溶质能降低溶剂的表面张力时,表面层溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,表面层溶质的浓度比内部的浓度低。这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。显然,在指定的温度和压力下,溶质的吸附量与溶液的浓度及溶液的表面张力随浓度的变化率有关,从热力学方法可知它们之间的关系遵守吉布斯公式: p T dc d RT c ,??? ??- =Γγ (2) 式中:Γ为表面吸附量(mol ?m -2);γ为表面张力(N ?m -1);c 为溶质的浓度(-3m mol ?); T 为热力学温度(K );R 为摩尔气体常数(8.314-1K mol J ??)。 Γ值可正可负,正值为正吸附,负值为负吸附。显然,Γ不仅能表明吸附的性质,

最大气泡法测定表面张力教案

最大气泡法测定液体的表面张力 (一)、实验目的 1.掌握最大气泡法测定液体的表面张力的原理和方法。 2.熟悉表面张力的意义和性质,测定不同浓度液体的表面张力。 3.熟悉表面吸附的性质及与表面张力的关系。 (二)、实验原理 溶剂中加入溶质后,溶剂的表面张力要发生变化,加入表面活性物质(能显著降低溶剂表面张力的物质)则它们在表面层的浓度要大于在溶液内部的浓度,加入非表面活性物质则它们在表面层的浓度比溶液内部低。这种表面浓度与溶液内部浓度不同的现象叫溶液的吸附。显然,在指定的温度压力下,溶质的吸附量与溶液的表面张力及溶液的浓度有关。从热力学可知,它们之间的关系遵守吉布斯吸附等温方程: T dc d RT c ??? ??- =Γσ (7—1) 式中:Γ—为溶质在单位面积表面层中的吸附量(mol ·m - 2); σ—为溶液的表面张力(N ·m -2 ); c —为溶液浓度(mol ·m -3 );; R —气体常数,8.314J ·mol -1·K -1 ; T —为绝对温度(K )。 当 )/(dc d σ< 0时,Γ > 0,即溶液的表面张力随着溶液浓度的增加而下降时,吸附量为 正值,称为正吸附,反之,当)/(dc d σ> 0时,Γ< 0称为负吸附。吉布斯吸附等温方程式 应用范围很广,但上述形式只适用于稀溶液。通过实验测得不同浓度溶液的表面张力1σ、 2σ……即可求得吸附量Γ。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。试验装置如图(7—1) 所示。 图7—1 表面张力测定装置 1—样品管 2—毛细管 3—压瓶 4—精密数字压力计 5—大气平衡管 6—活塞 图7—2 气泡曲率半径的变化规律 将欲测表面张力的溶液装入样品管中,使毛细管的端口与液面相切,液体即沿毛细管上升,打开减压瓶3的活塞6,使里面的水慢慢的滴出,则系统内的压力慢慢减小,毛细管2液面上受到一个比样品管中液面上大的压力,此时毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡。开始时气泡表面很平,曲率半径很大,随着气泡的形成,曲率半径逐渐变小,形成半球时,气泡的曲率半径与毛细管的半径相等,曲率半径达最小值(如图7—2)。气泡进一步长大,曲率半径又变大,直到气泡从毛细管口脱出。曲率半径最小时有

(情绪管理)最大气泡压力法测定溶液的表面张力

最大气泡压力法测定溶液的表面张力 一、实验目的 1.掌握最大气泡压力法测定表面张力的原理和技术。 2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。 二、基本原理 在一个液体的内部,任何分子周围的吸引力是平衡的。可是在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大一平方米表面所需的最大功A 或增大一平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为 J ·m -1;而把液体限制其表面及力图使它收缩的单位直线长度 上所作用的力,称为表面张力,其单位是N ·m -1。如欲使液体 表面面积增加ΔS 时,所消耗的可逆功A 应该是: 一A =ΔG =σΔS (1) 液体的表面张力与温度有关,温度愈高,表面张力愈小。 根据能量最低原则,若溶质能降低溶剂的表面张力,则表 面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c ??σ)T (2) 式中:Γ为吸附量(mol ·m - 1);σ为表面张力(J ·m -1);T 为绝对温度(K);c 为溶液浓度(mol .L -1);R 为气体常数(8.314J .K —I ·mol -1)。( c ??σ)T 表示在一定温度下表面张力随溶液浓度而改变的变化率。如果σ随浓度的增加而减小,也即(c ??σ)T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。如果σ随浓度的增加而增加即(c ??σ)T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。 从(2)式可看出,只要测定溶液的浓度和表面张力,就可求得各种不同浓度下溶液的吸附量Γ。 在本实验中,溶液浓度的测定是应用浓度与折光 率的对应关系,表面张力的测定是应用 最大气泡压力法。 图2是最大气泡压力法测定表面张力的装置示意 图。将欲测表面张力的液体装于支管试管5中,使毛 细管6的端面与液面相切,液面即沿着毛细管上升, 打开滴液漏斗2的活塞进行缓慢抽气,此时由于毛细 管内液面上所受的压力(p 大气)大于支管试管中液面 上的压力 (p 系统),故毛细管内的液面逐渐下降,并 从毛细管管端缓慢地逸出气泡。在气泡形成过程中, 由于表面张力的作用,凹液面产生了一个指向液面外

最大泡压法测定溶液表面张力。实验报告

最大泡压法测定溶液表面张力 一.实验目的: 1 ?明确表面张力、表面自由能和吉布斯吸附量的物理意义; 2 ?掌握最大泡压法测定溶液表面张力的原理和技术; 3 ?掌握计算表面吸附量和吸附质分子截面积的方法。 二?实验原理: 1 .表面张力和表面吸附 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图1所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积, 因此,液体表面缩小是一个自发过程。 在温度、压力、组成恒定时,每增加单位表面积,体系的吉 布斯自由能的增值称为表面吉布斯自由能 (J?m-2),用丫表示。也可以看作是垂直作用在单位长度相界面 上的力,即表面张力(N-m -1)。 欲使液体产生新的表面△ S,就需对其做表面功,其大小应 与△S成正比,系数为即为表面张力Y : -W= Y x△S (1) 图1 液体表面与分子内部受力情况图 在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,分子间的作用力发生变化,表面张力也发生变化,其变化的大小决定于溶质的性质和加入量的多少。水溶液表面张力与其组成的关系大致有以下三种情况: (1)随溶质浓度增加表面张力略有升高; (2)随溶质浓度增加表面张力降低,并在开始时降得快些; (3)溶质浓度低时表面张力就急剧下降,于某一浓度后表面张力几乎不再改变。 以上三种情况溶质在表面层的浓度与体相中的浓度都不相同,这种现象称为溶液表面吸附。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程: 降低的物质叫表面活性剂。c虻 RT ide 人 (2) 式中,r为溶质在表层的吸附量,单位mol ? m,Y为表面张力,e溶质的浓度 f d H ——I 0,此时表面层溶质浓度大于本体溶液,称为正吸附。引起溶剂表面张力显著de T >0,_则r < 0, 此时表面层溶质浓度小于本体溶液,称为负吸附

相关文档
最新文档