化工单元操作概念汇总推荐文档

合集下载

化工单元操作

化工单元操作
化工单元操作的实际应用
• 石油化工、化肥、制药等行业的生产过程中广泛应用 • 单元操作的研究和应用推动化工行业的发展 • 单元操作的优化和创新提高化工产品的竞争力
化工单元操作0的2基本原理与方

流体力学原理在化工单元操作中的应用
流体力学原理的基本概念
• 流体的性质和状态 • 流体的运动和受力 • 流体的流动和传热
优化效果的评价和反馈
• 生产成本的降低和产品质量的提高 • 生产效率和资源利用率的提高 • 安全和环保性能的改善
化工单元操作过程中的节能技术与应用
节能技术的类型和特点
• 热能回收和综合利用技术 • 工艺过程的优化和控制技术 • 设备的高效和节能技术
节能技术的应用和实践
• 某石油化工企业的节能改造案例分析 • 节能技术的推广和应用前景 • 节能技术对化工生产的影响和贡献
化工单元操作的发展对行业的影响与挑战
化工单元操作的发展对行业的影响
• 提高化工行业的整体技术水平和竞争力 • 推动化工行业的结构调整和转型升级 • 促进化工行业与环境保护和社会可持续发展的协调发展
化工单元操作的发展面临的挑战
• 技术突破和创新能力的提升 • 政策法规和市场环境的支持和引导 • 企业管理和人才培养的加强和改进
• 单元操作是生产工艺中的基本环节 • 单元操作的优化和创新推动生产工艺的改进 • 单元操作的稳定性和可靠性影响生产过程的顺利进行
化工单元操作的重要性和实际应用
化工单元操作在化工生产中的重要性
• 单元操作是化工生产的基础和核心 • 单元操作的优化和创新提高生产效率和降低成本 • 单元操作的稳定性和可靠性保证生产过程的顺利进行
• 化工单元操作设备的选型原则 • 满足工艺要求:设备的性能、容量和操作条件应满足生产工艺 的要求 • 确保安全可靠:设备应具有足够的安全性能和可靠性,保证生 产过程的顺利进行 • 考虑经济性和维护性:设备的投资、运行和维护成本应尽可能 低,设备的寿命应尽可能长

化工单元知识点总结大全

化工单元知识点总结大全

化工单元知识点总结大全化工单元是指利用化学、物理和机械等工艺制备化学产品的生产装置。

化工单元包括各种设备和设施,如反应器、分离器、塔器、泵、管道、阀门、控制系统等等。

化工单元的设计、操作和维护需要掌握丰富的知识和技能,以确保生产过程的安全、稳定和高效。

本文将介绍化工单元的一些重要知识点,包括反应工程、传质传热、分离工程以及过程控制等方面的内容。

一、反应工程反应工程是化工过程中的关键环节,涉及到化学反应的研究、设计和操作。

反应工程的主要任务是确定最佳的反应条件,以实现化学反应的高效、安全和经济运行。

在反应工程中,需要考虑的主要因素包括反应热、反应速率、反应平衡、反应物质的选择和处理、反应条件的控制等等。

1. 反应热反应热是指化学反应过程中释放或吸收的热量。

反应热的大小会影响到反应的热平衡和温度控制。

在设计反应工程时,需要通过实验或计算来确定反应热的值,并选择合适的冷却或加热方式,以保证反应过程的温度在安全范围内。

2. 反应速率反应速率是指化学反应物质转化的快慢程度。

在反应工程中需要确定最佳的反应速率,以提高产品的产量和质量。

影响反应速率的因素包括反应物质的浓度、温度、压力以及催化剂的选择等。

3. 反应平衡反应平衡是指在一定条件下,反应物质和生成物质之间的浓度或压力达到动态平衡的状态。

在设计反应工程时,需要考虑到反应平衡的影响,以确定最佳的反应条件和操作参数。

4. 反应物质的选择和处理在反应工程中,需要根据反应物质的性质和要求,选择合适的原料,并对其进行处理,以确保反应的顺利进行和产品的质量。

5. 反应条件的控制在反应工程中,需要通过控制温度、压力、pH值、搅拌速度等参数,来实现反应条件的控制,以保证反应的稳定和高效。

二、传质传热传质传热是化工过程中的另一个重要环节,涉及到物质和热量的传递、分离和转化。

传质传热的主要任务是提高产量、提高质量、降低能耗和保证生产过程的安全稳定。

1. 传质传质是指物质在不同系统之间的传递。

化工单元操作(张宏丽)(二版) Word 文档

化工单元操作(张宏丽)(二版) Word 文档

化工单元操作(张宏丽)(二版)∙作者:张宏丽刘兵闫志谦等∙出版社:化学工业出版社∙出版日期:2010年5月∙ISBN:712207871∙页数:272装帧:平装开本:16版次:2 ∙市场参考价:¥32商品编号:2389865绪论一、本课程的学习内容和任务二、单元操作的名称与分类三、基本概念与方法四、单位制和单位换算复习题习题第一章流体流动第一节流体流动的主要任务一、流体的输送二、压力、流速和流量的测量三、为强化设备提供适宜的流动条件第二节流体静力学一、流体的压缩性二、流体的主要物理量三、流体静力学基本方程式第三节流体动力学一、流量方程式二、稳定流动与不稳定流动三、流体稳定流动时的物料衡算——连续性方程四、流体稳定流动时的能量衡算——伯努利方程五、伯努利方程的应用第四节流体阻力一、流体的黏度二、流体流动的类型三、圆管内流体的速度分布四、流体阻力的计算第五节流量的测量与调节一、孔板流量计二、文氏管流量计三、转子流量计第六节管路一、管子二、管件三、阀件四、管路的连接五、管路的热补偿六、管路的保温和涂色复习题习题4次课——12学时第二章液体输送第一节液体输送的主要任务第二节离心泵操作技术一、离心泵的工作原理与构造二、离心泵的性能参数与特性曲线三、离心泵的安装高度与汽蚀现象四、离心泵的工作点与流量调节五、离心泵的操作、运转及维护六、离心泵的类型与选择第三节正位移泵操作技术一、往复泵二、旋转泵三、旋涡泵四、正位移泵的操作、运转及维护第四节常见流体输送方式一、压缩空气送料二、真空输送三、高位槽送料四、液体输送机械送料复习题习题2次课——6学时第三章气体的压缩与输送第一节气体压缩与输送的主要任务第二节往复式压缩机一、往复式压缩机的主要构造和工作原理二、往复式压缩机的生产能力三、多级压缩四、往复式压缩机的操作、运转及维护第三节离心式气体输送机械一、离心式通风机二、离心式鼓风机和压缩机第四节旋转式气体输送机械一、罗茨鼓风机二、液环压缩机第五节真空泵一、往复式真空泵二、水环真空泵三、真空喷射泵复习题第四章非均相物系的分离第一节非均相物系分离的主要任务一、非均相混合物的分离在工业中的应用二、非均相混合物的分离方法第二节过滤一、过滤的基本概念二、过滤操作过程三、过滤设备四、影响过滤操作的因素第三节沉降一、重力沉降二、离心沉降三、其他气体净制设备第四节离心分离一、离心分离的概念二、离心机的结构与操作复习题第五章传热第一节传热的主要任务一、传热在化工生产中的应用二、传热的基本方式三、工业生产上的换热方法四、、间壁式换热器简介五、稳定传热与不稳定传热第二节传热计算一、传热速率方程二、热负荷和载热体用量的计算三、平均温度差四、传热系数的测定和经验值第三节热传导一、导热基本方程和热导率二、通过平壁的稳定热传导三、通过圆筒壁的稳定热传导第四节对流传热一、对流传热方程二、对流传热系数三、设备热损失计算第五节传热系数一、传热系数的计算二、污垢热阻第六节换热器一、间壁式换热器的类型二、换热器的运行操作三、换热器常见故障与处理方法四、传热过程的强化途径五、列管式换热器设计或选用时应考虑的问题复习题习题3次课——9学时第六章蒸发一结晶第一节蒸发一结晶的主要任务第二节单效蒸发一、单效蒸发流程二、单效蒸发的计算三、溶液的沸点和温度差损失第三节多效蒸发一、多效蒸发的操作原理二、多效蒸发的流程三、多效蒸发效数的限定第四节结晶的基本原理一、溶解度和溶液的过饱和度二、结晶的速率和晶粒的大小三、结晶产品的纯度和产量四、结晶的方法第五节蒸发器和结晶器一、蒸发器的基本结构二、蒸发器的主要类型三、蒸发器的辅助装置四、结晶器复习题习题第七章蒸馏第一节蒸馏的主要任务一、蒸馏及其在化工生产中的应用二、汽液传质设备的分类第二节两组分溶液的汽液相平衡关系4次课——12学时……第八章吸收第九章萃取3次课——9学时第十章干燥《化工单元操作(第2版)》主要介绍化工生产过程中常见的单元操作的基本原理、典型设备的构造和性能、一般的计算方法以及单元操作技术。

化工单元操作与控制--知识点汇总(精选)

化工单元操作与控制--知识点汇总(精选)

离心泵,往复泵,旋涡泵的开车步骤离心泵:先开前阀,再开泵,然后开后阀。

往复泵:先把前后阀门打开,再启动泵。

旋涡泵:先开进口阀,再开旁路阀门,然后开泵,最后开出口阀。

静力学方程1.表压力=绝对压力-当地环境大气压力2.真空度=当地环境大气压力-绝对压力3.静力学方程:P1/密度+Z1g=P2/密度+Z2g(适用于在重力场中静止、连续的同种不可压缩流体)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。

雷诺数4.雷诺数Re(没有单位):Re=duρ/μ当Re<=2000时,此区为层流区,当Re>=4000时,此区为湍流区,当2000<Re<4000时,流动可能是层流,也可能是湍流。

换热知识点5.传热的三种基本方式:热传导、热对流和热辐射。

温度差是传热根本原因。

热传导需要介质。

热对流分为强制对流和自然对流。

6.换热器有间壁式换热器、直接接触式换热器、蓄热式换热器、中间载热体换热器10. 测定热量方式:显热法、潜热法、焓差法11. 对流传热膜系数越大,说明对流强度越大,对流传热热阻越小。

12. 水的沸腾曲线分为自然对流、泡核沸腾、膜状沸腾三个区域。

过滤知识点13. 恒压过滤的特点是过滤操作的总压差恒定,随着过滤时间的延长,滤饼厚度增大,过滤阻力增加,过滤速率降低。

测定湿度,相对湿度利用以下知识点的工式 1.湿度 2.相对湿度 3.湿空气中的比容 4.湿空气中的比热容 5.湿空气中的焓 6.露点 7.绝热饱和温度精馏知识点15. 精馏就是多次蒸馏,利用挥发度和沸点不同,实现分离。

精馏塔主要包括塔体,全凝器和再沸器。

塔板是进行气液交换的场所。

精馏分为常压、加压和真空精馏三种。

16. 露点方程:表示平衡物系的温度与气相组成的关系。

泡点方程:表示平衡物系的温度与液相组成的关系。

17. t-x-y相图,根据泡点线和露点线将图像分为三个区域:液相区、气相区和气液共存区18. t-x相图中,相平衡线离对角线越远,表示该溶液越容易分离。

概论2 化工单元操作

概论2 化工单元操作
外界对流体 做功时为正, 流体对外界 做功时为负。
取决于温 度,U, J/kg
gz , u2/2, p/ , Q , e J/kg J/kg 吸热时为正, J/kg
放热时为负。
传热速率
Qe 换热器
2
流体出
2
z2
流体入
z1
1 1
1
泵 He
静压能的概念:
在静止和流动流体内部都存在着静压强,因此,系统 的任一截面上都具有压力。当流体要通过某一截面进入系 统时,必须要对流体做功,才能克服该截面的压力,把流 体压入系统内。这样通过该截面的流体便带着与此功相当 的能量进入系统,流体所具有的这种能量称为静压能。 静压能的计算式: 设:单位质量流体体积为1/,流体通过程都是齐因次的这一事实推出 的。此定理指出:对一特定的物理现象,由因次分析得到无因次数 群的数目,必等于该现象所涉及的物理量数目与该学科领域中基 本因次数之差。例如,在研究流体在光滑水平直管中作定态流动 的流动阻力时,根据对这一物理现象的了解,已经知道压力损失 Δp与管径d、管长l、流速u、流体密度ρ、流体粘度μ有关,这种关 系可用如下函数表示: • Δp=f(d,l,u,ρ,μ) • 该物理现象共涉及六个物理量。在力学中基本因次通常为长 度、时间和质量,因而根据π定理可将式(1)变成三个无因次数群 间的关系: • 式中Δp/(ρu2)为欧拉数;l/d为简单几何数群。这样在实验研 究中便不需要测定各个物理量之间的定量关系,而只需测定上述 无因次数群间的函数关系。
• 因次分析则是根据物理方程式中各个项的因次必须相同,亦 即因次和谐的原理,将描述复杂物理现象的各个物理量组合 而成无因次数群π,从而使变量减少。在不少工程问题中, 特别是在流体力学、传热和传质中是一个十分有用的方法。 因次分析获得的结果虽然具有定性的性质,但可通过实验获 得各无因次数群间的定量关联式。 • ①很多物理量都是有因次的,如速度的因次为(长度/时间), 写作LT-1,密度的因次为(质量/长度3),写作ML-3等。若干 物理量总能以适当的幂次组合构成无因次的数群,如在研究 管内流动时,可将速度 u、管径d、流体密度ρ,流体粘度μ 四个量组成一个无因次数群udρ/μ,即雷诺数Re。②任何物 理方程总是齐因次的,即相加或相减的各项都有相同的因次。 因此原则上,经过适当的变换,物理方程总可以改写为无因 次数群间关系的形式。

化工单元操作基础知识

化工单元操作基础知识

化工单元操作基础知识目录一、内容概要 (2)1.1 化工单元操作的定义与重要性 (2)1.2 化工单元操作的基本分类 (4)二、化工单元操作基础知识 (5)2.1 流体流动与输送 (6)2.1.1 流体流动的基本概念 (8)2.1.2 流体输送设备 (9)2.1.3 管道与附件 (10)2.2 传热与热量交换 (11)2.2.1 传热基本原理 (12)2.2.2 热量交换设备 (13)2.2.3 传热过程的优化与控制 (14)2.3 蒸馏与分离技术 (15)2.3.1 蒸馏原理与操作 (16)2.3.2 分离技术概述 (18)2.3.3 蒸馏塔与分离设备 (19)2.4 化学反应工程基础 (20)2.4.1 化学反应类型与特点 (22)2.4.2 反应器类型及选择 (23)2.4.3 反应过程的优化与控制 (24)2.5 干燥与浓缩 (25)2.5.1 干燥技术概述 (27)2.5.2 浓缩技术概述 (28)2.5.3 干燥与浓缩设备 (29)三、化工单元操作实践应用 (31)3.1 化工生产过程中的单元操作组合与应用 (33)3.2 化工单元操作的优化与改进策略 (34)3.2.1 操作参数的优化 (35)3.2.2 设备选型的注意事项 (36)四、安全与环保知识在化工单元操作中的应用 (38)4.1 化工单元操作的安全管理要求与措施 (39)4.2 环保法规在化工单元操作中的实施与应用 (40)五、实验技能与操作实践 (41)5.1 实验基础知识与技能培养要求 (43)5.2 实验操作实践案例及分析讨论题库及答案解析等辅助内容安排说明等44一、内容概要化工单元操作的基本原理:阐述化工单元操作的基本原理,包括传质、热量传递、反应动力学等方面的知识。

化工单元操作的操作条件:分析影响化工单元操作性能的主要操作条件,如温度、压力、流量等参数的控制方法。

化工单元操作设备与工艺流程:介绍常用的化工单元操作设备及其结构特点,以及典型的化工生产流程。

化工单元操作.doc

化工单元操作.doc

教案首页教案首页图1-1 雷诺实验装置三、学生实训指导学生按工艺卡片进行实训。

水箱加水——调节流量——记录流量——计算雷诺准数——验证雷诺判据四、检查评价学生自查实训情况,各组比较操作情况及数据的准确性,选出最佳操作人员。

五、相关知识在学生预习及实训操作的基础上,由教师讲授与学生讨论相结合,完成以下内容的学习。

小结先通过例子导入本项目的工作任务,根据要求布置实训任务,演教案首页图1-4 容器内液体示意图(1-1)+=pρpgh静力学基本方程式表明:在静止的、连通着的同种液体内,处于同一水平面上各点的压力相等。

压力相等的面称为等压面。

液体内部任意一点或液面上方的压力发生变化时,液体内部各点的压力也发生同样大小的变化。

3、利用静力学方程式解决实际问题①通过液柱高度可进行压力及压差测量。

图1-5 U形压差计【例1-1】如图1-5(b)所示,已知管内流体为水,指示液为汞,压差计上读数为40mm,求两测压点的压差。

教案首页(a ) (b ) 图1-10 稳定流动和不稳定流动(2)连续性方程稳定流动系统,流体地从1-1'截面流入,从2-2'截面流出,且充满全部管路。

图1-11 稳定流动系统常数==⋅⋅⋅===ρρρuA A u A u q m 222111 (1-11)若流体为不可压缩流体,即ρ为常数,则常数==uA q V (1-12)对于圆管,24d A π=,故2121221⎪⎪⎭⎫ ⎝⎛==d d A Au u (1-13) 说明:不可压缩流体在管道内的流速u 与管道内径的平方d 2成反教案首页例1-3附图解:取高位槽液面为1-1'截面,喷头入口处为2-2'截面,以2-2'截面所在水平面为基准面在两截面之间列柏努利方程f 2222e 12112121h p u gZ W p u gZ ∑+++=+++ρρ列出已知条件 Z 1=? Z 2=0u 1= 0 u 2=2.2 m/sp 1=0 p 2 =4.05×104Pa (均为表压),ρ=1050 kg/m 3We =0 Σh f =25 J/kg代入柏努利方程4211 4.05109.810000 2.22521050Z ⨯+++=+⨯++解得 Z 1=6.73m 。

化工单元操作的基本定义(一)

化工单元操作的基本定义(一)

化工单元操作的基本定义(一)化工单元操作的基本在化工领域,单元操作是指将原料经过一系列的加工步骤转化为成品的过程。

这些步骤包括物料的传递、热量的传递、质量的转化和反应的进行等。

理解化工单元操作的基本概念对于工程师和研究人员来说至关重要。

本文将列举几个相关定义,并阐述其重要性。

定义1:物料传递物料传递是指将原料从一处传递到另一处的过程。

物料传递在化工单元操作中起着至关重要的作用。

它涉及到传送带、管道、泵和压缩机等设备的运用。

了解物料传递的基本原理,可以帮助工程师最大限度地利用物料并保证操作的高效性。

定义2:热量传递热量传递是指热能从一个物体传递到另一个物体的过程。

在化工领域,许多单元操作都需要进行热量的传递。

例如,反应过程中的加热和冷却,以及持续流程中的温度控制等。

了解不同热量传递方式的特点,可以帮助工程师选择适当的加热和冷却方式,提高操作的效率和安全性。

定义3:质量转化质量转化是指将原料转化为产品并去除不需要的副产物的过程。

在化工单元操作中,许多过程都涉及到原料的转化。

例如,化学反应中的物质转化、升华和结晶等。

理解质量转化的机制和方法,可以帮助工程师优化产量和纯度,并减少不需要的副产物的生成。

定义4:反应进行反应进行是指将化学物质进行组合或分解以生成新的化学物质的过程。

许多化学工艺都需要进行反应操作。

了解不同反应的类型、反应条件和催化剂的选择,对工程师来说至关重要。

通过优化反应的条件和选择合适的催化剂,可以提高反应的效率和产物的纯度。

阅读以下经典著作,可以进一步了解化工单元操作的基本原理:•《化工单元操作与过程的基本概念》(作者:Richard A.Turton)这本书系统地介绍了化工单元操作的基本概念和原理。

通过具体的案例和实例,读者可以深入了解物料传递、热量传递、质量转化和反应进行等关键概念。

这本书适合化工工程师、研究人员和学生阅读。

•《化工程序设计》(作者:John L. Edwards)这本书介绍了化工单元操作的设计原则和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工单元操作概念汇总1. 压力绝对压力、表压、真空度MPaA —绝压MPaG —表压表压=绝压-大气压真空度(数值)=大气压-绝压宇宙的绝压,大气压,表压各位多少?2.物料衡算:输入物质质量=输出物质质量+累积物质质量对于连续操作过程中,各物料质量不随时间变化,即处于稳定操作状态时,过程中无物料累积,此时物料衡算关系为:输入物质质量=输出物质质量3.进料温度一般而言,精馏塔进料有五种热状况:温度低于泡点的冷液体、泡点下的饱和液体、温度介于泡点和露点的气液混合物、露点下的饱和蒸气、温度高于露点的过热蒸气。

由于不同进料热状的不同,从进料板上升蒸气量及下降液体量不同,也即上升到精馏段的蒸气量及下降到提馏段的液体量不同。

如果冷进料即进料温度显著低于加料板上温度的话,则所进的料全部进入提馏段;如果是过热蒸气进料即进料温度高于加料板上温度,则所进的物料全部进精馏段。

碳五分离装置塔进料温度以接近进料板温度为宜。

4.泡点和露点bubbling point 泡点:液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。

若不特别注明压力的大小,则常常表示在0.101325MPa 下的泡点。

泡点随液体组成而改变。

对于纯化合物,泡点也就是在某压力下的沸点。

一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。

泡点随液相组成和压力而变。

当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。

汽液平衡时,液相的泡点即为汽相的露点。

露点:气温愈低,饱和水气压就愈小。

所以对于含有一定量水汽的空气,在气压不变的情况下降低温度,使饱和水汽压降至与当时实际的水汽压相等时的温度,称为露点。

补充:当该温度低于零摄氏度时,又称为霜点。

5.回流量回流比:塔顶回流量与产出量的比值。

在操作过程中,一般保持回流比不变,当进料量发生变化时,应及时调整回流量以保持回流比不变。

只有当顶液、釜液都不合格时,即分离度不够时,才会考虑是否调整回流比。

如果只是塔顶或塔釜物料不合格,往往是物料不平衡所致,不是塔顶采出量大了,就是塔釜采出量大了。

提高回流比,可以提高分离度,但是,会增加蒸汽、电的消耗。

如果回流比大大超过工艺需要,造成质量过剩,则是不经济的。

6. 塔釜液位无论那一种精馏操作,都要保持塔釜液位基本稳定。

塔釜液体与再沸器管程中液体(含有汽泡)存在密度差,塔釜液位足够高且保持稳定是推动热虹吸的物理基础。

一般而言,塔釜液位与釜液流量采用串级均匀控制。

在日常操作中,要正确处理好塔釜液位与其它工艺条件的关系。

塔运行稳定时,进料量、进料组成、塔顶采出量、釜温等条件相对稳定,那么塔釜采出量也应该稳定。

但是,在实际操作中,上述条件总是会发变化或波动,相应地也会引起釜液组成、液位的变化。

例如,当釜温降低时,则釜液中轻组份增加,液位趋于上升,这时不能简单地增加釜液采出量,而是应该首先提高釜温,使釜温符合工艺要求。

当进料中重组份增多,则会引起釜温和塔釜液位上升,这时,要适时提高釜液采出量。

7. 饱和蒸汽压蒸气压指的是在液体(或者固体)的表面存在着该物质的蒸气,这些蒸气对液体表面产生的压强就是该液体的蒸气压。

比如,水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。

我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。

蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。

一定的温度下,与同种物质的液态(或固态7处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。

饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。

饱和蒸气压越大,表示该物质越容易挥发。

影响因素当气液或气固两相平衡时,气相中A物质的气压,就为液相或固相中A物质的饱和蒸气压,简称蒸气压。

下面为影响因素:1.对于放在真空容器中的液体,由于蒸发,液体分子不断进入气相,使气相压力变大,当两相平衡时气相压强就为该液体饱和蒸汽压,其也等于液相的外压;温度升高,液体分子能量更高,更易脱离液体的束缚进入气相,使饱和蒸气压变大。

2 .一般讨论的蒸气压都为大量液体的蒸气压,但是当液体变为很小的液滴是,且液滴尺寸越小,由于表面张力而产生附加压力越大,而使蒸气压变高(这也是形成过热液体,过饱和溶液等亚稳态体系的原因)。

所以蒸气压与温度,压力,物质特性,在表面化学中液面的曲率也有影响.如果在液相上面加一活塞,将不会有蒸气压产生,因为此时没有气相存在。

8.挥发度、相对挥发度挥发度表示物质(组分)挥发的难易程度。

组分互溶的混合液的挥发度是组分在平衡气相中的分压与其在液相中的摩尔分数之比,称为该组分的挥发度。

液体混合物中两组分的挥发度之比,称为相对挥发度。

也是液体混合物中两组分的相平衡比的比值。

组分A对组分B的相对挥发度X AB可表示为:a AB= K A/K B⑴式中&和《分别为组分A和B的相平衡比(见传质分离过程)。

同一混合液中,挥发性大的组分,一般相平衡比大,故易挥发组分对难挥发组分的相对挥发度大于 1 ;反之则小于1。

根据相平衡比的定义,式(1)可改写为:(2)式中y A和X A分别为组分A在汽相和液相中的摩尔分率;y B和X B分别为组分B在汽相和液相中的摩尔分率。

当混合物中液相为理想溶液且汽相为理想气体时,应用拉乌尔定律和道尔顿分压定律,可由式⑵导出:a AB = p/ p式中p •和p分别为组分A和B的饱合蒸气压。

此时相对挥发度为两组分的饱和蒸气压(纯组分挥发性的一种度量)之比。

对于理想系统,相对挥发度与混合液的组成和温度关系很小,工程上可视为常数。

但强非理想系统的浓度对相对挥发度有较大的影响。

此外,在工业上有时还在混合液中加入某种添加物来增大待分离组分间的相对挥发度,使难以用普通蒸馏分离的混合液变得易于进行分离。

这就是萃取精馏、恒沸精馏和加盐精馏等特殊精馏的基本依据。

9.液泛气、液两相在塔内总体上呈逆行流动,并在塔板上维持适宜的液层高度,气、液两相适 宜接触状态,进行接触传质。

如果由于某种原因,使得气、液两相流动不畅,使板上液层迅 速积累,以致充满整个空间,破坏塔的正常操作,称此现象为液泛,如图42所示。

根据液 泛发生原因不同,可分为两种不同性质的液泛。

塔内气相靠压差自下而上逐板流动, 液相靠重力自上而下通过降液管而逐板流动。

显然, 液体是自低压空间流至高压空间, 因此,塔板正常工作时,降液管中的液面必须有足够的高 度,以克服两板间的压降而流动。

若气液两相中之一的流量增大,使降液管内液体不能顺利 下流,管内液体增高到越过溢流堰顶部,于是两板间液体相连,该层塔板产生积液,并依次 上升,这种现象称为液泛,亦称淹塔。

此时,塔板压降上升,全塔操作被破坏,操作时应避 免液泛发生。

对一定的液体流量, 气速过大,气体穿过板上液层时,造成两板间压降增大,使降液管 内液体不能下流而造成液泛。

液泛时的气速为塔操作的极限速度。

从传质角度考虑,气速增 高,气液间形成湍动的泡沫层, 使传质效率提高,但应控制在液泛速度以下,以进行正常操 作。

当液体流量过大时, 降液管的截面不足以使液体通过,管内液面升高,也会发生液泛现 象。

影响液泛速度的因素除气液流量和流体物性外,塔板结构,特别是塔板间距也是重要参数, 设计中采用较大的板间距,可提高液泛速度。

10•雾沫夹带上升气流穿过塔板上液层时,将板上液体带入上层塔板的现象称为雾沫夹带。

雾沫生成 故然可增大气液两相的传质, 但过量的雾沫夹带造成液相在塔板间的返混,进而导致塔板效 率严重下降。

为了保证板式塔能够维持正常的操作效果,生产中将雾沫夹带限制在一定限度 以内,规定每公斤上升气体夹带到上层塔板的液体量不超过 0.1公斤。

影响雾沫夹带量的因素很多, 最主要的是空塔气速和塔板间距。

空塔气速增高,雾沫夹 带量增大;板间距增大,可使雾沫夹带量减少。

过量雾沫夹带液泛雾沫夹带造成返混, 降低塔板效率。

少量夹带不可避免,只有过量的夹带才能引起严重 后果。

液沫夹带有两种原因引起,其一是气相在液层中鼓泡, 气泡破裂,将雾沫弹溅至上一 层塔板。

可见,增加板间距可减少夹带量。

另一种原因是气相运动是喷射状,将液体分散并 可携带一部分液沫流动, 此时增加板间距不会奏效。

随气速增大, 使塔板阻力增大,上层塔 板上液层增厚,塔板液流不畅,液层迅速积累,以致充满整个空间,即液泛。

由此原因诱发的液泛为液沫夹带液泛。

开始发生液泛时的气速称之为液泛气速 。

降液管液泛当塔内气、液两相流量较大,导致降液管内阻力及塔板阻力增大时, 均会引起降液管液图42塔板液泛图43塔板漏液层升高。

当降液管内液层高度难以维持塔板上液相畅通时,降液管内液层迅速上升,以致达到上一层塔板,逐渐充满塔板空间,即发生液泛。

并称之为降液管内液泛。

两种液泛互相影响和关相。

其最终现象相同。

11.漏液当上升气体流速减小,气体通过升气孔的动压不足以阻止板上液体经升气孔流下时,便会出现漏液现象。

错流型的塔板在正常操作时,液体应沿塔板流动,在板上与垂直向上流动的气体进行错流接触后由降液管流下。

漏液发生时,液体经升气孔流下,必然影响气液在塔板上的充分接触,使塔板效率下降,严重的漏液会使塔板不能积液而无法操作。

为保证正常操作,漏液量应不大于液体流量的10%造成漏液的主要原因是气速太小和板面上液面落差所引起的分布不均,在塔板入口的厚液液层处往往出现漏液,所以常在塔板入口处留出一条不开孔的安定区。

板式塔少量漏液不可避免,当气速进一步降低时,漏液量增大,导致塔板上难以维持正常操作所需的液面,无法操作。

此漏液为严重漏液,如图43所示,称相应的孔流气速为漏液点气速":。

12.塔板压降上升的气流通过塔板时需要克服以下几种阻力:塔板本身的干板阻力(即板上各部件所造成的局部阻力)、板上充气层的静压强和液体的表面张力。

气体通过塔板时克服这三部分阻力就形成了该板的总压强降。

气体通过塔板时的压强降是影响板式塔操作特性的重要因素。

因气体通过各层塔板的压强降直接影响到塔底的操作压强。

若塔板压降过大,对于精馏操作,则釜压要高,特别对真空精馏,塔板压降则成为主要性能指标,因塔板压降增大,导致釜压升高,便失去了真空操作的特点。

然而,从另一方面分析,对精馏过程,若干板压降增大,一般可使板效率提高。

板上液层适当增厚,气液传质时间增长,显然效率也会提高,但使塔板压降增大。

因此,进行塔板设计时,应综合考虑,在保证较高板效率的前提下,力求减小塔板压降,以降低能耗及改善塔的操作性能。

有资料统计,在常压塔中每层塔板的压力降在400-666帕,或3-5mmHg13.精馏装置精馏塔,塔釜再沸器,塔顶冷凝器。

相关文档
最新文档