圆的对称性-知识点及典型例题
第46课--圆的方程及对称问题

第46课 圆的方程及对称问题基础知识1. 圆的定义及方程2. 对称问题(1)点关于点对称:利用中点坐标公式解决.(2)点关于直线对称:点与对称点的连线垂直于直线,同时点与对称点的中点在直线上,列式求解.(3)直线关于点对称:直线与对称直线的斜率相等,再利用直线上任意一点关于已知点的对称点必在对称直线上求出对称直线上的一点,即可利用点斜式求出对称直线的方程.(4)直线关于直线对称:①两直线平行:斜率相等,再根据点关于直线对称的方法找到对称直线上的一点即可;②两直线相交:求出交点,然后再根据点关于直线对称的方法求出对称直线上的另一点,即可利用两点式求对称直线的方程.(5)有关圆的对称:圆的大小不变,即r 不变,只改变圆的位置,只要利用有关点的对称问题的方法确定圆心的位置即可. 一、典型例题1. 当a 为任意实数时,直线(1)10a x y a --++=恒过定点C ,则以C 为圆心,( ). A. 22240x y x y +-+= B. 22240x y x y +++= C. 22240x y x y ++-= D. 22240x y x y +--= 答案:C解析:由(1)10a x y a --++=得(1)(1)0x a x y +-+-=,10x ∴+=且10x y +-=,解得1,2x y =-=,该直线恒过点(1,2)-,∴所求圆的方程为22(1)(2)5x y ++-=,即22240x y x y ++-=,故选C.2. 圆()()221:131C x y ++-=,圆()()222:554C x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值( ).A. 6B.C. 7D. 10 答案:C解析:圆1C 关于x 轴的对称圆3C 的圆心坐标3(13)C --,,半径为1. 圆2C 的圆心坐标(5,5),半径为2,||||PM PN +的最小值为圆3C 与圆2C 的圆心距减去两个圆的半径和,即37=,故选C .3. 已知圆C :()()22341x y -+-=与圆M 关于x 轴对称,Q 为圆M 上的动点,当Q 到直线2y x =+的距离最小时,Q 的横坐标为( ).A. 2-B. 2±C. 3-D. 3± 答案:C解析:圆M 的方程为:()()22341x y -++=,过(34)M -,且与直线2y x =+垂直的直线方程为1y x =--,代入()()22341x y -++=,得3x =±Q 到直线2y x =+的距离最小时,Q 的横坐标为3x =-,故选C. 二、课堂练习1. 已知圆()()22:684C x y -++=,O 为坐标原点,则以OC 为直径的圆的方程为( ). A. ()()2234100x y -++= B. ()()2234100x y ++-= C. ()()223425x y -++= D. ()()223425x y ++-= 答案:C解析:由题意可知:()()0,0,6,8O C -,则圆心坐标为()3,4-10,据此可得圆的方程为()()22210342x y ⎛⎫-++= ⎪⎝⎭,即()()223425x y -++=. 故选C. 2. 已知点()()2,0,0,2A B -,若点M 是圆22220x y x y +-+=上的动点,则ABM 面积的最小值为_______.答案:2解析:将圆22:220M x y x y +-+=化简成标准方程()()22112x y -++=,圆心()1,1-,半径r =. 因为()()2,0,0,2A B -,所以AB =要求ABM 面积最小,即要使圆上的动点M 到直线AB 的距离d 最小,而圆心()1,1-到直线AB 的距离为M 到直线AB 距离的最小值为所以ABMS的最小值为min 11222AB d ⋅⋅=⨯=.3. 圆()2215x y ++=关于直线y x =对称的圆的标准方程为__________. 答案:()2215x y ++=解析:圆()2215x y ++=的圆心坐标为()1,0-,它关于直线y x =的对称点坐标为()0,1-,即所求圆的圆心坐标为()01-,,所以所求圆的标准方程为()2215x y ++=. 三、课后作业1. 圆()()22112x y -+-=关于直线3y kx =+对称,则k 的值是( ). A. 2 B. 2- C. 1 D. 1- 答案:B解析:圆()()22112x y -+-=关于直线3y kx =+对称,所以圆心(1,1)在直线3y kx =+上,得132k =-=-. 故选B.2. 圆C 与x 轴相切于()1,0T ,与y 轴正半轴交于两点,A B ,且2AB =,则圆C 的标准方程为( ).A. ()(2212x y -+-= B. ()()22122x y -+-=C. ()(2214x y ++= D. ()(2214x y -+=答案:A解析:设圆心为(),a b ,半径为r ,由已知条件得1a =,且2112r =+=,则圆心为(,r = A. 3. 已知,x y 满足()22116x y -+=,则22x y +的最小值为( ).A. 3B. 5C. 9D. 25 答案:C解析:22x y +表示圆上的点(,)M x y 到原点O 的距离的平方;圆心为()1,0A ,半径4r =,因为413O M r O A ≥-=-=,所以29OM ≥,故选C.4. 圆221:(3)(1)4C x y -++=关于直线0x y -=对称的圆2C 的方程为( ). A. 22(3)(1)4x y ++-= B. 22(1)(3)4x y ++-= C. 22(1)(3)4x y -++= D. 22(3)(1)4x y -++= 答案:B解析:因为圆221:(3)(1)4C x y -++=和圆2C 关于直线0x y -=对称,所以圆2C 的半径等于圆1C 的半径2,且点2C 和1(3,1)C -关于直线0x y -=即y x =对称,所以点2C 坐标为(1,3)-,所以所求圆方程为22(1)(3)4x y ++-=. 故选B.5. 圆2244100x y x y +---=上的点到直线80x y +-=的最大距离与最小距离的差是( ). A. 18 B.C. D. 答案:C解析:由圆2244100x y x y +---=可知其标准方程为22(2)(2)18x y -+-=,∴圆心为(2,2),半径为r =所以圆心到直线的距离d =. 则圆2244100x y x y +---=上的点到直线80x y +-=的最大距离与最小距离分别为0,所以距离差为. 故选C.6. 已知直线12:0,:20l mx y l x my m -=+--=. 当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是______. 答案:2220x y x y +--=解析:由题意,联立两直线方程020mx y x my m -=⎧⎨+--=⎩,利用代入消元法,消去m 得20y yx y x x +⋅--=,整理后可得,所求定圆方程是2220x y x y +--=.。
圆的对称性

圆的对称性温故知新:1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.求证: ∠OBA=∠OCD1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,DE的度数.CA为半径的圆交AB于点D,交BC与点E.求⌒AD、⌒【例3】如图,在同圆中,若⌒AB=2⌒CD,则AB与2CD的大小关系是( ) .A. AB>2CDB. AB<2CDC. AB=2CDD. 不能确定【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?课堂练习1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )A .122°B .120°C .61°D .58°2.下列结论中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .等弧所对的圆心角相等C .相等的圆心角所对的弧相等D .长度相等的两条弧是等弧3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )A .40°B .45°C .50°D .60°4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是________.5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =________°.6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD的度数.8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.(1)求⊙O 的半径;(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )A .AD =BDB .OD =CDC .∠CAD =∠CBDD .∠OCA =∠OCB11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.课后练习1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( )A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )A .3 cmB .4 cmC .5 cmD .6 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .55.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .86.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。
圆的定义及对称性

圆的定义与圆的对称性【知识要点】(1)在同一平面内,一条线段OP 绕它固定的一个端点O 旋转一周,另一个端点P 所经过的封闭曲线叫做圆.定点O 就是圆心,线段OP 就是圆的半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 说明:①这是圆的描述性定定义,由定义可以看出:确定圆的两个条件是圆心和半径,圆心确定圆的位置,圆的半径确定圆的大小;②要注意圆是指“圆周”,而非“圆面”.(2)在同一个平面内,圆是到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径. 说明:这是圆的点集定义,它包括两个方面的含义:①圆上各点到定点(即圆心)的距离等于定长(即半径);②.到定点的距离等于定长的点都在圆上点和圆的位置关系有点在圆内、点在圆上、点在圆外三种,点和圆的位置关系是由这个点到圆心的距离与圆的半径的大小关系决定的.如果圆的半径是r ,这个点到圆心的距离为d ,那么点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<圆是轴对称图形,其对称轴是任意一条过圆心的直线(通过折叠可发现此性质) 圆是中心对称图形,对称中心是圆心(利用旋转的方法可以得到此性质)圆具有旋转不变性:一个圆绕着它的圆心旋转任意角度,都能与原来的图形重合.(1)中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
轴对称图形是指沿对称轴对折后完全重合的图形.。
(2)圆的对称轴是直线,不能说直径是它的对称轴,而应说直径所在的直线是它的对称轴;圆的对称轴有无数条(1)经过圆心的弦叫做直径,直径等于半径的2倍(2A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”大于半圆的弧叫做优弧(用三个字母表示);小于半圆的弧叫做劣弧(3提示:①同圆是指同一个圆;等圆、同心圆是指两个圆的关系,等圆是指能够重合,圆心不同的两个圆 ②等弧必须是同圆或等圆中的弧,因为只有在同圆或等圆中,两条弧才可能互相重合,长度相等的弧不一定是等弧(4垂直与弦的直径平分这条弦,并且平分弦所对的两条弧如图所示,∵ CD 是直径, C D ⊥AB∴ AE=BE,AC = BC, AD =BD 若一条直线①过圆心,②垂直于一条弦,则此直线①平 分此弦②平分此弦所对的优弧和劣弧(1)平分弦(不是直径)的直径垂直于弦,并 且平分弦所对的两条弧;(2)弦的垂直平分线经过圆 心,并且平分弦所对的两条弧;(3)平分弦所对的一 条弧的直径垂直平分弦,并且平分弦所对的另一条弧提示:(1)对于一个圆和一条直线来说,如果以①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧这五个条件中任何两个作为题设,那么其它三个就是结论 (2)在应用垂径定理与推论进行计算时,往往要构 造如图所示的直角三角形 ,根据垂径定理与勾股定 理有222()2ard =+根据此公式,在,,a r d 三个量中,知道任何两个量就可以求出第三个量在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组相等,那么它们所对应的其余各组量都分别相等.说明:(1)注意在“同圆或等圆中”这个条件(2)注意理解“所对应”的含义【典型例题】ABOC 2a rAdD例1、下列语句中不正确的是( )①直径是弦;②弧是半圆;③经过圆内一顶点可以作无数条弦;④长度相等的弧是等弧 A.①③④ B. ②③ C. ②④ D. ①④例2、由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A 、2或3 B 、3 C 、4 D 、2 或4例3、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是例4、在△ABC 中,∠ACB=90°,AC=2cm,BC=4cm,CM 是AB 边上的中线,以点C为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .例5、在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,O D ⊥AB,O E ⊥AC 垂足分别为D 、E ,若AC=2cm ,则⊙O 的半径为 cm例6、如下图,菱形ABCD 的对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,那么E 、F 、G 、H 是否在同一个圆上?例7、如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.例8、海军部队在灯塔A 的周围进行爆破作业,A 的周围3km 的水域为危险水域,有一渔船误入离灯塔2km 的某处B ,为了尽快驶离危险区域,该船应按什么方向航行?请给予证明.EGBACDF H O例9、矩形的四个顶点是否能在同一个圆上,若在同一个圆上,请你指出来并加以证明例10、已知⊙O 的直径为10cm ,弦AB=6cm ,求圆心O 到弦AB 的距离.例11、在直径为650mm 的圆柱形油槽中装入一些油后,截面如图所示,如油面宽AB=600mm ,求油的最大深度【经典练习】1.下列命题中错误的命题有( )(1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个2.点A 的坐标为(3,0),点B 的坐标为(0,4),则点B 在以A 为圆心, 6 为半径的圆的_______.3.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长()A.等于6cmB.等于12cm ;C.小于6cmD.大于12cm 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______.5.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP •的取值范围是_______.(1) (2)6.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm .7.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm .8.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB •的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 2CD .5:4BB(3) (4)9.如图4,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( )A .∠COE=∠DOEB .CE=DEC .AE=BED . BDBC 10.如图,在以O 为圆心的两个同心圆的圆中,大圆弦AB 交小圆于C 、D 两点,•试判断AC与BD的大小关系,并说明理由.11.如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长.。
圆的对称性复习

(一)弧、弦、直径这些与圆有关的概念
1.圆弧: 圆上任意两点间的部分叫做圆弧,简称弧。
如图, AB (劣弧)、ACD (优弧) 2.弦:连接圆上任意两点的线段叫做弦。
如图, 弦AB,弦CD 3.直径:经过圆心的弦叫直径。
如图,直径CD
(二)垂径定理:
垂直于弦的直径平分这条弦,并且平分 弦所对的弧。
是⊙O、⊙O 的两条弦填空:
D
• (1)若AB=CD,则 , , O
O’ C
• (2)若AB=CD,则 , , A B
• (3)若∠AOB=∠CO D,则 , ,
ቤተ መጻሕፍቲ ባይዱ
• 推理格式:如图所示
• •
∵∴CAMD⊥=BAMB,,AC⌒DD=为B⌒D⊙,OA的⌒C直=B径⌒C.
平分弦(不是直径)的直径垂直这条 弦,并且平分弦所对的弧。
(三)圆心角、弧、弦之间的关系:
在同圆或等圆中,如果两个圆心角、两条弧、
两条弦中有一组量相等,那么它们所对应的其余 各组量都分别相等
如图,已知⊙O、⊙O 半径相等,AB、CD分别
圆及圆的对称性

圆及圆的对称性 圆及圆的对称性圆圆的对称性圆的定义圆的有关概念点与圆的位置关系圆的对称性圆心角圆心角、弧、弦之间的关系知识点1 圆及与的相关的概念1.(1)圆的定义:在一个平面内,线段OA 绕它的一个固定端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定端点O 叫做圆心,线段OA 叫做半径。
以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.注意:①在平面内,②圆是指圆周,而不是圆面,③圆的两要素...:圆心和半径,圆心确定圆的位置,半径确定圆的大小,④线段OP 的长也可以叫半径.(2)圆的集合性定义:圆心为O ,半径为r 的圆,可以看成所有到定点O ,距离等于定长r 的点的集合。
注:①圆上各点到定点(圆心O )的距离都等于定长(半径r ); ②到定点的距离都等于定长的点都在同一个圆上。
2.弦与直径、弧与半圆①连接圆上任意两点的线段叫做弦,如下图线段AC ,AB ;②经过圆心的弦叫做直径,如下图线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作AC ”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC 叫做优弧,•小于半圆的弧(如图所示)AC 或BC 叫做劣弧.BA C O④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.3.同心圆和等圆同心圆:圆心相同,半径不等的圆叫做同心圆。
如图2所示:图2 图3等圆:半径相等的圆(能够互相重合的圆)叫做等圆。
注:同圆或等圆的半径相等。
如图3.等圆与位置无关等弧:在同圆和等圆中,等够完全重合......的弧叫做等弧。
注:长度相等的弧,度数相等的弧都不一定是等弧。
例 1.如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )A.2πcm B.4πcm C.8πcm D.16πcm例2.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E.已知AB=2DE,∠E=18°.试求∠AOC的度数.例3.在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点B为圆心,BC长为半径作⊙B,点A,C及AB,AC的中点D,E与⊙B有怎样的位置关系?例4.由于过度砍伐森林和破坏植被,我国某些地区多次受到沙尘暴的侵袭.近来A 市气象局测得沙尘暴中心在A 市正东方向400 km 的B 处,正在向西北方向移动,若距沙尘暴中心300 km 的范围内将受到影响,则A 市是否会受到这次沙尘暴的影响?例5.如图所示,在⊙O 中,A ,C ,D ,B 是⊙O 上四点,OC ,OD 交AB 于点E ,F ,且AE=FB ,下列结论:①OE =OF ;②AC =CD =DB ;③CD ∥AB ;④AC ︵=BD ︵.其中正确的有( )A .4个B .3个C .2个D .1个例6.若点P 到⊙O 的最小距离为6 cm ,最大距离为8 cm ,则⊙O 的半径是 。
初中数学知识点精讲精析 圆的对称性

第二节圆的对称性要点精讲一、圆的对称性:1.圆既是中心对称图形,又是轴对称图形.将圆周绕圆心旋转180°能与自身重合,因此它是中心对称图形,它的对称中心是圆心,将圆周绕圆心旋转任意一角度都能与自身重合,这说明圆具有旋转不变性,是旋转对称的特例.经圆心画任意一条直线,并沿此直线将圆对折,直线两旁的部分能够完全重合,所以圆是轴对称图形,每一条直径所在的直线都是它的对称轴,所以圆有无数条对称轴.2.在同圆或等圆中,圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等.二、垂径定理及推论:(由圆的轴对称性得出的)1.定理:垂直于弦的直径平分弦,且平分弦所对的优、劣弧.(常见辅助线,过圆心作弦的垂线)2.推论:平分(非直径的)弦的直径垂直于弦,且平分弦所对的两条弧.3.总结为:一条直线满足:(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分弦所对的优弧,(5)平分弦所对的劣弧,中的任意两点,则其他三点也成立.(注:①(1)与(3)结合使用时,弦为非直径弦.②(2)与(3)结合可找圆心,即两条弦的垂直平分线的交点.)③利用垂径定理及勾股定理对于(圆半径r、弦长a、弦心距d、弓开的高h中任意已知两个量可求得另两个量.相关链接像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.典型分析1.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.1/2B.1/4C.1/6D.1/8【答案】B【解析】连接AM 、BM.∵MN ∥AD ∥BC ,OM=ON ,∴四边形AOBN 的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB 的面积=1/4圆面积.故选B.中考案例1.(2012内蒙古呼和浩特)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A.B.C.D.【答案】B【解析】以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF.根据直径所对圆周角是直角的性质,得∠FDB=90°;根据圆的轴对称性和DC ∥AB ,得四边形FBCD 是等腰梯形.∴DF=CB=1,BF=2+2=4.∴故选B.=针对训练1.以点A(3,0)为圆心,以5为半径画圆,则圆A与x轴交点坐标为()A.(0,-2),(0,8)B.(-2,0),(8,0)C.(0,-8),(0,2)D.(-8,0),(2,0)2.如图,已知⊙O的弦AB,CD交于点P,且OP⊥CD,若CD=4,则AP•BP的值为()A.2B.4C.6D.83.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定4.已知矩形ABCD的边AB=6,AD=8.如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.6<r<10B.8<r<10C.6<r≤8D.8<r≤105.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等.A.①②③B.③④⑤C.①②⑤D.②④⑤6.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1B.2C.3D.47.下列命题正确的是()A.顶点在圆周上的角叫做圆周角B.圆内接平行四边形一定是矩形C.平分弦的直径一定垂直于弦D.与直径垂直的直线是圆的切线8. 如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点参考答案1.【答案】B【解析】因为圆心在x轴上,与x轴相交两点,∴两点的纵坐标都为0,∵圆的半径是5,∴两点的横坐标为3-5=-2,或3+5=8.即两点的坐标为(-2,0)、(8,0).故选B.2.【答案】B【解析】由于OP⊥CD,可通过垂径定理得出CP=DP=2,再根据相交弦定理,AP•BP=CP•DP=2•2=4.故选B.3.【答案】C【解析】∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选:C.4.【答案】A【解析】∵AB=6,AD=8,∴AC=10,∴点C一定在圆外,点B一定在圆内,∴⊙A的半径r 的取值范围是:6<r<10.故选A.5.【答案】B【解析】①、圆周角的特征:一是顶点在圆上,二是两边都和圆相交,故错误;②、必须是同弧或等弧所对的圆周角和圆心角,故错误;③、圆周角定理,故正确;④、符合确定圆的条件,故正确;⑤、符合圆周角定理,故正确;所以正确的是③④⑤.故选B.6.【答案】C【解析】A.是圆周角定理的推论,故正确;B.根据轴对称图形和中心对称图形的概念,故正确;C.根据圆周角定理的推论知:同圆中,相等的圆周角所对的弧相等,再根据等弧对等弦,故正确;D.应是不共线的三个点,故错误.故选C.7.【答案】B【解析】顶点在圆上,且两边都和圆相交的角叫圆周角,故A错误;根据平行四边形的对角相等和圆内接四边形的对角互补,可得圆的内接四边形的两组对角都是直角,故B正确.平分弦(不是直径)的直径一定垂直于弦,故C错误;过直径的一端与直径垂直的直线是圆的切线,故D错误.因此只有B选项是正确的.故选B.8.【答案】A【解析】因为AB=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P的位置应在△ABC三边垂直平分线的交点处,也就是△ABC外心处,又因为△ABC是直角三角形,所以它的外心在斜边AB的中点处,故选A.扩展知识轴对称及其应用在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.。
圆的对称性、垂径定理 知识点+例题+练习(非常好 分类全面)

知识点2:圆的对称性圆是中心对称图形,对称中心是圆心;圆也是轴对称图形,对称轴是经过圆心的任意一条直线。
注意:(1)圆的对称轴有无数条。
(2)圆还具有旋转不变性,即圆绕圆心旋转任何角度后,仍与自身重合。
知识点 3:圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等例1如图,⊙O 的半径O A、OB 分别交弦C D 于点E、F,且C E=DF.试问:(1) OE 等于O F 吗?(2) AC 与 B D 有怎样的数量关系?例2如图,AB 是⊙O 的直径.(1)若 OD//AC, C D 与 B D 的大小有什么关系?为什么?(2) 把(1)中的条件和结论交换一下,还能成立吗?说明理由.知识点4:圆心角的度数与它所对的弧的度数的关系1.10的弧:将顶点在圆心的周角等分成360 份时,每一份的圆心角是10的角。
因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360 份,我们把10的圆心角所对的弧叫做10的弧。
2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等。
注意:(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧。
例1如图,在☉O 中,弦A D∥BC,DA=DC,∠AOC=1600,则∠BCO 的度数() A.200B.600 C. 400D.500例 2 如图,在△ABC 中,∠A=700,☉O 截△ABC 的三边所得的弦长相等,则∠BOC的度数为例3如图,AB,CD 是⊙O 的两条直径,过点A作A E//CD 交⊙O 于点E,连接B D,DE.求证:BD=DE.例4如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.知识点5:垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
初三培优专题18 圆的对称性

AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的对称性
【典型例题】
例1. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。
求AB、AD的长。
分析:求AB较简单,求弦长AD可先求AF。
解:
例2. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=
4cm,OP=5cm,求⊙O的半径。
分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,
利用勾股定理求解。
解:
例3. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。
分析:略
解:
【模拟试题】一. 选择题。
1. ⊙O中,弦AB所对的弧为120°,圆的半径为2,则圆心到弦AB的距离OC为()
A. B. 1 C. D.
2. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果,则AE的长为()
A. 2
B. 3
C. 4
D. 5
第8题 3. 如图,⊙O 的弦AB 垂直于直径MN ,C 为垂足,若OA =5cm ,下面四个结论中可能成立的是( )
A. B. C. D.
4. 下列命题中正确的是( )
A. 圆只有一条对称轴
B. 平分弦的直径垂直于弦
C. 垂直于弦的直径平分这条弦
D. 相等的圆心角所对的弧相等
5. 如图,已知AD =BC ,则AB 与CD 的关系为( )
A. AB >CD
B. AB =CD
C. AB <CD
D. 不能确定
二. 填空题。
6. 半径为6cm 的圆中,有一条长的弦,则圆心到此弦的距离为___________cm 。
7. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米.
8. 如图,∠A =30°,则B =___________。
9. 过⊙O 内一点M 的最长的弦为6cm ,最短的弦长为4cm ,则OM 的长为___________。
10. ⊙O 的半径为10cm ,弦AB ∥CD ,AB =12cm ,CD =16cm ,
则AB 和CD 的距离为___________。
11. ⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB
=5cm ,∠DEB =60°,则CD =___________。
三. 解答题。
12. 如图,⊙O 的直径为4cm ,弦AB 的长为
,你能求
出∠OAB 的度数吗?写出你的计算过程。
第5题
第11题
13. 已知,⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC。
求证:
14. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O 作OC⊥AP于点C,OD⊥PB于点D,则CD的长是怎么变化的?请说明理由。
15. 如图,⊙O上有三点A、B、C且AB=AC=6,∠BAC=120°,求⊙O的半径。
16. ⊙O的直径AB=15cm,有一条定长为9cm的动弦,CD在上滑动(点C和A、点D与B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F。
(1)求证:AE=BF;2)在动弦CD滑动过程中,四边形CDFE的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由。
17. (12上海)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
圆的对称性试题答案
一. 选择题。
1. B
2. A 3 A 4. C 5. B
二. 填空题。
6. 4
7. 10
8. 75°9.
10. 2cm或14cm
11. cm(垂径定理与勾股定理)
三. 解答题。
12 解:过点O作OC⊥AB于C,则
又
∴∠OAB=30°
13 证明:连结BC
∵AB⊥CD,CD为⊙O的直径
∴BC=AC
∴∠CAB=∠CBA
又EA=EC
∴∠CAB=∠ECA
∴∠CBA=∠ECA
∴△AEC∽△ACB
即
14. 解:略
15 解:连OA
∵AB=AC,
∴OA⊥BC于D
又∠BAC=120°
∴∠BAD=∠CAD=60°,∠B=∠C=30°
设⊙O的半径为r,则
∴r=6
16. (1)证明:如图,过O作OG⊥CD于G
则G为CD的中点
又EC⊥CD,FD⊥CD
∴EC∥OG∥FD
∴O为EF的中点,即OE=OF
又AB为⊙O的直径
∴OA=OB
∴AE=BF(等式性质)
(2)解:四边形CDFE面积是定值
证明:∵动弦CD滑动过程中条件EC⊥DC,FD⊥CD不变∴CE∥DF不变
∴四边形CDFE为直角梯形,且OG为中位线
∴S=OG·CD
连OC,由勾股定理有:
又CD=9cm
是定值
17、解答:解:(1)如图(1),∵OD⊥BC,
∴BD=BC=,
∴OD==;
(2)如图(2),存在,DE是不变的.
连接AB,则AB==2,
∵D和E是中点,
∴DE=AB=;
(3)如图(3),
∵BD=x,
∴OD=,
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=45°,
过D作DF⊥OE.
∴DF=,EF=x,
∴y=DF•OE=(0<x<).。