第四章 点缺陷

合集下载

1-概述-点缺陷

1-概述-点缺陷

(a)空位Vacancy (b)异类原子
Foreign atom
(c)间隙原子
Interstitial atom
2017-4-13
位错线垂直于(Perpendicular to )滑移方向(a)刃位错(Edge
dislocation) 位错线平行于(Parallel to )
滑移方向(a)螺位错(Screw
dislocation)
Self-interstitial 阴离子空位和阳离子空位
28
2017-4-13
2017-4-13
点缺陷的类型
What is “deliberately added”meaning?
in known concentrations.
等量的空位和间隙原子).
空位而不形成等量的间隙原子)
NaCl晶体中的肖脱基缺陷2017-4-13
等量正离子空位+间隙正离子
问题:能不能是等量负离子空位+等量间隙负离子?
43
G-n 曲线
2017-4-13定量的推导过程
:混合熵;
定量的推导过程定量的推导过程
53
57
2017-4-13
空位的运动(Motion of vacancy)
58
2017-4-13
空位聚集
只有周围原子具有足够能量才可能实现移动。

《材料科学基础》课件之第四章----04晶体缺陷

《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l


b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型

第四章晶体中的点缺陷与线缺陷作业题答案

第四章晶体中的点缺陷与线缺陷作业题答案
2 3 解: 3MgO 2Mg Al Mg i 3OO (1)
Al O
'

Al2 O3 2MgO 2Mg 'Al VO 2OO CaF2 '' 2YF3 2YCa VCa 6FF
(2) (4)
CaF2 YF3 YCa Fi' 2FF
CaF

'

2 B、 2YF3 2YCa VCa 6FF
CaF

"

A 可能性较大。因萤石晶体中存较多的八面体空隙,F-离子半径较小,形成填隙型固溶体比较稳定。 6、CeO2 为萤石结构,其中加入 15mol%CaO 形成固溶体,测得固溶体密度 D=7.01g/cm3,晶胞参数 a0= 0.5417nm,试通过计算判断生成的是哪一种类型固溶体。(已知原子量 Ce 140.12,Ca 40.08,O 16.00) 解:对于 CaO-CeO2 固溶体来说,从满足电中性来看,可以形成氧离子空位的固溶体也可形成 Ca2+嵌入阴 离子间隙中的固溶体,其固溶方程为:
当 CaCl2 中 Ca2+置换 KCl 中 K+而出现点缺陷,其缺陷反应式如下:
KCl ' CaCl2 Ca K 2ClCl +VK
CaCl2 中 Ca2+进入到 KCl 间隙中而形成点缺陷的反应式为:
KCl ' CaCl2 Ca i 2ClCl +2VK
5. 试写出以下缺陷方程(每组写出二种),并判断是否可以成立,同时简单说明理由。
CeO 2 CaO Ca " Ce VO O O CeO 2 2CaO Ca " Ce Ca i 2O O

固体物理-第4章-晶体中的缺陷和扩散-4

固体物理-第4章-晶体中的缺陷和扩散-4
这种空位—间隙原子对称为 弗伦克尔缺陷。
(成对出现)
4、杂质原子 在材料制备中,有控制地在晶体中引入杂质原子
A、杂质原子取代基质原子而占据格点位置,称替代式杂质。
(二者相接近或前者大一些)
B、杂质原子占据格点间的间隙位置,称填隙式杂质。
(杂质原子比基质原子小)
点缺陷的运动 1、空位的运动
空位运动势场示意图
原子结合成晶体的源动力:原子间的吸引力. 理想晶体的生长
问题4:当初如何提出位错概念?位错滑移如何理解?
Ax A d
a
x a 2
xa 2
弹性形变
范性形变 原子不能回到原来位置,易到A
即发生滑移
Ax A
d a
?有问题
最初认为: 滑移是相邻两晶面整体的相对刚性滑移
则可计算:使其滑移的最小切应力: c
第四章 晶体中的缺陷和扩散
原子绝对严格按晶格的周期性排列的晶体不存在
缺陷举例: 如晶体表面、晶粒间界、人为掺杂等
如金刚石
空位
点缺陷 填隙原子 (0维)
杂质原子
刃位错
线缺陷
晶体缺陷的基本类型 (1维)
(按维度或尺寸分类)
螺位错
大角晶界
晶粒间界
面缺陷
小角晶界
(2维) 堆垛间界(层错)
问题1:点缺陷的定义、分类、运动及其对晶体性能影响?
若某一晶面A丢失,则原子面排列: ABCABCBCABC………..
问题7:一定温度下,系统达统计平衡时,
热缺陷(空位.间隙原子)数目?
热力学平衡条件
平衡状态下晶体内的热缺陷数目
系统自由能F U TS 最小
F n T
0
热缺陷的数目
1、肖脱基缺陷(或空位)浓度

第四章 晶体中的点缺陷和面缺陷

第四章 晶体中的点缺陷和面缺陷
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
非平衡态点缺陷:通过各种手段在晶体中引入额外的点缺陷,形态和数量
完全取决于产生点缺陷的方法,不受体系温度控制。
晶体中引入非平衡态点缺陷的方法:
快速冷却 低温,形成过饱和点缺陷 (1)淬火 :高温---------
23
P22
(a)M离子空位VM″ ;
· X离子空位VX·
· (b)M离子填隙Mi· ; ( c)M离子错位MX; X离子错位X X离子填隙Xi″ M 24
6.带电缺陷:
对于离子晶体 MX ,如果取走一个 M2+和取走一个 M原子相比,少取了二个电子。 因此,M空位必然和二个附加电子 2e′相联系,如果这二个附加电子被束缚在 M空位上,则M2+空位可写成VM″(=VM2+); 同样,如果取走一个X2-,即相当于取走一个X原子加二个电子,则在X空位上留
16
表4-1为某些化合物的缺陷形成自由能。 目前,对缺陷形成自由能尚不能精确计算,但其大小与晶 体结构、离子极化等因素有关。
17
表2-7为由理论公式计算的缺陷浓度。由表中数据可见,随⊿Gf升高,温度降 低,缺陷浓度急剧下降。
当⊿Gf不太大,温度较高时,晶体中热缺陷的浓度可达百分之几。
18
§4-2 非热力学平衡态点缺陷
1
第四章 晶体中的点缺陷与线缺陷
理想晶体:热力学上最稳定的状态,内能最低,存在于0K。 真实晶体: 在高于 0K 的任何温度下,都或多或少地存在着对理想
晶体结构的偏离。 实际晶体结构中和理想点阵结构发生偏离的区域,就是晶体结 构缺陷。或:造成晶体点阵结构的周期势场畸变的一切因素,都称 之为晶体缺陷。 晶体结构缺陷与固体的电学性质、机械强度、扩散、烧结、化 学反应性、非化学计量化合物组成以及对材料的物理化学性能都密 切相关。只有在理解了晶体结构缺陷的基础上,才能阐明涉及到质 点迁移的速度过程。掌握晶体结构缺陷的知识是掌握材料科学的基 础。

第四章晶体中的点缺陷与线缺陷第三讲

第四章晶体中的点缺陷与线缺陷第三讲

2y
y
y
则化学式为:Ca2yZr1-yO2 x、y为待定参数,可根据实际掺入量确定。
写出固溶体的化学式后,即可确定质点占据正常格点的百分 含量。
如置换型固溶体CaxZrl~xO2-x中:
x Ca 实际所占分数= 1 1 x 4 Zr 实际所占分数= 1 2 x 2 O 实际所占分数= 2
2

(三)固溶体类型的实验判别
对于金属氧化物系统,最可靠而简便的方法
是写出生成不同类型固溶体的缺陷反应方程,根
据缺陷方程计算出杂质浓度与固溶体密度的关系,
并画出曲线,然后把这些数据与实验值相比较,
哪种类型与实验相符合即是什么类型。
1、理论密度计算
( 含 有 杂 质 的 ) 固 溶的 体晶 胞 质 量 W 理论密度 d理 晶胞体积 V
3、 举例 若固溶体的摩尔组成为 0.15molCaO 和 0.85molZrO2 ,写 成原子比形式为Ca0.15Zr0.85O1.85 。
置换式固溶体:化学式 CaxZrl~xO2-x
即X=0.15 1-X=0.85 2-X=1.85 可得X=0.15,所以置换固溶体的化学式为Ca0.15Zr0.85O1.85 ZrO2 属立方晶系,萤石结构, Z=4 ,晶胞中有 Ca2+ 、 Zr4+ 、 O2-三种质点。


2、活化晶格
3、固溶强化

4、形成固溶体后对材料物理性质的影响
1、稳定晶格,阻止某些晶型转变的发生
(1) PbTiO3是一种铁电体,纯PbTiO3烧结性能极差,居里
点为490℃,发生相变时,晶格常数剧烈变化,在常温下
发生开裂。PbZrO3是一种反铁电体,居里点为230℃。两 者结构相同,Zr4+、Ti4+离子尺寸相差不多,能在常温生

第四章 点缺陷

第四章 点缺陷

热平衡时,满足关系 ∂F/∂n=0 ,因此空位的平衡浓度:
cv
n N n
n N
s exp(
f
) exp(
kB
Uv kBT
)
Av exp(
Uv kBT
)
同理,填隙原子的平衡浓度:
ci ZiAi exp( Ui ) kBT
4.1.2 点缺陷的形成能
在热平衡态下的点缺陷,其浓度与温度及其形成能密
4.1.1 热平衡态的点缺陷浓度
晶态固体中的原子总是在其平衡位置附近一刻
不停地作微小的振动。由于热振动的非线性,任一
原子的热振动都与周围原子的热振动状态密切相关,
使热振动能量存在涨落。当一原子一单具有足够大
的动能时就可能脱落正常位置,跳到邻近的原子间
隙中去,形成填隙原子,并在原位置留下一个空位。
F0为完整的晶体的自由能,Uy为空位的形成能 ,Sf为空位
的周围原子振动态引起的振动熵,而kBlnΩ 则 为 无 序 度 增 加而致的组态熵,Ω=(N+n)!/N!n!为系统的所有可能组态
数。
N
n
斯特令近似:F (T ,
p)
F 0(T ,
P)
n(Uv
SfT )
kBT (N
ln
N
n
n ln
N
) n
第四章 点缺陷
晶体缺陷:点缺陷、线缺陷和面缺陷
点缺陷:是指那些对晶体结构的干扰仅波及几个原子间距范
围的晶体缺陷。
点缺陷类型:
(1)结பைடு நூலகம்缺陷:点阵空位、填隙原子。
(2)化学点缺陷:代位杂质、填隙杂质。(图4-1)
点缺陷对晶体结构及性能有重要的影响,例如:物理性质、 电学性质、光学性质等。

第四章晶体中的点缺陷与线缺陷第四讲

第四章晶体中的点缺陷与线缺陷第四讲

.

根据旋进方向的不同,螺型位错有左、右之分。 右手法则:即以右手拇指代表螺旋的前进方向, 其余四指代表螺旋的旋转方向。 凡符合右手定则的称为右螺型位错;符合左手定 则的则称为左螺型位错。
图4-12 螺位错形成示意图
C
D
C D
B
A
B
A
(a )
(b)
螺型位错示意图:(a)立体模型 ;(b)平面图
们将相互抵销: ⊥ + ┬ = MM (抵销)
当⊥与┬滑移面相距为两个原子间
距,相遇时将形成一个空位: ⊥ + ┬ = VM (空位)




同一滑移面相遇
⊥ + ┬ = MM (抵销)




相距两个原子间距相遇
⊥ + ┬ = VM (空位)

2)刃位错线不一定是直线,也可是折线或曲线或环。但必 与滑移方向相垂直,也垂直于滑移矢量b。
位错的攀移


位错的攀移:指在热缺陷或外力作用下,位错线在垂直其滑 移面方向上的运动,结果导致晶体中空位或间隙质点的增殖 或减少。 攀移的实质:是多余半原子面的伸长或缩短。 刃位错:除可在滑移面上滑移外,还可在垂直滑移面的方向 上进行攀移运动。 螺位错:没有多余半原子面,故无攀移运动。
4.6 晶体的线缺陷——位错
一、线缺陷与位错 1、线缺陷的概念
晶体内沿某一条线,附近的原子排
列与完整晶体不同,就形成线缺陷。
(缺陷尺寸:一维方向显著,二维很小)
最常见的线缺陷是位错,其中最简 单的位错是刃型位错与螺型位错 。
位错要点:
局ห้องสมุดไป่ตู้滑移
已滑动区域与未滑动区域之间的错位原子线称为位错线。在位 错线附近的原子没有位于完整晶体的正常格点位置,因此是 一种缺陷。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在实际晶体中,可以存在较热缺陷浓度高许多的非平衡态点 缺陷,特别是在较低温度下平衡态点缺陷极少时,以各种方式引 入的额外点缺陷显得更为重要,它们对材料的许多物性起着决定 性作用。
最常见的几种物理过程如下所述: (1)淬火 晶体中点缺陷的热平衡浓度随温度的下降而指数式的 减少。如果进行淬火处理,那么高温下形成的高浓度点缺陷将被 “冻结”在晶内,形成过饱和缺陷。晶体中的点缺陷由于存在复 合和消失过程,其实际饱和度与淬火速率、合并湮灭速率及尾间 密度等因素有关。对于金属可耐受高淬火速率,而非金属晶体却 会因为高温度梯度使晶体明显变形甚至断裂。



( 2 )辐照 在金属晶体中,只有将原子由其正常位置打出 来的粒子才能产生点缺陷,只能激发电子的辐照则不能。 而在非金属中,由于电子激发态可以局域化且能保持相当 长的时间,因而电离辐照就能使晶体严重损伤,产生大量 点缺陷。不同类型的辐照粒子在产生离位原子从而形成点 缺陷方面是相差甚大的。产生离位轰击的电子需要兆电子 伏量级的能量,而中子与质子只需数百电子伏,如果轰击 粒子的质量与被轰击的原子很接近则只需数十电子伏便已 足够。
kB ln )

F0为完整的晶体的自由能, Uy 为空位的形成能 , Sf为空位
的周围原子振动态引起的振动熵,而kBlnΩ 则 为 无 序 度 增 加而致的组态熵,Ω =(N+n)!/N!n!为系统的所有可能组态 数。

N n F (T , p) F 0(T , P) n(Uv SfT ) kBT ( N ln n ln ) 斯特令近似: N n N n

点缺陷是热力学平衡的缺陷-在一定温度下,晶体 中总是存在着一定数量的点缺陷(空位),这时体系的能 量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更 为稳定。晶体中形成点缺陷时,体系内能的增加将使自由 能升高,但体系熵值也增加了,这一因素又使自由能降低。

体系自由能: F (T , p) F 0(T , p) nUy T (nSf


4.1
空位与填隙原子ຫໍສະໝຸດ 4.1.1 热平衡态的点缺陷浓度
晶态固体中的原子总是在其平衡位置附近一刻 不停地作微小的振动。由于热振动的非线性,任一 原子的热振动都与周围原子的热振动状态密切相关, 使热振动能量存在涨落。当一原子一单具有足够大 的动能时就可能脱落正常位置,跳到邻近的原子间 隙中去,形成填隙原子,并在原位置留下一个空位。

(4)非化学配比 许多氧化物晶体,特别是过渡金属氧化物和变价金属氧化 物晶体,常允许其组分对化学配比的较大偏离 (5)塑性变形



塑性变形的物理本质是晶体中位错的大量滑移。位错滑移 运动中的交截过程和其他位错的非保守运动,都有可能产 生大量空位和填隙原子。如果温度够低,不能发生明显的 固态扩散过程,这些点缺陷则处于非平衡态。
在热平衡态下的点缺陷,其浓度与温度及其形成能密 切相关。
(1)点缺陷的平衡浓度随温度升高而指数式增大。


(2) 形成能的大小不仅影响着热缺陷的总浓度,而且也决 定了晶体中的主要平衡点缺陷是空位还是填隙原子。
空位的形成能被定义为从晶体内正常点整位置上取出 一个原子并放到晶体表面上所需的能量,如图4-2所示。填隙 原子的形成能定义为从晶体表面台阶处取走一个原子并挤 进晶内间隙位置所需的能量,如图4-3所示。


图4-2 空位的形成能

(a)含表面台阶的完整晶体,其中较浅色原子被移走 (b)移走原子至表面台阶处留下的空位,临近原子向空位 处弛豫


图4-2 填隙原子的形成能

(a)含表面台阶的完整晶体 (b)表面台阶处的原子进入晶内间隙位置而形成填隙原子, 紧邻原子被向外挤出



4.2点缺陷的产生

热平衡时,满足关系 ∂F/∂n=0 ,因此空位的平衡浓度:
sf n n Uv Uv cv exp( ) exp( ) Av exp( ) N n N kB kBT kBT

同理,填隙原子的平衡浓度:
Ui ci ZiAi exp( ) kBT


4.1.2
点缺陷的形成能
第四章 点缺陷
晶体缺陷:点缺陷、线缺陷和面缺陷
点缺陷:是指那些对晶体结构的干扰仅波及几个原子间距范
围的晶体缺陷。 点缺陷类型:

(1)结构缺陷:点阵空位、填隙原子。 (2)化学点缺陷:代位杂质、填隙杂质。(图4-1)
点缺陷对晶体结构及性能有重要的影响,例如:物理性质、 电学性质、光学性质等。


( 3 )离子注入 这是一种用高能离子轰击材料将其嵌入近 表面区域的工艺,可以产生大量点缺陷。其中,注入组分 离子产生空位和填隙离子;注入杂质原子则产生代位或填 隙杂质。在制备某些合金材料时,不溶的合金元素只有借 助离子注入技术才能实现合金化,此外,高能离子注入还 能产生位错和各种类型的面缺陷,甚至非晶层。
相关文档
最新文档