北大版高等数学第四章微分中值定理与泰勒公式答案习题
微分中值定理与导数的应用 - 4.3 泰勒公式

(0 1)
f ( k ) ( x ) ( 1) k 1 已知
因此可得
( k 1)! (1 x ) k
( k 1, 2,)
x 2 x3 ( 1) n1 x n ln(1 x ) x Rn ( x ) 2 3 n
由此得近似公式
二、几个初等函数的麦克劳林公式
(0) 1 ( k 1, 2,)
f
x
(k )
( x) e ,
x
2
f
(k )
x x3 xn R ( x) e 1 x n ! n 2! 3!
其中 麦克劳林公式
f (0) 2 f ( n ) (0) n f (0) f (0) x x x n! 2!
f (0) 2 f (0) n f (0) f (0) x x x n! 2!
(0 1)
类似可得
x2 x4 x2m cos x 1 R2 m 1 ( x ) ( 1) m 2! 4! (2m) !
其中
R2 m 1 ( x )
麦克劳林公式
(0 1)
π) f ( x ) sin( x k 2 k 2m (k ) π 0, ( m 1, 2,) f (0) sin k 2 ( 1) m1 , k 2 m 1
(k )
x3 x5 ( 1) m1 x 2 m 1 R ( x ) sin x x 2m (2m 1) ! 3! 5! mx m 1 sin( cos(22x )π) 2 m 1 R2 m ( x ) ( 1) 其中 (0 1) x (2m 1) ! 麦克劳林公式 (n)
北大版高等数学课后习题答案_完整版

习题 1.12222222222222222223.33,,.3,3.3,,313 2.961,9124,31.3,93,3,3.,,.,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p p a a p a b p a pb b b====+=+=++=++======证明为无理数若不是无理数,则为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数证明是无理数设为互素自然数,则素证 2.证 1.2222222,,.,..,:(1)|||1| 3.\;(2)|3| 2.0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-⋃数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2).(2)232,15,1||5,1||5,(1,5)(5,1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ⋃-<-<<<<<<<=⋃--+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||.60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,).11,01,.1, 1.11n nn n x x a l x x x x X l X a l a l l x a l X a a a n n a a b a a ++>->+>+<->-<-=-∞-⋃-+∞>=++∞⋃-∞-=≠<=-∞+∞-><-<>=>-=-=解下列不等式或或若若若若证明其中为自然数若显然解(1)证5.:6.120000(1)(1)(1).(,),(,).1/10.{|}.(,),,{|},10{|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n n n a b b n a a b a b n b a mA A m A a b ABC B A x x b C A x x a B m m C b a m m ---+++>-<-=∈⋂=∅=⋃=⋂≥=⋂≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合= 若则中有最小数-=证7.(,),(,).1/10.{2|}.10n n nn a b a b mn b a A m <-=+∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.26426642642666613.1(1,)(1)(1)111(1).112113.(,).13||13,||1,3,11||3,(,).y x x x x x x y x x x x x x x x x x y x x x x x x x x x x x x xy y x =+-+∞+-++=+-==<>+++++++=-∞+∞+++++≤≤>≤=++=≤∈-∞+∞证明函数在内是有界函数.研究函数在内是否有界时,时证解习题 1.4221.-(1)lim(0);(2)lim ;(3)lim ;(4)lim cos cos .|-||-||-|1)0,||,,||,||.,||,||,lim.(2)0x a x ax ax ax ax ax a a x a e e x a x a x a x a x a x a x a ax a x a a a x a x a x a aεδεεεεδεδεε→→→→→=>===∀>-=<<-+-<-<=-<-<=∀>直接用说法证明下列各极限等式:要使由于只需取则当时故证(222222,|| 1.||||||,|||||2|1|2|,1|2|)||,||.m in{,1},||,1|2|1|2|||,lim (3)0,.||(1),01),1x ax a a x a x a ax a x a x a x a x a x a a a a x a x a x a a a x a x a x a e e e e e eεεεεδδεεεε→---<-=+-<+≤-+<++-<-<=-<++-<=∀>>-=-<<-<<不妨设要使由于只需(取则当时故设要使即(.1,0ln 1,m in{,1},0,||,1|2|lim lim lim 0,|cos cos |2sinsin 2sin sin ||,2222,|,|cos cos x a ax a a x a x a x a x a x a x ae e x a x a e e e a e e e e e e x a x a x a x ax a x a x a x a εεεδδεεδεδ-→+→-→<+⎛⎫<-<+=<-<-< ⎪+⎝⎭===+-+-∀>-==≤-=-<-取则当时故类似证故要使取则当|时. ..(4)20|,lim cos cos .2.lim (),(,)(,),().1,0,0|-|,|()|1,|()||()||()|||1||.(1)1(1)limlim 2x ax ax x x a f x l a a a a a u f x x a f x l f x f x l l f x l l l M x x εδδεδδ→→→→<==-⋃+==><<-<=-+≤-+<+=+-=故设证明存在的一个空心邻域使得函数在该邻域内使有界函数对于存在使得当 时从而求下列极限证 3.:2002222200002212202lim (1) 1.222sin sin 1cos 11122(2)lim lim lim 1.22221(3)limlim(0).()222(4)lim.22332(5)lim 22x x x x x x x x x x xx x x x x x x x a axa xx x a a ax x x x x x x x →→→→→→→→+=+=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪==== ⎪⎪⎝⎭+-==>++---=------- 2.33-=-20103030300022********(23)(22)2(6)lim 1.(21)2112(7)limlim 1.(11)13132(8)lim lim lim 11(1)(1)(1)(1)(1)(2)lim lim (1)(1)x x x x x x x x x x x x x xxx x x x x x x x x x x x x x x x x x x x →∞→→→-→-→-→--+==++--==++--+---⎛⎫-== ⎪+++-++-+⎝⎭+-==+-+214442100(2)31.(1)3123(123)(2)(123)(9)limlim 2(2)(2)(123)(28)(2)244lim.63(4)(123)(1)1(1)12(10)lim lim lim .1(11)lim x x x n n nx y y x x x x x x x x x x x x x x x x n n ny y y x y n x y yx →-→→→→→→→∞--==--++-+-+++=--+++-+===-++-+++-+-===- ()22221011001001010*******11lim 0.11(12)lim (0)./,(13)lim (0)0, , .818(14)lim lim 1x m m m mnn n x nn mm m n n x n x x x x x a x a x a a b b x b x b b a b m n a x a x a a b n mb x b x b m n x x →∞--→--→∞→∞→∞+--==++-+++≠=+++=⎧+++⎪≠=>⎨+++⎪∞>⎩++=+ 42/ 1.11/x x =+332022333333222333322333322033331312(15)lim(1312)(13131212)lim()(13131212)5lim(1)(13131212)55lim .3(1)(13131212)(16)0,l x x x x x xx x x x x x x x x x x x x x xx x x x x x x x x x x a →→→→+--++--+++-+-=++++-+-=++++-+-==++++-+-> 22220001im lim ()()1lim ()x a x a x a x a x ax a x a x a x a x a x a x a x a x a x a →+→+→+⎛⎫-+--=+ ⎪ ⎪+--⎝⎭⎛⎫-+=+ ⎪ ⎪+-++⎝⎭00()1lim ()11lim .()2x a x a x a x a x a x a x a x a x a x a x a a →+→+⎛⎫-=+ ⎪+-++⎝⎭⎛⎫-=+= ⎪ ⎪+++⎝⎭000222200000sin 14.lim 1lim 1sin sin (1)lim lim lim cos .tan sin sin(2)sin(2)2(2)lim lim lim 100323tan 3sin 2tan 3sin 2(3)lim lim lim sin 5sin 5xx x x x x x x x x x x x e x x x x x x x x x x x x xx x x x x αααββββ→→∞→→→→→→→→→⎛⎫=+= ⎪⎝⎭=====-=- 利用及求下列极限:00()1/0321.sin 5555(4)lim lim 2.1cos 2sin2cos sinsin sin 22(5)lim lim cos .2(6)lim 1lim 1lim 1.(7)lim(15)x x x a x a kxxxk kk k x x x yy x x x xxx x a x a x a a x a x ak k k e x x x y →+→+→→----→∞→∞→∞→=-===-+--==--⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦-=51/(5)50100100lim(15).111(8)lim 1lim 1lim 1.5.lim ()lim ().lim ():0,0,0|-|().lim (y y x xx x x x ax x a x y e e x x x f x f x f x A x a f x A f x δδ--→+→∞→∞→∞→→-∞→→-∞⎡⎤-=⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+∞=-∞=+∞>><<>给出及的严格定义对于任意给定的存在使得当时):0,0,().A x f x A =-∞>∆><-∆<-对于任意给定的存在使得当时习题1.52222222222221.(1)10(2)sin 5.(1)0,|110|.,1111,||,,|||110|,10555()(2)(1)0,|sin 5sin 5|2|cos ||sin |.22x x x x a x x x x x x x x x x x x x a x a x a εδεεεεδεδεεε-+==∀>+-+=<≤++++<<=<+-+<+=+-∀>-=<试用说法证明在连续在任意一点连续要使由于只需取则当时有故在连续.要使由于证000000555()2|cos ||sin |5||,5||,||,225,|||sin 5sin 5|,sin 55()()0,0||()0.(),()/2,0||(x a x a x a x a x a x a x a x x a y f x x f x x x f x f x x f x x x f x εεεδδεδδεδδ+-≤--<-<=-<-<==>>-<>=>-<只需取则当时有故在任意一点连续.2.设在处连续且证明存在使得当时由于在处连续对于存在存在使得当时证000000000000)()|()/2,()()()/2()/20.3.()(,),|()|(,),?(,),.0,0|||()()|,||()||()|||()()|,||.f x f x f x f x f x f x f x a b f x a b x a b f x x x f x f x f x f x f x f x f x εδδεε-<>-=>∈>>-<-<-≤-< 于是设在上连续证明在上也连续并且问其逆命题是否成立任取在连续任给存在使得当时此时故在连续其证 220001,,(),()|11,ln(1), 1,1,0,(1)()(2)()arccos , 1. 0;lim ()lim 11(0),lim ()(0)x x x x f x f x x a x x x x f x f x a x x a x x f x x f f x f π→-→-→+⎧=≡⎨-⎩⎧+≥⎧⎪+<==⎨⎨<+≥⎩⎪⎩=+====逆命题是有理数不真例如处处不连续但是|处处连续.是无理数4.适当地选取,使下列函数处处连续:解(1)0111122sin 2limsin301.(2)lim ()lim ln(1)ln 2(1),lim ()lim arccos (1)ln 2,ln 2.5.3:11(1)lim coscos lim cos 0 1.(2)lim 2.(3)lim x x x x x x x xx x xx a f x x f f x a x a f a x x x xx x xeeπ→→+→+→-→-→+∞→+∞→→==+====-===-+-+-=====利用初等函数的连续性及定理求下列极限sin 22sin334422.88(4)lim arctan arctan lim arctan1.114xx x x e x x x x π→∞→∞=++===++22222222()()(ln ())()(5)lim (12)||lim (12)||3||33lim lim .21211/12/6.lim ()0,lim (),lim)().lim)()lim)x x x x g x b x x x x x x g x f x g x x x x x x x x x x x x x x x x f x a g x b f x a f x e →∞→∞→∞→∞→→→→→⎡⎤+--=+--⎣⎦⎡⎤⎡⎤===⎢⎥⎢⎥++-++-⎣⎦⎣⎦=>====设证明证0lim [(ln ())()]ln 22.7.,,(1)()cos ([]),,(2)()sgn(sin ),,,,1,(3)()1,1/2, 1.1(4)()x x f x g x b a b e e a f x x x n f x x n n x x f x x x x f x ππ→===-∈=∈⎧≠==⎨=⎩+=Z Z 指出下列函数的间断点及其类型若是可去间断点请修改函数在该点的函数值,使之称为连续函数:间断点第一类间断点.间断点第一类间断点.间断点第一类间断点.,011,sin,12,11,01,2(5)(),12,2,1,2 3.1x x x x x x f x x x x x xπ⎧≤≤⎪=⎨<≤⎪-⎩⎧≤≤⎪-⎪=<≤=⎨⎪⎪<≤-⎩间断点第二类间断点.间断点第一类间断点.0000008.(),(),()()()()()()()()()()(()())()()()()()0,()().y f x y g x x h x f x g x x f x g x x h x f x g x x x g x f x g x f x x x f x g x x f x g x D x ϕϕ===+==+=+-=≡=R R 设在上是连续函数而在上有定义但在一点处间断.问函数及在点是否一定间断?在点一定间断.因为如果它在点连续,将在点连续,矛盾.而在点未必间断.例如解习题1.600001.:()lim (),lim (),,,,()0,()0,[,],,(,),()0.2.01,,sin ,.(x x P x P x P x A B A B P A P B P A B x A B P x y y x x f x εε→+∞→-∞=+∞=-∞<<>∈=<<∈=-R 证明任一奇数次实系数多项式至少有一实根.设是一奇数次实系数多项式,不妨设首项系数是正数,则存在在连续根据连续函数的中间值定理存在使得设证明对于任意一个方程有解且解是唯一的令证证000000000000000212121212121)sin ,(||1)||1||,(||1)||1||,[||1,||1],,[||1,||1],().,()()(sin sin )||0,.3.()(,x x f y y y y f y y y y f y y x y y f x y x x f x f x x x x x x x x x f x a b εεεεε=---=--+<-≤+≥+->≥--+∈--+=>-=---≥--->在连续由中间值定理存在设故解唯一设在1212112212121121121112212221212121212),,(,),0,0,(,)()()().()(),.()(),()()()()()()()(),[,]x x a b m m a b m f x m f x f m m f x f x x f x f x m f x m f x m f x m f x m f x m f x f x f x m m m m m m x x ξξξ∈>>∈+=+==<+++=≤≤=+++连续又设证明存在使得如果取即可设则在上利用连续函数的中间值定理证.4.()[0,1]0()1,[0,1].[0,1]().()(),(0)(0)0,(1)(1)10.,01.,,(0,1),()0,().5.()[0,2],(0)(2).y f x f x x t f t t g t f t t g f g f t t g t f t t y f x f f =≤≤∀∈∈==-=≥=-≤∈====即可设在上连续且证明在存在一点使得如果有一个等号成立取为或如果等号都不成立则由连续函数的中间值定理存在使得即设在上连续且证明证12121212[0,2],||1,()().()(1)(),[0,1].(0)(1)(0),(1)(2)(1)(0)(1)(0).(0)0,(1)(0),0, 1.(0)0,(0),(1),,(0,1)()(1x x x x f x f x g x f x f x x g f f g f f f f g g f f x x g g g g f ξξξ-===+-∈=-=-=-=-====≠∈=+在存在两点与使得且令如果则取如果则异号由连续函数的中间值定理存在使得证12)()0,, 1.f x x ξξξ-===+取第一章总练习题221.:581 2.3|58|1422.|58|6,586586,.3552(2)33,52333,015.5(3)|1||2|1(1)(2),2144,.22|2|,.2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2.解222312312,4,(2).32,41(2), 4.313.11.21. 212,4(1)44,0.1,0.4.:1232(1)2.222221211,.22123222n n y x y y y x y y x x x x x x x x x x x x n n n n ->=--≤⎧⎪=⎨->⎪⎩+<+≥-+<++<++>≥-≠+++++=-+==++ 求出满足不等式的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则解证1231111121211222112312222222124(1)(1)3222,22221..1(1)(2)123(1).(1)1(11)1(1)1,(1)(1)n n n n n n n n n n n n n n n n n n n n n x nx x x nxx x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===-- 即等式对于也成立故等式对于任意正整数皆成立当时证1,1212.1(1)123(1)(1)(1)n n n nnn n x nx x x nxn x n xx +--++++++++=++- 等式成立设等式对于成立,则122122112211221221(1)(1)(1)(1)1(1)(12)(1)(1)1(1)(2)(1)(1)1(1)(2)(1)(1)1(2)(1),(1)1n n n n n n n n n n n n n n n n n n n x nx x n x x n x nx x x n x x n x nx x x x n x n x nx x x x n x n x n x x n ++++++++++-+++-+=--+++-++=--+++-++=--+++-++=--+++=-+即等式对于成立.,.|2|||25.()(1)(4),(1),(2),(2);(2)();(3)0()(4)224211222422(1)(4)1,(1)2,(2)2,(2)0.41224/,2(2)()x x f x xf f f f f x x f x x f f f f x x f x +--=---→→----------==--==-====----≤-=由归纳原理等式对于所有正整数都成立设求的值将表成分段函数当时是否有极限:当时是否有极限?解00022222222;2,20;0,0.(3).lim ()2,lim ()0lim ().(4).lim ()lim (4/)2,lim ()lim 22lim (),lim () 2.6.()[14],()14(1)(0),x x x x x x x x x x x f x f x f x f x x f x f x f x f x x f x x f →-→+→-→--→--→-+→-+→--→-⎧⎪-<≤⎨⎪>⎩==≠=-======--无因为有设即是不超过的最大整数.求00223,(2);2(2)()0?(3)()2?391(1)(0)[14]14,1467.(2)[12]12.244(2).lim ()lim[14]14(0).(3).lim ()12,lim ()x y x x f f f x x f x x f f f f x y f f x f x →→+→+→-⎛⎫⎪⎝⎭==⎛⎫⎡⎤⎡⎤=-=-=-=-+=-=-=- ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦=-=-==-的值在处是否连续在处是否连续连续因为不连续因为解111111.7.,0,,:(1)(1);(2)(1).n n n n n n a b a b n b a b a n b n a b a b a++++=-≤<--<++<--设两常数满足对一切自然数证明1111111()()(1),(1).118.1,2,3,,1,1.:{},{}..111,1,7,111n n n n n n n n n n n n nn n n n n n n b a b a b b a a b b b b n b b a b a b a n a b a n a b n n a b a b a b n nn ++--+++--+++=<+++=+--->+-⎛⎫⎛⎫==+=+ ⎪ ⎪⎝⎭⎝⎭<+=++⎛+ ⎝ 类似有对令证明序列单调上升而序列单调下降,并且令则由题中的不等式证证=11111111111(1)1,111111111(1)11(1)1111111,11111.1111(1)11n n nn n nn nn nn n n n n n n n n n n n n n n n n n n n n n +++++++⎫⎛⎫-+⎪ ⎪+⎛⎫⎭⎝⎭<++ ⎪⎝⎭-+⎛⎫⎛⎫⎛⎫+-+<++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+-+<+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎛⎫⎝⎭++< ⎪+⎝⎭111111121111111111(1)1111(1)11111111111111111.1111111.111n n nn n nn n n n n n n n n n n n n n n n n n nn n n n n +++++++⎛⎫-+⎪ ⎪+⎝⎭-+⎛⎫⎛⎫⎛⎫++<+-+ ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+<+-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++<+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫++>+ ⎪++⎝⎭⇔我们证明22111211111(1)11..(1)(1)1111,1,1,11.nn n n n n n n n n n n e e e n n n n ++++>+++++⇔>++⎛⎫⎛⎫⎛⎫⎛⎫→∞+→+→+<<+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭最后不等式显然成立当时故9.求极限22222222221111lim 1111234111111112341324351111().2233442210.()lim (00, ()lim n n n n n n n n n n n n nxf x a nx ax nxf x nx a →∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭++==→→∞=≠+===+ 作函数)的图形.解解0;1/,0.x x ⎧⎨≠⎩1111.§2,()[,]|()|,[,].,(),[,],max{||,||}1,|()|,[,].,|()|,[,],(),[,].12.f x a b M f x M x a b M N f x N x a b M M N f x M x a b M f x M x a b M f x M x a b <∀∈≤≤∀∈=+<∀∈<∀∈-<<∀∈1在关于有界函数的定义下证明函数在区间上为有界函数的充要条件为存在一个正的常数使得设存在常数使得M 取则有反之若存在一个正的常数使得则证12121212:()()[,],()()()()[,].,,|()|,|()|,[,].|()()||()||()|,|()()||()||()|,[,].113.:()cos 0y f x y g x a b f x g x f x g x a b M M f x M g x M x a b f x g x f x g x M M f x g x f x g x M M x a b f x x x xπ==+<<∀∈+≤+<+=<∀∈==证明若函数及在上均为有界函数则及也都是上的有界函数存在证明在的任一证,0().11(,),00,,,(),1()(,)0,()(21/2)cos(21/2)0,21/20().n x f x M n n M f n M n nf x f x n n n x f x δδδδδδπ→->><>=>-=→=++=→∞+→n 邻域内都是无界的但当时不是无穷大量任取一个邻域和取正整数满足和则故在无界.但是x 故当时不是无穷大量证11111000114.lim (1)ln (0).1ln 1,ln ln(1),.lim lim 10.ln(1)ln(1)lim lim ln(1)ln lim(1)ln 1,ln (1)ln ().ln(1)15.()()nn nn n n n n y y y y y n nn n x x x xx y x y n y x n y y y y e y y xn x x n y f x g x →∞→∞→∞→→→-=>-==+==-=++=+=+==-=→→∞+证明令则注意到我们有设及在实轴上有证00002022222220000.:()(),,()lim ()lim ()().1cos 116.lim.22sin 1cos 2sin 1sin 12lim lim lim lim 1422n n n n n x x x y y f x g x x x x f x f x g x g x x x x x y y x x y y →∞→∞→→→→→→===-=⎛⎫-==== ⎪⎝⎭ 定义且连续证明若与在有理数集合处处相等,则它们在整个实轴上处处相等.任取一个无理数取有理数序列证明证证0011000000001.2ln(1)17.:(1)lim 1;(2)lim .ln(1)(1)lim lim ln(1)ln lim(1)ln 1.(1)11(2)lim lim lim lim ln(1)ln(1)lim1.1x a xa y x y y y y y x a a a x x aa ax x x y y a a y e e e y x y y y e ye e e e e y e e e y x x x y ye e +→→→→→+→→→→→=+-==+=+=+==---====++== 证明证0111018.()lim ()0,()lim ()()0.|()|,0||.0,0,0|||()|/.min{,},0||,|()()||()||()|,li x ax ay f x a f x y g x a f x g x g x M x a x a f x M x a f x g x f x g x M Mδεδδεδδδδεε→→====<<-<>><-<<=<-<=<= 设在点附近有定义且有极限又设在点附近有定义,且是有界函数.证明设对于任意存在使得当时令则时故证m ()()0.x af xg x →=19.()(,),,()()|()|() () ()(),()(,).y f x c g x f x f x c g x c f x cc f x c g x g x =-∞+∞≤⎧⎪=>⎨⎪-<-⎩-∞+∞设在中连续又设为正的常数定义如下 当当当试画出的略图并证明在上连续0000000000000|()|,0,||lim ()lim ()()().(),0,||()lim ()lim ().(),().0,,0,x x x x x x x x f x c x x g x f x f x g x f x c x x f x c g x c c g x f x c g x c c δδδδεεδ→→→→<>-<===>>-<>=====><>一若则存在当时|f(x)|<c,g(x)=f(x),若则存在当时,g(x)=c,若则对于任意不妨设存在使证()0000121212|||()|.||.(),()(),|()()||()|,(),(),|()-()|0.()()min{(),}max{(),}().max{(),()}(|()()|()())/2.min x x f x c x x f x c g x f x g x g x f x c f x c g x c g x g x g x f x c f x c f x f x f x f x f x f x f x δεδεε-<-<-<≤=-=-<>==<=+--=-++得当时设若则若 则二利用证121212123123123111123{(),()}(|()()|(()())/2.120.()[,],[()()()],3,,[,].[,],().()()(),(),.()min{(),(),()},f x f x f x f x f x f x f x a b f x f x f x x x x a b c a b f c f x f x f x f x c x f x f x f x f x f ηηη=--++=++∈∈======设在上连续又设其中证明存在一点使得若则取即可否则设证31231313000000()min{(),(),()},()(),[,],,[,],().21.()(),()g(),,.0()g()()g()x f x f x f x f x f x f x x c a b f c y f x x g x x x kf x l x x k l l kf x l x x kf x l x x ηη=<<∈==+=+≠+在连续根据连续函数的中间值定理存在一点使得设 在点连续而在点附近有定义但在不连续问是否在连续其中为常数如果在连续;如果在解,l 0,000000||()[[()lg()]()]/.22.Dirichlet ..,()1;,()0;lim (),()11(1)lim 0;(2)lim (arctan )sin 12n n n n x x x x x g x kf x x kf x l x x x x D x x x D x D x D x x x x x →→∞→+∞=+-''→→→→+⎛⎫= ⎪+⎝⎭不连续,因否则将在连续证明函数处处不连续任意取取有理数列则取无理数列则故不存在在不连续.23.求下列极限:证2220011/1112132100;2tan 5tan 5/5(3)lim lim 5.ln(1)sin [[ln(1)]/]sin /1(4)lim()lim(1).24.()[0,),0().0,(),(),,().{x x y x x y n n x x x x x x x x x x x x y e y f x f x x a a f a a f a a f a π→→-→→+=====++++=+==+∞≤≤≥=== 设函数在内连续且满足设是一任意数并假定一般地试证明11},lim .lim ,(),().(),{}()0(1,2,),{}n n n n n n n n n n n n a a l a l f x x f l l a f a a a a f a n a →∞→∞++====≤=≥=单调递减且极限存在若则是方程的根即单调递减.又单调递减有下界,证111lim ,lim lim ()(lim )().25.()(,),:(0)1,(1),()()().()((,)).()()().()()n n n n n n n n n x n n a l a l a f a f a f l y E x E E e E x y E x E y E x e x E x x E x E x E nx E x +→∞→∞→∞→∞======-∞+∞==+==∀∈-∞+∞++== 故有极限.设则设函数在内有定义且处处连续并且满足下列条件证明用数学归纳法易得于是证11.,()(11)(1).1(0)(())()()(),().().1111,(1)()()()(),().11()()().,n n n n n n nn mmm n n n E n E E e E E n n E n E n e E n E n e E n e n E E n E n E e E E e n n n n m E E m E e e r E n n n -=++====+-=-=--======⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭设是正整数则于对于任意整数对于任意整数即对于所有有理数lim ().,,(),()lim ()lim ().nnn r x x x x n n n r e x x E x E x E x e ee e →∞→∞→∞=→====n 对于无理数取有理数列x 由的连续性的连续性习题2.1201.,.,.()2(0)(1),;(2),?(3)lim ,?x l O x x m x x x l x x m mx mx ∆→=≤≤∆∆∆∆∆∆设一物质细杆的长为其质量在横截面的分布上可以看作均匀的现取杆的左端点为坐标原点杆所在直线为轴设从左端点到细杆上任一点之间那一段的质量为给自变量一个增量求的相应增量求比值问它的物理意义是什么求极限问它的物理意义是什么2222222000(1)2()22(2)22(2).2(2)(2)2(2).(3)lim lim 2(2)4.lim x x x m x x x x x x x x x x x m x x x m x x x x x x x x m mx x x x x x∆→∆→∆→∆=+∆-=+∆+∆-=∆+∆∆∆+∆∆==+∆+∆∆∆∆∆∆=+∆=∆∆是到那段细杆的平均线密度.是细杆在点的线密度.解333032233222000002.,:(1);(2)2,0;(3)sin 5.()(1)lim(33)lim lim (33)3.2()2(2)lim 2lim(2lim x x x x x x y ax y px p y x a x x ax y xx x x x x x x a a x x x x ax xp x x px x x xy p x xx p ∆→∆→∆→∆→∆→∆→==>=+∆-'=∆+∆+∆+∆-==+∆+∆=∆+∆-+∆-'==∆∆+∆=根据定义求下列函数的导函数解0000000)()2lim()()212lim.25(2)52cossin sin 5()sin 522(3)limlim55(2)552cos sin sin5(2)2222lim 5lim cos lim 5522x x x x x x x x x x x x xp x x x x x x x x p p x x x xx x xx x xy x xx x x x x x x ∆→∆→∆→∆→∆→∆→∆→-+∆+∆=∆+∆+∆+∆+==+∆++∆∆+∆-'==∆∆+∆∆∆+∆==∆∆ 5cos5.2x x =00223.()(,()):(1)2,(0,1); (2)2,(3,11).(1)2ln 2,(0)ln 2,1ln 2(-0),(ln 2) 1.(2)2,(3)6,:116(3).4.2(0)(,)(0,0)x x y f x M x f x y M y x B y y y x y x y x y y x y px p M x y x y ===+''==-==+''==-=-=>>>求下列曲线在指定点处的切线方程切线方程切线方程试求抛物线上任一点处的切线斜率解,0,.2p F x ⎛⎫⎪⎝⎭,并证明:从抛物线的焦点发射光线时其反射线一定平行于轴200022222222,,().22(),.,2222,.222,.p p py px y M PMN Y y X x yy px p y x N X y X x X x x y p p p p FN x FM x y x pxp p p x px x x FN FNM FMN M PQ x PMQ FNM FMN '===-=--=-=-=-⎛⎫⎛⎫=+=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=++=+=+=∠=∠ ⎪ ⎪⎝⎭⎝⎭∠=∠=∠过点的切线方程:切线与轴交点(,0),故过作平行于轴则证2005.2341,.224,1,6,4112564(1),4 2.:6(1),.444y x x y x y x x y k y x y x y x y x =++=-'=+====⎛⎫-=-=+-=--=-+ ⎪⎝⎭曲线上哪一点的切线与直线平行并求曲线在该点的切线和法线方程切线方程:法线方程解 323226.,,;(),,, (1)():(2)();(3)().()lim ()lim,lim ()limr R r R r R r R r g r GMrr R R g r R M G GM r R rg r r g r g r r GMr GMr R g r g r R RGM g r r →-→-→+→+⎧<⎪⎪=⎨⎪≥⎪⎩≠====离地球中心处的重力加速度是的函数其表达式为其中是地球的半径是地球的质量是引力常数.问是否为的连续函数作的草图是否是的可导函数明显地时连续.解,2lim (),()r R GMg r g r r R R→-==在连续.(2)33(3)()2(),()(),().r R g r GM GM g R g R g R g r r R R R-+-≠'''==-≠=时可导.在不可导227.(),:(1,3)(),(0)3,(2) 1.3(),()2.34111113,,3(),()3.2222P x y P x P P a b c P x ax bx c P x ax b b a b b a c a b P x x x ''===++=⎧⎪'=++=+=⎨⎪+=⎩==-=-+==-++求二次函数已知点在曲线上且解3222222222228.:(1)87,24 1.(2)(53)(62),5(62)12(53)903610.(3)(1)(1)tan (1)tan ,(2)tan (1)sec .9(92)(56)5(9)51254(4),56(56)y x x y x y x x y x x x x x y x x x x x y x x x x x x x x x x x x y y x x '=++=+'=+-=-++=+-'=+-=-=+-+++-+++'===++求下列函数的导函数22.(56)122(5)1(1),.11(1)x x y x y x x x ++'==-+≠=---23322222226(6)(1),.1(1)1(21)(1)1(7),.(8)10,1010ln1010(1ln10).sin cos sin (9)cos ,cos sin .(10)sin ,sin cos (s x x x x xx x x x x x x x x y x y x x x x x e e x x x x y y e e ey x y x x x x x xy x x y x x x x x y e x y e x e x e -'=≠=--+++-++-+-'==='==+=+-'=+=-+'==+= in cos ).x x +00000001001100009.:()()()(),()0().()()(1)(2).()()(),()0()()()()()()(()()())()(),(m k k k k k P x P x x x g x g x x P x m x P x k x P x k k P x x x g x g x P x k x x g x x x g x x x kg x x x g x x x h x h x ---=-≠'->=-≠''=-+-'=-+-=-定义若多项式可表为则称是的重根今若已知是的重根,证明是的重根证00)()0,()(1)kg x x P x k '=≠-由定义是的重根.000000010.()(,),()(),().()(0),(0)0.()(0)()(0)()(0)(0)lim lim lim (0),(0)0.()()11.(),lim 22x x x x f x a a f x f x f x f x f f f x f f x f f x f f f f x x xf x x f x x f x x f x→→→∆→--=''=-----'''==-=-=-+∆--∆'=∆若在中有定义且满足则称为偶函数设是偶函数,且存在试证明设在处可导证明证=000000000000000000000().()()()()()()1lim lim 22()()()()1lim 2()()()()11lim lim [()22x x x x x x f x x f x x f x x f x f x x f x x x x f x x f x f x x f x x x f x x f x f x x f x f x x x ∆→∆→∆→∆→∆→+∆--∆+∆--∆-⎡⎤=-⎢⎥∆∆∆⎣⎦+∆--∆-⎡⎤=+⎢⎥∆-∆⎣⎦+∆--∆-⎡⎤'=+=+⎢⎥∆-∆⎣⎦证002()]().12.,(0/2)()((),()):.f x f x y x t t P t x t y t OP x t t π''==<<=一质点沿曲线运动且已知时刻时质点所在位置满足直线与轴的夹角恰为求时刻时质点的位置速度及加速度.222222422222()()()tan ,()tan ,()()(tan ,tan ),()(sec ,2tan sec ),()(2sec tan ,2sec 4tan sec )2sec (sec ,2tan ).y t x t x t t y t t x t x t t t v t t t t v t t t t t t t t t ===='=''=+=位置解y =x 21/1/1/1/1/000013.,0()10, 00.1111(0)lim lim 1,(0)lim lim 0.1114.()||(),()()0.().()lim xx x x x x x x x x xx f x ex x x x e e f f x e xe f x x a x x x a a f x x a f a ϕϕϕ→-→-→+→+-→⎧≠⎪=+⎨⎪=⎩=++''======++=-=≠='=求函数在的左右导数设其中在处连续且证明在不可导-+解证()()()()(),()lim ()().a x a a x x x a x a a a f a x a x aϕϕϕϕ-→---''=-==≠--+-f 习题2.2()()()()()()2222222222222221.,:sin (1)(cos )sin ,.(cos )sin .2111(2)[ln(1)],.[ln(1)](1).111(3)112,.111121121xx x x x x xx x x x x x x x x x x x xx x x x x x x x x x x x x x '''=-=-=-'''-=-=-=---'''⎡⎤+=+=⎣⎦+'''⎡⎤+=+++=++⎣⎦+=++下列各题的计算是否正确指出错误并加以改正错错错332222222()2223.111(4)ln |2sin |(14sin )cos ,.2sin 1ln |2sin |(14sin cos ).2sin 2.(())()|.() 1.(1)(),(0),(),(sin );(2)(),(sin );(3)u g x x x xxx x x x x x x x x x x x f g x f u f x x f x f f x f x d d f x f x dx dx=+=++'⎡⎤+=+⎣⎦+'⎡⎤+=+⎣⎦+''==+''''错记现设求求[]()[][]2222223(())(())?.(1)()2,(0)0,()2,(sin )2sin .(2)()()224.(sin )(sin )(sin )2sin cos sin 2.(3)(())(()),(())(())().f g x f g x f x x f f x x f x x df x f x x x x x dxdf x f x x x x x dxf g x f g x f g x f g x g x ''''''====''===''==='''''= 与是否相同指出两者的关系与不同解()()()222233312232323.2236(1),.111(2)sec ,(cos )(cos )(cos )(cos )(sin )tan sec .(3)sin 3cos5,3cos35sin 5.(4)sin cos3,3sin cos cos33sin sin 33sin x x y y x x x y x y x x x x x x x y x x y x x y x x y x x x x x ---'==-=----'''===-=--='=+=-'==-= 求下列函数的导函数:2(cos cos3sin sin 3)3sin cos 4.x x x x x x x -=22222222222232222222241sin 2sin cos cos (1sin )(sin )2(5),cos cos sin 2cos 2(1sin )(sin ).cos 1(6)tan tan ,tan sec sec 13tan sec tan tan (sec 1)tan .(7)sin ,s ax ax x x x x x x x y y x x x x x x x xy x x x y x x x x x x x x x y e bx y ae +-+-'==++='=-+=-+=-=-='==524222422222in cos (sin cos ).(8)cos 1,5cos 1(sin 1)15cos 1sin 1.111(9)ln tan ,sec 24224tan 2411112tan cos 2sin 24242ax ax bx be bx e a bx b bx xy x y x x x x x x xx x y y x x x x ππππππ+=+'=+=+-++++=-+⎛⎫⎛⎫'=+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭==⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭222cos 42411sec .cos sin()211()()1(10)ln (0,),.22()x x x x x a x a x a x a y a x a y a x a a x a x a x a ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭===+-++--'=>≠±==+-+-2222222222222224.:111(1)arcsin (0),.111111(2)arctan (0),.1(3)arccos (||1),2arccos .11111(4)arctan ,.111(5)ar 22xy a y aa a x x a x y a y a a a a a x x a x y x x x y x x xy y x x x xx a y a x '=>==-⎛⎫- ⎪⎝⎭'=>==+⎛⎫+ ⎪⎝⎭'=<=---'===-++=-+ 求下列函数的导函数csin (0),x a a>22222222222222222222222222222222222222222121122211.2(6)ln (0)221112221.2222(7)arcsin ,1x x a y a x a a x x a x a a x a x a x a x x a x x a y x a a a x x a xy x a x a x x a x a x a x a x a x a x a xy x x -'=-++-⎛⎫- ⎪⎝⎭=--+=---++=++>⎛⎫'=++++ ⎪++++⎝⎭=+++=+++=≠±+222222222222222222221.12(1)22112sgn(1)2.(1)11141(1)2(8)arctan tan (0).2211sec 221tan 211sec 2()tan ()cos ()s 22x x x x x y x x x x xx a b x y a b a b a b a b x y a b x a ba b a b x x x a b a b a b a b +---'===+++--+⎛⎫-=>≥ ⎪ ⎪+-⎝⎭-⎛⎫'=⎪-+⎝⎭-++==++-++- 2222222in 21.cos (9)(1)(12)(13),ln ln(1)ln(12)ln(13)123/,2(1)2(12)22(13)3123.2(1)2(12)22(13)314(10)12,.212(11),.(12)x a b x y x x x y x x x y y x x x x x x y y x x x x x x xy x x y x x xy x a y x a =+=+++=+++++'=+++++⎡⎤'=++⎢⎥+++⎣⎦+'=++=++'=+=+2222,.xy a x y a x-'=-=-222222222311(13)ln(),1.21(14)(1)(31)(2).ln ln(1)ln(31)ln(2),331211131321211.13132(15),(1).(16)xxxx e x e x x e x y x x a y x x a x a x ay x x x y x x x y y x x x y y x x x y e e y e e e e e ⎛⎫'=++=+= ⎪++++⎝⎭=-+-=-+++-'-=++-+--⎡⎤'=++⎢⎥-+-⎣⎦'=+=+=+ 11112(0).ln ()ln ln ln ln .aaxa a xaaxa x a a a x a a x a ax a a x y x a a a y a x a a ax a aa aa x a aa x a a a ----=++>'=++=++222225.()1()()84,tan (),24001001()arctan ,()100110t x t t x t t t t t t t t θθθθ===='==+ 2一雷达的探测器瞄准着一枚安装在发射台上的火箭,它与发射台之间的距离是400m.设t=0时向上垂直地发射火箭,初速度为0,火箭以的匀加速度8m/s 垂直地向上运动;若雷达探测器始终瞄准着火箭.问:自火箭发射后10秒钟时,探测器的仰角的变化速率是多少?解222110,(10)0.1(/).505010101006.,2m t s θπθ'==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭弧度在图示的装置中飞轮的半径为且以每秒旋转4圈的匀角速度按顺时针方向旋转.问:当飞轮的旋转角为=时,活塞向右移动的速率是多少?2220()2cos8364sin 8,8sin 8cos8(8)()16sin 8,2364sin 811()8,,,()16.2161616m/s.x t t t t t x t t tt t t x πππππππππαπππ=+--'=-+-'====- 活塞向右移动的速率是解习题2.323222(1)(1).1.0,?(1)10100.1sin (2)(22)sin ,222(3)(1cos )2sin ,222.:0,()().()().()()3.()()(0),()()(0).o o o x o o o x x y x x x x xy x x x xy x x x x x x x x x x x x xx x x x x x αααααβ=→=++=+-=++=-=→=====→=→ 当时下列各函数是的几阶无穷小量阶.阶.阶.已知当时试证明设试证明证00(1)(1)(1)()()()(0).()()()().()()().4.11(1)sin ,/4.sin cos ,1,1.44422(2)(1)(0).o o o o o o o x x x x x x x x x x xx x x x y x x x y x x x y dy dx y x y ααβαβαβππππα+=→+=+=+=+=⎛⎫⎛⎫⎛⎫''===+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+>':上述结果有时可以写成计算下列函数在指定点处的微分:是常数证122(1),(0),.5.1222(1)1,,.11(1)(1)(2),(1).(1).26.(1),3 3.001,11,(3).222.001x x x x x x y dy dx x dx y y dy x x x x y xe y e xe e x dy e x dx y x x x y y αααα-'=+==-'==-+=-=-++++'==+=+=+=≠-''=-∆=求下列各函数的微分:设计算当由变到时函数的增量和向相应的微分.22解 y =-(x -1)5551222113333332220.0010.0011,.2.00127.32.16.1.1632.1621.16/322(1) 2.002.5328.:11(1)(0).0,.33(2)()()(,,).2()2()dy y x y a a xy y y x x a y b c a b c x a y b y ---=-=-=+=+=⎛⎫''+=>+==- ⎪⎝⎭-+-='-+-= 试计算的近似值求下列方程所确定的隐函数的导函数为常数解0,.x ay y b-'=--。
第四章 微分中值定理与泰勒公式1-4

3. 拉格朗日中值定理的三个重要推论 (1)推论1 设f (x)在区间[a,b]上可导,且f (x)=0, x [a,b].则f (x)=C, x [a,b]. (C为常数)
证:x1,x2 [a,b], 不妨令x1<x2, 则f (x)在[x1, x2] 上满足拉格朗日中值定理条件,故有
(0 1)
f ( x x) f ( x) f ' ( x x)x, 0 1
或 或
y f ' ( x x)x, 0 1
y f ' ( )x, ,
在x与x x之间.
21
f (b) f (a) f ' ( )(b a)
当f ( ) m时,f ' ( 0) 0, f ' ( 0) 0, 故f ' ( ) 0.
注:(费马定理) 当最大(小)值点在(a,b)内达到时,其导数为零。
6
例1. 设f (x)=(x a)(xb)(xc)(xd) ,a<b<c<d为实 数. 证明方程 f (x)=0,有且仅有三个实根,并指
又 F(a) = F(b) = 0,
故由Rolle定理,至少存在一点(a, b),使得 F ( )=0
16
f (b) f (a) F ( x) f ( x) f (a ) ( x a) ba f (b) f (a) F ' ( x) f ' ( x) . ba
x ( +),
f ( x) 即要证 x 1, x ( , ), e
令
f ( x) ( x) x , x ( , ). e
而 F ' ( ) 0,
北大版高等数学课后习题答案_完整版

习题1.1222222222222222222.,,.3,3.3,,313 2.961,9124,31.3,93,3,3.,,.,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,,.,..,:(1)|||1| 3.\;(2)|3| 2.0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-⋃数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解(1)222(1,3/2).(2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ⋃-<-<<<<<<<=⋃-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||.60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,).11,01,.1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-⋃-+∞>=++∞⋃-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.:6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|},10{|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a mA A m A a b ABC B A x x b C A x x a B m m C b a m m --+++><-=∈⋂=∅=⋃=⋂≥=⋂≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合= 若则中有最小数-=证7.(,),(,).1/10.|}.10n n nn a b a b mn b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.26426642642666613.(1,)1).13.(,).13||13,||1,3,11||3,(,).yy xx x xyxx x x x x x xx xx x xy y x=+∞===<>++=-∞+∞+++++≤≤>≤=++=≤∈-∞+∞证明函数内是有界函数.研究函数在内是否有界时,时证解习题1.4221.-(1)0);(2)lim;(3)lim;(4)lim cos cos.1)0,|,,||.,||,|,(2)0x ax a x a x a x ax aa x a e e x ax a x aεδεεεδδεε→→→→→=>===∀>=<<<-<=-<<=∀>直接用说法证明下列各极限等式:要使取则当时故证(222222,|| 1.||||||,|||||2|1|2|,1|2|)||,||.min{,1},||,1|2|1|2|||,lim(3)0,.||(1),01),1x ax a a x a x aax a x a x a x ax a x a a aa x a x a x aa ax a x ax a e e e e eeεεεεδδεεεε→---<-=+-<+≤-+<++-<-<=-<++-<=∀>>-=-<<-<<不妨设要使由于只需(取则当时故设要使即(.1,0ln1,min{,1},0,||,1|2|lim lim lim0,|cos cos|2sin sin2sin sin||,2222,|,|cos cosx aax aax a x a x ax a x a x aeex a x a e ee ae e e e e ex a x a x a x ax a x a x a x aεεεδδεεδεδ-→+→-→<+⎛⎫<-<+=<-<-<⎪+⎝⎭===+-+-∀>-==≤-=-<-取则当时故类似证故要使取则当|时...(4)2|,lim cos cos.2.lim(),(,)(,),().1,0,0|-|,|()|1,|()||()||()|||1||.(1)1(1)lim lim2x ax ax xx af x l a a a a a u f xx a f x lf x f x l l f x l l l Mxxεδδεδδ→→→→<==-⋃+==><<-<=-+≤-+<+=+-=故设证明存在的一个空心邻域使得函数在该邻域内使有界函数对于存在使得当 时从而求下列极限证3.:2002222200000221222lim(1) 1.222sin sin1cos11122(2)lim lim lim1.2222(3)0).22(4)lim.22332(5)lim22xx x xx xxxx x xxx xxxx xax xx xx xx x→→→→→→→→+=+=⎛⎫⎛⎫⎛⎫⎪ ⎪⎪-⎝⎭⎝⎭⎪====⎪⎪⎝⎭==>---=-------2.33-=-20103030300022********(23)(22)2(6)lim 1.(21)2 1.13132(8)lim lim lim 11(1)(1)(1)(1)(1)(2)lim lim (1)(1)x x x x x x x x x x x x x x x x x x x x x x x x x x x x →∞→→→-→-→-→--+==+==-+---⎛⎫-== ⎪+++-++-+⎝⎭+-==+-+214442100(2)31.(1)3244.63(1)1(1)12(10)lim lim lim .1(11)lim x x x nnnx y y x x x x n n ny y y x y n x y y→-→→→→→→→∞--==--+====-+++-+-===-1011001001010010120.(12)lim (0)./,(13)lim(0)0, , .(14)lim lim 1x m m m mnn n x n n m m m n nx nx x a x a x a a b b x b x b b a b m na x a x a ab n m b xb x b m n x --→--→∞→∞→∞==+++≠=+++=⎧+++⎪≠=>⎨+++⎪∞>⎩=+21.11/x =+033233223220312(1212)5lim(112)55lim .3(112)(16)0,l x x x xx x x x x x xx x x x x x a →→→→-+=+-+-=++-+==++-+>00im lim lim x a x a x a →+→+→+⎛⎫=⎛⎫=00lim lim x a x a →+→+⎛⎫=⎫==000222200000sin 14.lim 1lim 1sin sin (1)limlim lim cos .tan sin sin(2)sin(2)2(2)lim lim lim 100323tan 3sin 2tan 3sin 2(3)lim lim lim sin 5sin 5xx x x x x x x x x x x x e x x x x x x x x x x x x xx x x x x αααββββ→→∞→→→→→→→→→⎛⎫=+= ⎪⎝⎭=====-=-利用及求下列极限:00()1/0321.sin 5555(4)lim lim 2cos sinsin sin 22(5)lim lim cos .2(6)lim 1lim 1lim 1.(7)lim(15)x x x a x a kxxxk kk k x x x yy x x xxx a x a x a a x a x ak k k e x x x y →→+→→----→∞→∞→∞→=-===+--==--⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦-=51/(5)50100100lim(15).111(8)lim 1lim 1lim 1.5.lim ()lim ().lim ():0,0,0|-|().lim (y y x xx x x x ax x a x y e e x x x f x f x f x A x a f x A f x δδ--→+→∞→∞→∞→→-∞→→-∞⎡⎤-=⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+∞=-∞=+∞>><<>给出及的严格定义对于任意给定的存在使得当时):0,0,().A x f x A =-∞>∆><-∆<-对于任意给定的存在使得当时习题1.5222 21.(2)sin5.(1)0,|.,,|||||,0555()(2)(1)0,|sin5sin5|2|cos||sin|.22xx x axx x x xx a x ax aεδεεεδδεεε-==∀>=<≤<<=<<=+-∀>-=<试用说法证明连续在任意一点连续要使只需取则当时有连续.要使由于证000000555()2|cos||sin|5||,5||,||,225,|||sin5sin5|,sin55()()0,0||()0.(),()/2,0||(x a x ax a x a x ax a x a x x a y f x x f x x x f xf x x f x x xf xεεεδδεδδεδδ+-≤--<-<=-<-<==>>-<>=>-<只需取则当时有故在任意一点连续.2.设在处连续且证明存在使得当时由于在处连续对于存在存在使得当时证000000000000 )()|()/2,()()()/2()/20.3.()(,),|()|(,),?(,),.0,0|||()()|,||()||()|||()()|,||.f x f x f x f x f x f xf x a b f x a bx a b f x x xf x f x f x f x f x f x f xεδδεε-<>-=>∈>>-<-<-≤-<于是设在上连续证明在上也连续并且问其逆命题是否成立任取在连续任给存在使得当时此时故在连续其证0001,,(),()|11,ln(1),1,0,(1)()(2)()arccos, 1.0;lim()lim1(0),lim()(0)x x xxf x f xxax xxf x f xa x xa x xf x f f x fπ→-→→+⎧=≡⎨-⎩+≥⎧<==⎨<+≥⎩⎪⎩=====逆命题是有理数不真例如处处不连续但是|处处连续.是无理数4.适当地选取,使下列函数处处连续:解(1)11112sin2limsin31.(2)lim()lim ln(1)ln2(1),lim()lim arccos(1)ln2,ln2.5.3:(1)lim cos lim cos0 1.(2)lim(3)lim xx x x xx xxxxxaf x x f f x a x a fae eπ→→+→+→-→-→+∞→+∞→→==+====-===-=====利用初等函数的连续性及定理求下列极限sin22sin33.(4)lim arctan arctan1.4xxx xeπ→∞→∞====()()(ln ())()(5)6.lim ()0,lim (),lim)().lim)()lim)x g x b x x x x x x g x f x g x x x x x f x a g x b f x a f x e →→→→→=====>====设证明证0lim [(ln ())()]ln 22.7.,,(1)()cos ([]),,(2)()sgn(sin ),,,,1,(3)()1,1/2, 1.1(4)()x x f x g x b a b e e a f x x x n f x x n n x x f x x x x f x ππ→===-∈=∈⎧≠==⎨=⎩+=Z Z 指出下列函数的间断点及其类型若是可去间断点请修改函数在该点的函数值,使之称为连续函数:间断点第一类间断点.间断点第一类间断点.间断点第一类间断点.,011,sin,12,11,01,2(5)(),12,2,1,2 3.1x x x x x x f x x x x x xπ⎧≤≤⎪=⎨<≤⎪-⎩⎧≤≤⎪-⎪=<≤=⎨⎪⎪<≤-⎩间断点第二类间断点.间断点第一类间断点.0000008.(),(),()()()()()()()()()()(()())()()()()()0,()().y f x y g x x h x f x g x x f x g x x h x f x g x x x g x f x g x f x x x f x g x x f x g x D x ϕϕ===+==+=+-=≡=R R 设在上是连续函数而在上有定义但在一点处间断.问函数及在点是否一定间断?在点一定间断.因为如果它在点连续,将在点连续,矛盾.而在点未必间断.例如解习题1.600001.:()lim (),lim (),,,,()0,()0,[,],,(,),()0.2.01,,sin ,.(x x P x P x P x A B A B P A P B P A B x A B P x y y x x f x εε→+∞→-∞=+∞=-∞<<>∈=<<∈=-R 证明任一奇数次实系数多项式至少有一实根.设是一奇数次实系数多项式,不妨设首项系数是正数,则存在在连续根据连续函数的中间值定理存在使得设证明对于任意一个方程有解且解是唯一的令证证000000000000000212121212121)sin ,(||1)||1||,(||1)||1||,[||1,||1],,[||1,||1],().,()()(sin sin )||0,.3.()(,x x f y y y y f y y y y f y y x y y f x y x x f x f x x x x x x x x x f x a b εεεεε=---=--+<-≤+≥+->≥--+∈--+=>-=---≥--->在连续由中间值定理存在设故解唯一设在1212112212121121121112212221212121212),,(,),0,0,(,)()()().()(),.()(),()()()()()()()(),[,]x x a b m m a b m f x m f x f m m f x f x x f x f x m f x m f x m f x m f x m f x m f x f x f x m m m m m m x x ξξξ∈>>∈+=+==<+++=≤≤=+++连续又设证明存在使得如果取即可设则在上利用连续函数的中间值定理证.4.()[0,1]0()1,[0,1].[0,1]().()(),(0)(0)0,(1)(1)10.,01.,,(0,1),()0,().5.()[0,2],(0)(2).y f x f x x t f t t g t f t t g f g f t t g t f t t y f x f f =≤≤∀∈∈==-=≥=-≤∈====即可设在上连续且证明在存在一点使得如果有一个等号成立取为或如果等号都不成立则由连续函数的中间值定理存在使得即设在上连续且证明证12121212[0,2],||1,()().()(1)(),[0,1].(0)(1)(0),(1)(2)(1)(0)(1)(0).(0)0,(1)(0),0, 1.(0)0,(0),(1),,(0,1)()(1x x x x f x f x g x f x f x x g f f g f f f f g g f f x x g g g g f ξξξ-===+-∈=-=-=-=-====≠∈=+在存在两点与使得且令如果则取如果则异号由连续函数的中间值定理存在使得证12)()0,, 1.f x x ξξξ-===+取第一章总练习题221.:581 2.3|58|1422.|58|6,586586,.3552(2)33,52333,015.5(3)|1||2|1(1)(2),2144,.22|2|,.2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2.解222312312,4,(2).32,41(2), 4.313.1.22,4(1)44,0.1,0.4.:1232(1)2.222221211,.22123222n n y x y y y x y y x x x x x x x x x x n n n n ->=--≤⎧⎪=⎨->⎪⎩<+≥-<++<++>≥-≠+++++=-+==++的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则解证1231111121211222112312222222124(1)(1)3222,22221..1(1)(2)123(1).(1)1(11)1(1)1,(1)(1)n n n n n n n n n n n n n n n n n n n n n x nx x x nxx x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===--即等式对于也成立故等式对于任意正整数皆成立当时证1,1212.1(1)123(1)(1)(1)n n n nnn n x nx x x nxn x n xx +--++++++++=++-等式成立设等式对于成立,则122122112211221221(1)(1)(1)(1)1(1)(12)(1)(1)1(1)(2)(1)(1)1(1)(2)(1)(1)1(2)(1),(1)1n n n n n n n n n n n n n n n n n n n x nx x n x x n x nx x x n x x n x nx x x x n x n x nx x x x n x n x n x x n ++++++++++-+++-+=--+++-++=--+++-++=--+++-++=--+++=-+即等式对于成立.,.|2|||25.()(1)(4),(1),(2),(2);(2)();(3)0()(4)224211222422(1)(4)1,(1)2,(2)2,(2)0.41224/,2(2)()x x f x xf f f f f x x f x x f f f f x x f x +--=---→→----------==--==-====----≤-=由归纳原理等式对于所有正整数都成立设求的值将表成分段函数当时是否有极限:当时是否有极限?解00022222222;2,20;0,0.(3).lim ()2,lim ()0lim ().(4).lim ()lim (4/)2,lim ()lim 22lim (),lim () 2.6.()[14],()14(1)(0),x x x x x x x x x x x f x f x f x f x x f x f x f x f x x f x x f →-→+→-→--→--→-+→-+→--→-⎧⎪-<≤⎨⎪>⎩==≠=-======--无因为有设即是不超过的最大整数.求003,;2(2)()0?(3)()?391(1)(0)[14]14,1467.[12]12.244(2).lim ()lim[14]14(0).(3).()12,()x y x x f f f x x f x x f f f f x y f f x f x →→+⎛⎫⎪⎝⎭==⎛⎫⎡⎤⎡⎤=-=-=-=-+=-=-=- ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦=-=-==-的值在处是否连续在连续因为不连续因为解111111.7.,0,,:(1)(1);(2)(1).n n n n n n a b a b n b a b a n b n a b a b a++++=-≤<--<++<--设两常数满足对一切自然数证明1111111()()(1),(1).118.1,2,3,,1,1.:{},{}..111,1,7,111n n n n n n n n n n n n nn n n n n n n b a b a b b a a b b b b n b b a b a b a n a b an a b n n a b a b a b n nn ++--+++--+++=<+++=+--->+-⎛⎫⎛⎫==+=+ ⎪ ⎪⎝⎭⎝⎭<+=++⎛+ ⎝类似有对令证明序列单调上升而序列单调下降,并且令则由题中的不等式证证=11111111111(1)1,111111111(1)11(1)1111111,11111.1111(1)11n n nn n nn nn nn n n n n n n n n n n n n n n n n n n n n n +++++++⎫⎛⎫-+⎪ ⎪+⎛⎫⎭⎝⎭<++ ⎪⎝⎭-+⎛⎫⎛⎫⎛⎫+-+<++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+-+<+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎛⎫⎝⎭++< ⎪+⎝⎭111111121111111111(1)1111(1)11111111111111111.1111111.111n n nn n nn n n n n n n n n n n n n n n n n n nn n n n n +++++++⎛⎫-+⎪ ⎪+⎝⎭-+⎛⎫⎛⎫⎛⎫++<+-+ ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+<+-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++<+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎛⎫++>+ ⎪++⎝⎭⇔我们证明22111211111(1)11..(1)(1)1111,1,1,11.nn n n n n n n n n n n e e e n n n n ++++>+++++⇔>++⎛⎫⎛⎫⎛⎫⎛⎫→∞+→+→+<<+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭最后不等式显然成立当时故9.求极限22222222221111lim 1111234111111112341324351111().2233442210.()lim (00, ()lim n n n n n n n n n n n n nxf x a nx ax nxf x nx a →∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭++==→→∞=≠+===+作函数)的图形.解解0;1/,0.x x ⎧⎨≠⎩1111.?,()[,]|()|,[,].,(),[,],max{||,||}1,|()|,[,].,|()|,[,],(),[,].12.f x a b M f x M x a b M N f x N x a b M M N f x M x a b M f x M x a b M f x M x a b <∀∈≤≤∀∈=+<∀∈<∀∈-<<∀∈1在关于有界函数的定义下证明函数在区间上为有界函数的充要条件为存在一个正的常数使得设存在常数使得M 取则有反之若存在一个正的常数使得则证12121212:()()[,],()()()()[,].,,|()|,|()|,[,].|()()||()||()|,|()()||()||()|,[,].113.:()cos 0y f x y g x a b f x g x f x g x a b M M f x M g x M x a b f x g x f x g x M M f x g x f x g x M M x a b f x x x xπ==+<<∀∈+≤+<+=<∀∈==证明若函数及在上均为有界函数则及也都是上的有界函数存在证明在的任一证,0().11(,),00,,,(),1()(,)0,()(21/2)cos(21/2)0,21/20().n x f x M n n M f n M n nf x f x n n n x f x δδδδδδπ→->><>=>-=→=++=→∞+→n 邻域内都是无界的但当时不是无穷大量任取一个邻域和取正整数满足和则故在无界.但是x 故当时不是无穷大量证11111000114.lim (1)ln (0).1ln 1,ln ln(1),.lim lim 10.ln(1)ln(1)lim lim ln(1)ln lim(1)ln 1,ln (1)ln ().ln(1)15.()()nn nn n n n n y y y y y n nn n x x x xx y x y n y x n y y y y e y y xn x x n y f x g x →∞→∞→∞→→→-=>-==+==-=++=+=+==-=→→∞+证明令则注意到我们有设及在实轴上有证00002022222220000.:()(),,()lim ()lim ()().1cos 116.lim.22sin 1cos 2sin 1sin 12lim lim lim lim 1422n n n n n x x x y y f x g x x x x f x f x g x g x x x x x y y x x y y →∞→∞→→→→→→===-=⎛⎫-==== ⎪⎝⎭定义且连续证明若与在有理数集合处处相等,则它们在整个实轴上处处相等.任取一个无理数取有理数序列证明证证0011000000001.2ln(1)17.:(1)lim 1;(2)lim .ln(1)(1)lim lim ln(1)ln lim(1)ln 1.(1)11(2)lim lim lim lim ln(1)ln(1)lim1.1x a xa y x y y y y y x a a a x x aa ax x x y y a a y e e e y x y y y e ye e e e e y e e e y x x x y ye e +→→→→→+→→→→→=+-==+=+=+==---====++==证明证0111018.()lim ()0,()lim ()()0.|()|,0||.0,0,0|||()|/.min{,},0||,|()()||()||()|,li x ax ay f x a f x y g x a f x g x g x M x a x a f x M x a f x g x f x g x M Mδεδδεδδδδεε→→====<<-<>><-<<=<-<=<=设在点附近有定义且有极限又设在点附近有定义,且是有界函数.证明设对于任意存在使得当时令则时故证m ()()0.x af xg x →=19.()(,),,()()|()|() () ()(),()(,).y f x c g x f x f x c g x c f x cc f x c g x g x =-∞+∞≤⎧⎪=>⎨⎪-<-⎩-∞+∞设在中连续又设为正的常数定义如下 当当当试画出的略图并证明在上连续0000000000000|()|,0,||lim ()lim ()()().(),0,||()lim ()lim ().(),().0,,0,x x x x x x x x f x c x x g x f x f x g x f x c x x f x c g x c c g x f x c g x c c δδδδεεδ→→→→<>-<===>>-<>=====><>一若则存在当时|f(x)|<c,g(x)=f(x),若则存在当时,g(x)=c,若则对于任意不妨设存在使证()0000121212|||()|.||.(),()(),|()()||()|,(),(),|()-()|0.()()min{(),}max{(),}().max{(),()}(|()()|()())/2.min x x f x c x x f x c g x f x g x g x f x c f x c g x c g x g x g x f x c f x c f x f x f x f x f x f x f x δεδεε-<-<-<≤=-=-<>==<=+--=-++得当时设若则若 则二利用证121212123123123111123{(),()}(|()()|(()())/2.120.()[,],[()()()],3,,[,].[,],().()()(),(),.()min{(),(),()},f x f x f x f x f x f x f x a b f x f x f x x x x a b c a b f c f x f x f x f x c x f x f x f x f x f ηηη=--++=++∈∈======设在上连续又设其中证明存在一点使得若则取即可否则设证31231313000000()min{(),(),()},()(),[,],,[,],().21.()(),()g(),,.0()g()()g()x f x f x f x f x f x f x x c a b f c y f x x g x x x kf x l x x k l l kf x l x x kf x l x x ηη=<<∈==+=+≠+在连续根据连续函数的中间值定理存在一点使得设 在点连续而在点附近有定义但在不连续问是否在连续其中为常数如果在连续;如果在解,l 0,000000||()[[()lg()]()]/.22.Dirichlet ..,()1;,()0;lim (),()11(1)lim 0;(2)lim (arctan )sin 12n n n n x x x x x g x kf x x kf x l x x x x D x x x D x D x D x x x x x →→∞→+∞=+-''→→→→+⎛⎫= ⎪+⎝⎭不连续,因否则将在连续证明函数处处不连续任意取取有理数列则取无理数列则故不存在在不连续.23.求下列极限:证222001/112132100;2tan 5tan 5/5(3)lim lim 5.ln(1)sin [[ln(1)]/]sin /1lim(1).24.()[0,),0().0,(),(),,().{x x y x y n n x x x x x x x x x x x y e y f x f x x a a f a a f a a f a π→→→→+=====++++=+==+∞≤≤≥===设函数在内连续且满足设是一任意数并假定一般地试证明11},lim .lim ,(),().(),{}()0(1,2,),{}n n n n n n n n n n n n a a l a l f x x f l l a f a a a a f a n a →∞→∞++====≤=≥=单调递减且极限存在若则是方程的根即单调递减.又单调递减有下界,证111lim ,lim lim ()(lim )().25.()(,),:(0)1,(1),()()().()((,)).()()().()()n n n n n n n n n x n n a l a l a f a f a f l y E x E E e E x y E x E y E x e x E x x E x E x E nx E x +→∞→∞→∞→∞======-∞+∞==+==∀∈-∞+∞++==故有极限.设则设函数在内有定义且处处连续并且满足下列条件证明用数学归纳法易得于是证11.,()(11)(1).1(0)(())()()(),().().1111,(1)()()()(),().11()()().,n n n n n n nn mmm n n n E n E E e E E n n E n E n e E n E n e E n e n E E n E n E e E E e n n n n m E E m E e e r E n n n -=++====+-=-=--======⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭设是正整数则于对于任意整数对于任意整数即对于所有有理数lim ().,,(),()lim ()lim ().nnn r x x x x n n n r e x x E x E x E x e ee e →∞→∞→∞=→====n 对于无理数取有理数列x 由的连续性的连续性习题2.1201.,.,.()2(0)(1),;(2),?(3)lim ,?x l O x x m x x x l x x m mx mx ∆→=≤≤∆∆∆∆∆∆设一物质细杆的长为其质量在横截面的分布上可以看作均匀的现取杆的左端点为坐标原点杆所在直线为轴设从左端点到细杆上任一点之间那一段的质量为给自变量一个增量求的相应增量求比值问它的物理意义是什么求极限问它的物理意义是什么2222222000(1)2()22(2)22(2).2(2)(2)2(2).(3)lim lim 2(2)4.lim x x x m x x x x x x x x x x x m x x x m x x x x x x x x m mx x x x x x∆→∆→∆→∆=+∆-=+∆+∆-=∆+∆∆∆+∆∆==+∆+∆∆∆∆∆∆=+∆=∆∆是到那段细杆的平均线密度.是细杆在点的线密度.解33332233222 00002.,:(1);(2)0;(3)sin5.()(1)lim(33)lim lim(33)3. (2)lim limlimxx xx xxy ax y p y xa x x axyxx x x x x x xa a x x x x axxyx∆→∆→∆→∆→→→==>=+∆-'=∆+∆+∆+∆-==+∆+∆=∆'==∆=根据定义求下列函数的导函数解00000limlim5(2)52cos sinsin5()sin522(3)lim lim55(2)552cos sin sin5(2)2222lim5lim cos lim5522xxx xx x xx x xx x xyx xx x x xx xx→→∆→∆→∆→∆→∆→===+∆∆+∆-'==∆∆+∆∆∆+∆==∆∆5cos5.2xx=00223.()(,()):(1)2,(0,1); (2)2,(3,11).(1)2ln2,(0)ln2,1ln2(-0),(ln2) 1.(2)2,(3)6,:116(3).4.2(0)(,)(0,0)xxy f x M x f xy M y x By y y x y xy x y y xy px p M x y x y===+''==-==+ ''==-=-=>>>求下列曲线在指定点处的切线方程切线方程切线方程试求抛物线上任一点处的切线斜率解,0,.2pF x⎛⎫⎪⎝⎭,并证明:从抛物线的焦点发射光线时其反射线一定平行于轴2000,().(),.,2,.2,.p py y M PMN Y y X x yy p y x N X y X x X x x y p p FN x FM p x FN FNM FMN M PQ x PMQ FNM FMN '===-=--=-=-=-=+=====+=∠=∠∠=∠=∠过点的切线方程:切线与轴交点(,0),故过作平行于轴则证2005.2341,.224,1,6,4112564(1),4 2.:6(1),.444y x x y x y x x y k y x y x y x y x =++=-'=+====⎛⎫-=-=+-=--=-+ ⎪⎝⎭曲线上哪一点的切线与直线平行并求曲线在该点的切线和法线方程切线方程:法线方程解323226.,,;(),,, (1)():(2)();(3)().()lim ()lim,lim ()limr R r R r R r R r g r GMrr R R g r R M G GM r R rg r r g r g r r GMr GMr R g r g r R RGM g r r →-→-→+→+⎧<⎪⎪=⎨⎪≥⎪⎩≠====离地球中心处的重力加速度是的函数其表达式为其中是地球的半径是地球的质量是引力常数.问是否为的连续函数作的草图是否是的可导函数明显地时连续.解,2lim (),()r R GMg r g r r R R→-==在连续.(2)33(3)()2(),()(),().r R g r GM GMg R g R g R g r r R R R-+-≠'''==-≠=时可导.在不可导227.(),:(1,3)(),(0)3,(2) 1.3(),()2.34111113,,3(),()3.2222P x y P x P P a b c P x ax bx c P x ax b b a b b a c a b P x x x ''===++=⎧⎪'=++=+=⎨⎪+=⎩==-=-+==-++求二次函数已知点在曲线上且解3222222222228.:(1)87,24 1.(2)(53)(62),5(62)12(53)903610.(3)(1)(1)tan (1)tan ,(2)tan (1)sec .9(92)(56)5(9)51254(4),56(56)y x x y x y x x y x x x x x y x x x x x y x x x x x x x x x x x x y y x x '=++=+'=+-=-++=+-'=+-=-=+-+++-+++'===++求下列函数的导函数22.(56)122(5)1(1),.11(1)x x y x y x x x ++'==-+≠=---23322222226(6)(1),.1(1)1(21)(1)1(7),.(8)10,1010ln1010(1ln10).sin cos sin (9)cos ,cos sin .(10)sin ,sin cos (s x x x x xx x x x x x x x x y x y x x x x x e e x x x x y y e e ey x y x x x x x xy x x y x x x x x y e x y e x e x e -'=≠=--+++-++-+-'==='==+=+-'=+=-+'==+=in cos ).x x +00000001001100009.:()()()(),()0().()()(1)(2).()()(),()0()()()()()()(()()())()(),(m k k k k k P x P x x x g x g x x P x m x P x k x P x k k P x x x g x g x P x k x x g x x x g x x x kg x x x g x x x h x h x ---=-≠'->=-≠''=-+-'=-+-=-定义若多项式可表为则称是的重根今若已知是的重根,证明是的重根证00)()0,()(1)kg x x P x k '=≠-由定义是的重根.000000010.()(,),()(),().()(0),(0)0.()(0)()(0)()(0)(0)lim lim lim (0),(0)0.()()11.(),lim 22x x x x f x a a f x f x f x f x f f f x f f x f f x f f f f x x xf x x f x x f x x f x→→→∆→--=''=-----'''==-=-=-+∆--∆'=∆若在中有定义且满足则称为偶函数设是偶函数,且存在试证明设在处可导证明证=000000000000000000000().()()()()()()1lim lim 22()()()()1lim 2()()()()11lim lim [()22x x x x x x f x x f x x f x x f x f x x f x x x x f x x f x f x x f x x x f x x f x f x x f x f x x x ∆→∆→∆→∆→∆→+∆--∆+∆--∆-⎡⎤=-⎢⎥∆∆∆⎣⎦+∆--∆-⎡⎤=+⎢⎥∆-∆⎣⎦+∆--∆-⎡⎤'=+=+⎢⎥∆-∆⎣⎦证002()]().12.,(0/2)()((),()):.f x f x y x t t P t x t y t OP x t t π''==<<=一质点沿曲线运动且已知时刻时质点所在位置满足直线与轴的夹角恰为求时刻时质点的位置速度及加速度.222222422222()()()tan ,()tan ,()()(tan ,tan ),()(sec ,2tan sec ),()(2sec tan ,2sec 4tan sec )2sec (sec ,2tan ).y t x t x t t y t t x t x t t t v t t t t v t t t t t t t t t ===='=''=+=位置解1/1/1/1/1/000013.,0()10, 00.1111(0)lim lim 1,(0)lim lim 0.1114.()||(),()()0.().()limxx x x x x x x x x xx f x ex x x x e e f f x e xe f x x a x x x a a f x x a f a ϕϕϕ→-→-→+→+-→⎧≠⎪=+⎨⎪=⎩=++''======++=-=≠='=求函数在的左右导数设其中在处连续且证明在不可导-+解证()()()()(),()lim ()().a x a a x x x a x a a a f a x a x aϕϕϕϕ-→---''=-==≠--+-f习题2.2()()()22221.,:111(2)[ln(1)],.[ln(1)](1).111(3)2.22x x xx x xx xx x x x''=-=-='''-=-=-=---'''⎡==⎣'''⎡=+=⎣=下列各题的计算是否正确指出错误并加以改正错错错3322222()221(4)ln|2sin|(14sin)cos,.2sin1ln|2sin|(14sin cos).2sin2.(())()|.() 1.(1)(),(0),(),(sin);(2)(),(sin);(3)u g xx x x xx xx x x xx xf g x f u f x xf x f f x f xd df x f xdx dx=='⎡⎤+=+⎣⎦+'⎡⎤+=+⎣⎦+''==+''''错记现设求求[]()[][]2222223(())(())?.(1)()2,(0)0,()2,(sin)2sin.(2)()()224.(sin)(sin)(sin)2sin cos sin2.(3)(())(()),(())(())().f g x f g xf x x f f x x f x xdf x f x x x x xdxdf x f x x x x xdxf g x f g x f g x f g x g x''''''====''===''==='''''=与是否相同指出两者的关系与不同解()()()222233312232323.2236(1),.111(2)sec,(cos)(cos)(cos)(cos)(sin)tan sec.(3)sin3cos5,3cos35sin5.(4)sin cos3,3sin cos cos33sin sin33sinx xy yx x xy x y x x x x x x x y x x y x xy x x y x x x x x---'==-=----'''===-=--='=+=-'==-=求下列函数的导函数:2(cos cos3sin sin3)3sin cos4.x x x x x x x-=22222222222232222222241sin 2sin cos cos (1sin )(sin )2(5),cos cos sin 2cos 2(1sin )(sin ).cos 1(6)tan tan ,tan sec sec 13tan sec tan tan (sec 1)tan .(7)sin ,s ax ax x x x x x x x y y x x x x x x x xy x x x y x x x x x x x x x y e bx y ae +-+-'==++='=-+=-+=-=-='==5422in cos (sin cos ).(8)cos 5cos sin 11(9)ln tan ,sec 24224tan 2411112tan cos 2sin 24242ax ax bx be bx e a bx b bx y y x x y y x x x x ππππππ+=+'==-=⎛⎫⎛⎫'=+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭==⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭222cos 42411sec .cos sin()211()()1(10)ln (0,),.22()x x x x x a x a x a x a y a x a y a x a a x a x a x a ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭===+-++--'=>≠±==+-+-22222222224.:1(1)arcsin (0),11111(2)arctan (0),.1(3)arccos (||1),2arccos 1111(4)arctan ,.111(5)ar 2xy a y aa a x y a y a a a a a x x a y x x x y x x y y x x x xa y '=>==-'=>==+⎛⎫+ ⎪⎝⎭'=<=-'===-++=求下列函数的导函数csin (0),x a a>22222222(6)ln(0)212(7)arcsin,1ya xy aayxy xx'=+==+=>⎛⎫'=++===≠±+22222222221.112sgn(1)2.111(8)(0).212211sec2()tan()cos()s22x xyx xxxy a bxyxx xa b a b a b a b--'===++-⎫=>≥⎪⎪⎭⎛⎫'= ⎪⎝⎭==++-++-2in21.cos(9)(1ln(1ln(1ln(1 /.(10)(11)(12)xa b xy yy yy yy yy y=+=+++=++++ '=+⎡⎤'='=='==y y'==(13)ln(121(14)(ln(1)ln(31)ln(2),331211131321211.13132(15),(1).(16)xxxx e x e x x e y x y y x y x x x y y x x x y y x x x y e e y e e e e e ⎛⎫'==+==-=-+++-'-=++-+--⎡⎤'=++⎢⎥-+-⎣⎦'=+=+=+11112(0).ln ()ln ln ln ln .aaxa a xaaxa x a a a x a a x a ax a a x y x a a a y a x a a ax a aa aa x a aa x a a a ----=++>'=++=++222225.()1()()84,tan (),24001001()arctan ,()100110t x t t x t t t t t t t t θθθθ===='==+2一雷达的探测器瞄准着一枚安装在发射台上的火箭,它与发射台之间的距离是400m.设t=0时向上垂直地发射火箭,初速度为0,火箭以的匀加速度8m/s 垂直地向上运动;若雷达探测器始终瞄准着火箭.问:自火箭发射后10秒钟时,探测器的仰角的变化速率是多少?解222110,(10)0.1(/).505010101006.,2m t s θπθ'==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭弧度在图示的装置中飞轮的半径为且以每秒旋转4圈的匀角速度按顺时针方向旋转.问:当飞轮的旋转角为=时,活塞向右移动的速率是多少?20()2cos8()16sin811()8,,,()16.2161616m/s.x t t x t t t t t x ππππαπππ='=-'====-活塞向右移动的速率是解习题2.323222(1)(1).1.0,?(1)10100.1(2)2(3)(1cos)2sin ,222.:0,()().()().()()3.()()(0),()()(0).o o o x o o o x x y x x x y x xy x x x x x x x x x x x x xx x x x x x αααααβ=→=++===-=→=====→=→当时下列各函数是的几阶无穷小量阶.阶.阶.已知当时试证明设试证明证00(1)(1)(1)()()()(0).()()()().()()().4.(1)sin ,/4.sin cos ,1,1.444(2)(1)(0).o o o o o o o x x x x x x x x x x xx x x x y x x x y x x x y dy dx y x y ααβαβαβππππα+=→+=+=+=+=⎛⎫⎫⎫''===+=+=+ ⎪⎪⎪⎝⎭⎭⎭=+>':上述结果有时可以写成计算下列函数在指定点处的微分:是常数证122(1),(0),.5.1222(1)1,,.11(1)(1)(2),(1).(1).26.(1),3 3.001,11,(3).222.001x x x x x x y dy dx x dx y y dy x x x x y xe y e xe e x dy e x dx y x x x y y αααα-'=+==-'==-+=-=-++++'==+=+=+=≠-''=-∆=求下列各函数的微分:设计算当由变到时函数的增量和向相应的微分.22解 y =-(x -1)1222113333332220.0010.0011,.2.00127..1.162(1) 2.002.5328.:11(1)(0).0,.33(2)()()(,,).2()2()dy y x y a a xy y y x x a y b c a b c x a y b y ---=-=-==+=⎛⎫''+=>+==- ⎪⎝⎭-+-='-+-=求下列方程所确定的隐函数的导函数为常数0,.x ay y b-'=--。
第四章 微积分中值定理与泰勒公式

第四章 微积分中值定理与证明4.1 微分中值定理与证明一 基本结论 1.连续性定理:定理1(零点定理) 若()f x 在[,]a b 连续,()()0f a f b ⋅<,则(,)a b ξ∃∈,使得 ()0f ξ=。
定理2(最值定理) 若()f x 在[,]a b 连续,则存在12,x x 使得12(),()f x m f x M ==. 其中,m M 分别是()f x 在[,]a b 的最小值和最大值.定理3(介值定理)若()f x 在[,]a b 上连续,则存在最小值和最大值分别是,m M ,对 于任意的[,]C m M ∀∈,都存在[,]a b ξ∃∈使得()f C ξ=.更一般的结论:若()f x 在[,]a b 上连续,对1x ∀,2[,]x a b ∈,(假设12()()f x f x <),则12[(),()]C f x f x ∀∈,都存在12(,)x x ξ∈,使得()f C ξ=。
2.微分中值定理:定理1(费玛定理)如果0x 是极值点,且()f x 在0x 可导, 则0()0f x '=.定理2 (罗尔定理) 若()f x 在[,]a b 连续,在(,)a b 可导,()()f a f b =,则(,)a b ξ∃∈, 使得()0f ξ'=.定理3(拉格朗日定理)若()f x 在[,]a b 连续,在(,)a b 可导,则(,)a b ξ∃∈,使得()()()()f b f a b a f ξ'-=-.定理4(柯西定理) 若()f x ,()g x 在[,]a b 连续,在(,)a b 可导,且()0g x '≠,则 (,)a b ξ∃∈使得()()()()()()f b f a fg b g a g ξξ'-='-.定理5(泰勒公式和麦克劳林公式)(数三不要求)泰勒公式:设()f x 在0x 的某个邻域内0()U x 具有1n +阶导数,则0()x U x ∀∈,有 ()(1)1000000()()()()()()...()()!(1)!n n nn fx ff x f x f x x x x x x x n n ξ++'=+-++-+-+,其中ξ在x 和0x 之间,常常把ξ表示为00()x x x θ+-,01θ<<.麦克劳林公式:设()f x 在0的某个邻域内(0)U 具有1n +阶导数,则(0)x U ∀∈,有()(1)1(0)()()(0)(0)...!(1)!n n nn fff x f f x x xn n ξ++'=+++++,其中ξ在0和x 之间.3.连续定理和微分中值定理特点:(1)证明存在性,使函数在一点的函数值满足某个等式,常应用连续性定理:零点定 理、最值定理、介值定理,其中最常用的是零点定理.(2)证明存在性,使函数在一点的导函数值满足某个等式,常应用微分中值定理:费玛定理、罗尔定理、拉格朗日定理、柯西定理、泰勒公式,其中最常用的是罗尔定理.(3)费玛定理、罗尔定理、拉格朗日定理仅仅涉及一个函数,而柯西中值定理涉及到两个函数;(4)若题设涉及到高阶导数,常应用到泰勒公式和麦克劳林公式;二 基本方法题型1 方程的根的讨论(函数的零点)1.方程根(函数的零点)的存在性:主要应用零点定理.2.方程根(函数的零点)的个数的讨论:求出单调区间,对每个单调区间应用零点定理来判断是否有零点,即是否有根,从而得到函数在给定的区间上根的个数以及根所处的位置(范围).例1 证明:当230a b -<时,实系数方程320x ax bx c +++=只有唯一实根.证明 令32()f x x ax bx c =+++,则2()32f x x ax b '=++,由于230a b -<,于是2()320f x x ax b '=++>,即()f x 单调递增的.由于lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞所以()y f x =与x 轴有且仅有一个交点.即方程320x ax bx c +++=只有唯一实根.例2 证明:方程1ln 0ex x +=只有一个实根.证明 设1()ln e f x x x =+,则()ln 1f x x '=+,令()0f x '=,解得1ex =.显然在10,e⎛⎫ ⎪⎝⎭上,()0f x '<,于是()f x 在10,e ⎛⎫⎪⎝⎭单调减少;在1,e ⎛⎫+∞ ⎪⎝⎭上,()0f x '>,于是()f x 在1,e ⎛⎫+∞⎪⎝⎭单调增加,而10e f ⎛⎫= ⎪⎝⎭,所以方程1ln 0e x x +=只有一个实根.例3 讨论方程33x x c -=中的常数c ,在什么情况仅有一个根,两个根,三个根?解 令3()3f x x x c =--,则2()33f x x '=-,令()0f x '=,解得1x =±.于是在(,1)-∞-上,()f x 单调增加,在(1,1)-上,()f x 单调减少;在(1,)∞上,()f x 单调增加。
《高等数学》(北大第二版 )6-7多元函数的微分中值定理与泰勒公式

例 , = 2, f 在(x0 , y0 )的泰勒多项式是 如 n
f (x0 , y0 ) + f x (x0 , y0 )∆x + f y (x0 , y0 )∆y
1 2 + [ f xx (x0 , y0 )∆x2+ 2 fxy (x0 , y0 )∆x∆y + f yy (x0 , y0 )∆y ]. 2! π 2 例1 求函数 f (x, y) = sin( x y) 在点(1,1)的二阶泰勒多 2
ϕ(1) −ϕ(0) = ϕ′(θ ),
f (x0 + ∆x, y0 + ∆y)− f (x0 , y0 )
∂f ∂f = (x0 +θ∆x, y0 +θ∆y)∆x + (x0 +θ∆x, y0 +θ∆y)∆y. ∂y ∂x
证毕.
推论 若函数z=f(x,y)在区域D 内具有连续的偏导数且
∂f ∂f 满足 ≡ 0, ≡ 0, 证明:f(x,y)在D内为一常数. ∂y ∂x 证 在区域D内任意取定一点P0 (x0 , y0 ). ∀P(x, y) ∈D,
1. 二元函数的微分中值定理
定理1 定理1
(二元函数的拉格朗日中值公式) 二元函数的拉格朗日中值公式
又假定D中有两个点P0 ( x0 , y0 )与P ( x0 + ∆x, y0 + ∆y ) , 1 并且P0到P的直线P0 P ⊂ D, 则存在θ , 0 < θ < 1, 使得 1
f ( x0 + ∆x, y0 + ∆y ) = f ( x0 , y0 ) ∂f ∂f + ( x0 + θ∆x, y0 + θ∆y )∆x + ( x0 + θ∆x, y0 + θ∆y )∆y. ∂x ∂y 或写成
《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。
A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。
[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。
[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。
泰勒公式

f ( x) sin( x k ) 2 k 2m 0, (k ) (m 1, 2 ,) f (0) sin k 2 (1) m1 , k 2m 1
(k )
x3 x5 x 2 m1 sin x x (1) m1 R2m ( x) 3! 5! (2m 1) !
x x e e 1 x x n1 2! n! ( n 1)!
x
2
n
x
(0 1).
x2 xn x 由公式可知 e 1 x 2! n!
估计误差 (设 x 0)
ex ex Rn ( x ) x n 1 x n1 (0 1). ( n 1)! ( n 1)! 1 1 取x 1, e 1 1 2! n! 3 e 其误差 Rn . ( n 1)! ( n 1)!
f ( x0 ) f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 )n Rn ( x ) n!
f ( n1) ( ) 其中 Rn ( x ) ( x x0 )n1,介于x与x0之间. ( n 1)!
2 f (1) f ( x ) f (1) f (1)( x 1) ( x 1) 2! (4)
f
(1)
4!
( x 1)
4
5 f ( 5 ) ( ) ( x 1) 5!
例3 将f ( x) 1 3x 5 x 2 x 化为含
2 3
f ( 1 ) f ( x ) f ( 1 ) f ( 1 )( x 1 ) ( x 1) 2 解 2! (4) ( 1 ) f f ( ) 3 ( x 1) ( x 1) 4 3! 4!