江苏省2014年高考数学(文)二轮复习专题提升训练:21 坐标系与参数方程
2014年全国高考试卷极坐标与参数方程部分汇编练习-1

2014年全国高考试卷极坐标与参数方程部分汇编1. (2014安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩,(t 为参数),圆C的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为()A .14B .214C .2D .222. (2014广东理14)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为____________.3. (2014广东文14)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则1C 与2C 的交点的直角坐标为_______.4.(2014湖北理16)已知曲线1C 的参数方程是33x tty ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为________ 5.(2014湖南文12)在平面直角坐标系中,曲线222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为_________6. (2014陕西理15C 文15C )在极坐标系中,点π26⎛⎫ ⎪⎝⎭,到直线πsin 16ρθ⎛⎫-= ⎪⎝⎭的距离是______ 7.(2014江苏理21C )在平面直角坐标系xoy 中,已知直线l 的参数方程212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),直线l 与抛物线24y x =相交于,A B 两点,求线段AB 的长.8. (2014福建理21⑵)已知直线l 的参数方程为24x a ty t =-⎧⎨=-⎩,(t 为参数),圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.9. (2014辽宁文理23)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .⑴写出C 的参数方程;⑵设直线220l x y +-=∶与C 的交点为12P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.10. (2014新课标I 文理23)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任一点P 作与l 夹角为30︒的直线,交l 于点A ,求||PA 的最大值与最小值11.(2014新课标II 文理23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π02θ⎡⎤∈,⎢⎥⎣⎦.⑵ 求C 的参数方程;⑵设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据⑴中你得到的参数方程,确定D 的坐标.12.(2013·江西理科·T15)设曲线C 的参数方程为2x=t y=t ⎧⎨⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为_______. 13(2013·北京理科·T9)在极坐标系中,点(2,π/6)到直线ρsin θ=2的距离等于————14.(2013·湖南理科·T9) 在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin ϕϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆(为参数)x t x l y t a y 的右顶点,则常数a 的值为.15(2013·广东文科·T14)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为.————16.2013·陕西文·T15)圆锥曲线22x t y t ⎧=⎨=⎩ (t 为参数)的焦点坐标是 ——————17..(2013·辽宁文理·T23)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系。
江苏省2014年高考数学(文)二轮复习简易通真题感悟:常考问题21 坐标系与参数方程

常考问题21 坐标系与参数方程
[真题感悟]
1.(2013·江苏卷)在平面直角坐标系xOy 中,直线l 的参数方程为⎩
⎨⎧ x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎨⎧
x =2 tan 2θ,y =2 tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.
解 因为直线l 的参数方程为⎩⎨⎧ x =t +1,y =2t
(t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .
联立方程组⎩⎨⎧
y =2(x -1),y =2x ,
解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1. 2.(2012·江苏卷)在极坐标中,已知圆C 经过点P ⎝ ⎛⎭
⎪⎫2,π4, 圆心为直线ρsin ⎝ ⎛⎭
⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程. 解 在ρsin ⎝ ⎛⎭
⎪⎫θ-π3=-32中令θ=0,得ρ=1,
所以圆C 的圆心坐标为(1,0).
因为圆C 经过点P ⎝ ⎛⎭
⎪⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,
于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.
[考题分析]
高考对本内容的考查主要有:
(1)直线、曲线的极坐标方程;
(2)直线、曲线的参数方程;
(3)参数方程与普通方程的互化;
(4)极坐标与直角坐标的互化,本内容的考查要求为B级.。
2014年高三数学二轮复习 极坐标及其参数方程

2014年高三数学二轮复习第21讲 坐标系与参数方程1.[2011·新课标全国卷改编] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数) ①,M 是曲线C 1上的动点,P 点满足OP →=2OM →,则P 点轨迹的参数方程是________.⇒ 直角坐标系中的伸缩变换关键词:伸缩变换、坐标变换,如①.2.[2012·江西卷] 曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程②为________.⇒ 直角坐标、极坐标互化关键词:直角坐标、极坐标、互化公式,如②.3.[2012·上海卷] 如图9-21-1所示,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6,若将l 的极坐标方程写成ρ=f (θ)的形式③,则f (θ)=________.图9-21-1 ⇒ 曲线的极坐标方程关键词:极坐标系、直线的极坐标方程、曲线的极坐标方程,如③.4.[2013·湖南卷] 在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a(t 为参数) ④过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. ⇒ 直线的参数方程关键词:直线方程、参数,如④.5.[2013·陕西卷] 如图9-21-2所示,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程⑤为________.⇒ 曲线的参数方程关键词:曲线、参数方程,如⑤.6.[2012·北京卷] 直线⎩⎨⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点 ⑥个数为________.⇒ 参数方程化为普通方程关键词:参数方程、普通方程、相互转化,如⑥.► 考向一 极坐标系与简单曲线的极坐标方程考向:求点的极坐标、曲线的极坐标方程,把直角坐标化为极坐标、极坐标化为直角坐标.考例:2011年T23、2012年T23、2013年卷ⅠT23,近五年新课标全国卷共考查了3次.例1 已知圆C 1的参数方程为⎩⎨⎧x =cos φ,y =sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π3. (1)将圆C 1的参数方程化为普通方程,将圆C 2的极坐标方程化为直角坐标方程;(2)圆C 1,C 2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.小结:在解决以极坐标的形式给出的直线、曲线的综合问题时,把它们化为直角坐标方程后使用直角坐标方法解决是一种重要解题思路.► 考向二 简单曲线的参数方程考向:求曲线的参数方程,化参数方程为普通方程,参数方程的应用.考例:2009年T23、2010年T23、2013年卷ⅡT23,近五年新课标全国卷共考查了3次.例2 已知直线C 1:⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎨⎧x =cos θ,y =sin θ(θ为参数). (1)当α=π3时,求直线C 1与曲线C 2的交点坐标;(2)过坐标原点O 作直线C 1的垂线,垂足为点A ,P 为OA 中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.小结:求以参数形式给出的两条曲线的交点坐标时,一般把它们化为普通方程.求曲线的参数方程就是使用一个参数表达动点的坐标.注意运用三角函数的知识化曲线参数方程为普通方程.► 考向三 极坐标与参数方程的综合考向:极坐标方程与参数方程交汇考查是坐标系与参数方程试题的基本考查方式. 考例:2011年T23、2012年T23、2013年卷ⅠT23,近五年新课标全国卷共考查了3次.例3在极坐标系中,圆C 的极坐标方程为ρ=2 3cos θ-2sin θ,点A 的极坐标为(3,2π),把极点作为平面直角坐标系的原点,极轴作为x 轴的正半轴,并在两种坐标系中取相同的长度单位.(1)求圆C 在直角坐标系中的标准方程;(2)设P 为圆C 上任意一点,圆心C 为线段AB 的中点,求|P A |+|PB |的最大值. 小结:曲线的极坐标方程、参数方程在解决一些与距离有关的问题时显得非常的方便.在求曲线上的点到点的距离、点到直线的距离的最值问题中使用参数方程更为有效.变式题 在直角坐标系xOy 中,直线l 经过点P (-1,0),其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程为ρ2-6ρcos θ+5=0.(1)若直线l 与曲线C 有公共点,求α的取值范围;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围.[变换与运算]1.数学中绝大多数内容实质就是变换,把问题从一个方面变换为另一个方面,达到便于解决问题的目的,这也是化归与转化思想的体现.2.坐标之间的变换涉及的内容很广泛,其中直角坐标与极坐标互化、参数方程与普通方程互化就是两个重要内容.在解决解析几何问题时,有时直角坐标方程显得方便,有时极坐标方程、参数方程显得方便.在进行运算时能够根据不同的问题选用合理的方程是运算能力的表现.示例 设圆C 的极坐标方程为ρ=2,以极点为直角坐标系的原点,极轴为x 轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆C 上的一点M (m ,s )作垂直于x 轴的直线l :x =m ,设l 与x 轴交于点N ,向量OQ→=OM →+ON →. (1)求动点Q 的轨迹方程;(2)设点R (1,0),求|RQ→|的最小值.小结:本题(2)是求椭圆上的点到一个定点的距离的最值问题,使用普通方程的方法也能解决,但使用椭圆的参数方程问题就归结为三角函数的最值问题,解决起来相对方便.踪练 在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.[备选理由] 下面两题均是参数方程与极坐标方程的综合,这是高考考查该考点的主要形式,可在本讲结束时选用.例1在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2-3t ,y =2-4t ,它与曲线C :(y -2)2-x 2=1交于A ,B 两点.(1)求|AB |的长;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为⎝⎛⎭⎪⎫2 2,3π4,求点P 到线段AB 中点M 的距离.例2 直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的方程为ρ=4cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+32t ,y =12t(t 为参数),直线l 与曲线C 的公共点为T .(1)求点T 的极坐标;(2)过点T 作直线l ′,l ′被曲线C 截得的线段长为2,求直线l ′的极坐标方程.。
江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷4

阶段检测卷(四)一、填空题(每小题5分,共70分)1.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.解析依题意得k AB=8-aa+1=2,解得a=2.答案 22.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________.解析由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为17,两圆的半径之差为1,半径之和为5,而1<17<5,所以两圆的位置关系为相交.答案相交3.已知圆(x+1)2+(y-1)2=1上一点P到直线3x-4y-3=0距离为d,则d的最小值为________.解析∵圆心C(-1,1)到直线3x-4y-3=0距离为|3×(-1)-4-3|5=2,∴d min=2-1=1.答案 14.已知圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为________.解析在方程x2+y2-4x-9=0中,令x=0,得y=±3,不妨设A(0,-3),B(0,3).设题中双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).∵点A在双曲线上,∴9a2=1.∵A,B两点恰好将此双曲线的焦距三等分,∴双曲线的焦点为(0,-9),(0,9).a2+b2=81.∴a2=9,b2=72.∴此双曲线的标准方程为y29-x272=1.答案y29-x272=15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3x ,则它的离心率为________.解析 由题意,得e =ca =1+⎝ ⎛⎭⎪⎫b a 2=1+3=2.答案 26.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为________.解析 过F 1作倾斜角为45°的直线y =x +c ,由MF 2垂直于x 轴得M 的横坐标c ,所以纵坐标2c ,代入椭圆方程得c 2a 2+4c 2b 2=1,∴e 2+4c 2a 2-c 2=1,∴(1-e 2)2=4e 2,∴e =2-1. 答案2-17.设圆C 的圆心与双曲线x 2a 2-y 22=1(a >0)的右焦点重合,且该圆与此双曲线的渐近线相切,若直线l :x -3y =0被圆C 截得的弦长等于2,则a 的值为________.解析 由题知圆心C (a 2+2,0),双曲线的渐近线方程为2x ±ay =0,圆心C 到渐近线的距离d =2·a 2+22+a 2=2,即圆C 的半径为 2.由直线l 被圆C截得的弦长为2及圆C 的半径为2可知,圆心C 到直线 l 的距离为1,即a 2+21+3=1,解得a = 2. 答案28.设圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为________.解析 设切线方程为x a +y b =1,则|ab |a 2+b2=1,于是有a 2+b 2=a 2b 2≤ ⎝ ⎛⎭⎪⎫a 2+b 222,得a 2+b 2≥4,从而线段AB 长度为a 2+b 2≥2,其最小值为2.答案 29.已知圆O 的方程为x 2+y 2=2,圆M 的方程为(x -1)2+(y -3)2=1,过圆M 上任一点P 作圆O 的切线P A ,若直线P A 与圆M 的另一个交点为Q ,则当弦PQ 的长度最大时,直线P A 的斜率是________.解析 由题意知本题等价于求过圆M :(x -1)2+(y -3)2=1的圆心M (1,3)与圆O :x 2+y 2=2相切的切线的斜率k .设切线l :y -3=k (x -1),l :kx -y +3-k =0,由题意知2=|3-k |1+k 2,k =-7或k =1. 答案 -7或110.(2012·南通期末调研)设F 是双曲线x 2a 2-y 2b 2=1的右焦点,双曲线两条渐近线分别为l 1,l 2,过F 作直线l 1的垂线,分别交l 1,l 2于A 、B 两点.若OA ,AB ,OB 成等差数列,且向量BF →与F A →同向,则双曲线离心率e 的大小为________.解析 设OA =m -d ,AB =m ,OB =m +d ,由勾股定理,得(m -d )2+m 2=(m +d )2.解得m =4d .设∠AOF =α,则cos 2α=OA OB =35.cos α=1+cos 2α2=25,所以,离心率e =1cos α=52. 答案 5211.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为________.解析 圆C 的方程可化为x 2+(y -1)2=1,因为四边形P ACB 的最小面积是2,且此时切线长为2,故圆心(0,1)到直线kx +y +4=0的距离为5,即51+k2=5,解得k =±2,又k >0,所以k =2. 答案 212.双曲线C :x 2-y 2=1,若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C的两条渐近线交于P ,Q 两点,且P A →=2AQ →,则直线l 的斜率为________. 解析 双曲线C :x 2-y 2=1的渐近线方程为y =±x ,即x ±y =0.可以求得A (1,0),设直线l 的斜率为k ,∴直线l 的方程为y =k (x -1),分别与渐近线方程联立方程组,可以求得P ⎝ ⎛⎭⎪⎫k k -1,k k -1,Q ⎝ ⎛⎭⎪⎫k k +1,-k k +1或P ⎝ ⎛⎭⎪⎫kk +1,-k k +1,Q ⎝ ⎛⎭⎪⎫k k -1,k k -1,利用条件P A →=2AQ →,可以求得k =±3. 答案 ±313.设圆x 2+y 2=2的切线l 与x 轴正半轴、y 轴正半轴分别交于点A ,B ,当|AB |取最小值时,切线l 的方程为________.解析 设点A ,B 的坐标分别为A (a,0),B (0,b )(a ,b >0),则直线AB 的方程为x a +yb =1,即bx +ay -ab =0,因为直线AB 和圆相切,所以圆心到直线AB 的距离d =|-ab |a 2+b2=2,整理得2(a 2+b 2)=ab ,即2(a 2+b 2)=(ab )2≥4ab ,所以ab ≥4,当且仅当a =b 时取等号,又|AB |=a 2+b 2=ab2≥22,所以|AB |的最小值为22,此时a =b ,即a =b =2,切线l 的方程为x 2+y2=1,即x +y -2=0.答案 x +y -2=014.设双曲线x 24-y 2=1的右焦点为F ,点P 1、P 2、…、P n 是其右上方一段(2≤x ≤25,y ≥0)上的点,线段|P k F |的长度为a k (k =1,2,3,…,n ).若数列{a n }成等差数列且公差d ∈⎝ ⎛⎭⎪⎫15,55,则n 的最大取值为________.解析 数列{a n }递增,当a 1最小,a n 最大,且公差d 充分小时,数列项数较大.所以取a 1=5-2,a n =3,算得d =5-5n -1(n >1),又d ∈⎝ ⎛⎭⎪⎫15,55,所以55-4<n <26-55,又n ∈N *,故n 的最大取值为14. 答案 14 二、解答题(共90分)15.(本小题满分14分)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎨⎧ c =2,2a =|AF |+|AF ′|=8,解得⎩⎨⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,由题知直线l 的斜率与直线OA 的斜率相等,故可设直线l 的方程为y =32x +t . 由⎩⎪⎨⎪⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3(t 2-12)≥0,解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,可得|t |94+1=4,从而t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在.16.(本小题满分14分)(2013·苏北四市模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,一条准线l :x =2. (1)求椭圆C 的方程;(2)设O 为坐标原点,M 是l 上的点,F 为椭圆C 的右焦点,过点F 作OM 的垂线与以OM 为直径的圆D 交于P ,Q 两点. ①若PQ =6,求圆D 的方程;②若M 是l 上的动点,求证点P 在定圆上,并求该定圆的方程.解(1)由题设:⎩⎪⎨⎪⎧c a =22a 2c =2,∴⎩⎨⎧a =2c =1,∴b 2=a 2-c 2=1,∴椭圆C 的方程为:x 22+y 2=1. (2)①由(1)知:F (1,0),设M (2,t ), 则圆D 的方程:(x -1)2+⎝ ⎛⎭⎪⎫y -t 22=1+t 24,直线PQ 的方程:2x +ty -2=0, ∵PQ =6,∴2⎝ ⎛⎭⎪⎫1+t 24-⎝⎛⎭⎪⎪⎫⎪⎪⎪⎪⎪⎪2+t 22-24+t 22=6, ∴t 2=4,∴t =±2.∴圆D 的方程:(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2. ②设P (x 0,y 0),由①知:⎩⎪⎨⎪⎧(x 0-1)2+⎝ ⎛⎭⎪⎫y 0-t 22=1+t 242x 0+ty 0-2=0,即:⎩⎨⎧x 20+y 20-2x 0-ty 0=02x 0+ty 0-2=0,消去t 得:x 20+y 20=2,∴点P 在定圆x 2+y 2=2上.17.(本小题满分14分)在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线l 与圆Q 相交于不同的两点A ,B .(1)求圆Q 的面积; (2)求k 的取值范围;(3)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 的值;如果不存在,请说明理由.解 (1)圆的方程可化为(x -6)2+y 2=4,可得圆心为Q (6,0),半径为2,故圆的面积为4π.(2)设直线l 的方程为y =kx +2.直线l 与圆(x -6)2+y 2=4交于两个不同的点A ,B 等价于|6k +2|k 2+1<2,化简得(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0.(3)设A (x 1,y 1),B (x 2,y 2),则OA →+OB →=(x 1+x 2,y 1+y 2),由⎩⎨⎧y =kx +2,(x -6)2+y 2=4 得(k 2+1)x 2+4(k -3)x +36=0,解此方程得x 1,2=-4(k -3)±16(k -3)2-144(k 2+1)22(k 2+1).则x 1+x 2=-4(k -3)1+k 2,① 又y 1+y 2=k (x 1+x 2)+4.②而P (0,2),Q (6,0),PQ→=(6,-2).所以OA →+OB →与PQ →共线等价于-2(x 1+x 2)=6(y 1+y 2),将①②代入上式,解得k =-34.由(2)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k .18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以坐标原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T . 求证:点T 在椭圆C 上.(1)解 由题意知,椭圆C 的短半轴长为圆心到切线的距离,即b =|2|2= 2.因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12.所以a =2 2. 所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设点M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②设点T 的坐标为(x ,y ),联立①②解得x 0=x2y -3,y 0=3y -42y -3.因为点M ,N 在椭圆C 上,故x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12(3y -42y -3)2=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1.所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上.19.(本小题满分16分)已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.(1)解 设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2,由题意,得⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2) 证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程,得 ⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1.消去y ,得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理,得(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20.∵点P 在圆O 上,∴x 20+y 20=5.∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1.20.(本小题满分16分)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若OF 1→=2F 1A →(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE →·PF→的最大值.解 (1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1()a 2-2,0, 由OF 1→=2F 1A →,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为M :x 26+y 22=1. (2)设圆N :x 2+(y -1)2=1的圆心为N ,则PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF→-NP →)=NP →2-NF →2=NP →2-1.从而求PE →·PF →的最大值转化为求NP →2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 22=1,即x 20=6-3y 20,因为点N (0,2),所以NP →2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2,2],所以当y 0=-1时,NP →2取得最大值12.所以PE →·PF →的最大值为11.。
新课标高考《坐标系与参数方程》(选修4-4)含答案

第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π)(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.热点二参数方程及其应用[例2](2014·福建高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x=a-2t,y=-4t(t为参数),圆C的参数方程为⎩⎪⎨⎪⎧x=4cos θ,y=4sin θ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.2.倾斜角为α的直线l过点P(8,2),直线l和曲线C:⎩⎨⎧x=42cos θ,y=2sin θ(θ为参数)交于不同的两点M1,M2.(1)将曲线C的参数方程化为普通方程,并写出直线l的参数方程;(2)求|PM1|·|PM2|的取值范围.[例3](2014·辽宁高考)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为⎩⎪⎨⎪⎧x=2+t cos α,y=t sin α(t为参数).曲线C的极坐标方程为ρsin2θ=8cos θ.热点三极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,热点二参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. 热点三极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6.(2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
2014年坐标系与参数方程 (1)

2014 年高考数学理科分类汇编——坐标系与参数方程一、选择题1、 (2014 北京)曲线⎩⎨⎧+=+-=θθsin 2cos 1y x (θ为参数)的对称中心( )A 、在直线x y 2=上 [B]、在直线x y 2-=上 C 、在直线1-=x y 上 D 、在直线1+=x y 上 【知 识 点】:参数方程转化为标准方程,圆的标准方程。
【考查能力】:本题主要考查了学生将参数方程转化为标准方程的能力,同时考察了圆的标准方程. 【思路方法】:1)2()1(,2s i n ,1c o s22=-++-=+=y x y x 所以标准方程是θθ,圆心是)2,1(-所以曲线的对称中心是)2,1(-,对照选项,可知此点位于x y 2-=上2、(2014 安徽)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系, 两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=31t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A 、14B 、142C 、2 【D 】、22 解析:⎩⎨⎧-=+=31t y t x 可得04=--y x ;θρcos 4=两边同乘以ρ得04,cos 4222=-+=x y x θρρ圆心到直线的距离2=d ,弦长为22242=-3、 (2014 江西理)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系, 则线段)10(1≤≤-=x x y 的极坐标方程为 【A 】、20,sin cos 1πθθθρ≤≤+=B 、40,sin cos 1πθθθρ≤≤+=C 、20,sin cos πθθθρ≤≤+= D 、40,sin cos πθθθρ≤≤+=解析: )20(cos sin 1)1cos 0(cos 1sin )10(1πθθθρθρθρθρ≤≤+=∴≤≤-=∴≤≤-=x x y二、填空题1、 (2014 广东)在极坐标系中,曲线1C 和2C 的方程分别为θθρcos sin2=和1sin =θρ,以极点为平面 直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直 角坐标为 _____ 答案:(1,1)解析:曲线1C 和2C 的直角坐标方程分别为x y =2和1=y ,故二者的交点为(1,1).2、 (2014 湖北)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为______ 答案:)1,3( 解析:由参数方程可知曲线1C 为223y x =,由极坐标系可知曲线2C 为422=+y x ,联立两方程即可求得交点坐标为)1,3(3、 (2014 陕西理)在极坐标系中,点)6,2(π到直线1)6sin(=-πθρ的距离_______ 答案:1 由将点)6,2(π,直线1)6sin(=-πθρ化成直角坐标为)1,3(,023=--x y ,由点到直线距离公式有122313=--⨯=d4、(2014 上海理)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθρ,则C 与极轴的交点到极点的距离是_____ 答案:31【知 识 点】:极坐标的概念【考查能力】:考查极坐标与直角坐标的转换【思路方法】:曲线C 可转化为直角坐标方程为:0143=--y x ,曲线C 与极轴交点到极点及距离,即为直线方程在直角坐标系中的横坐标的绝对值,即为31。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第1课时 坐 标 系

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-4 坐标系与参数方程第1课时 坐 标 系1. (选修44P 17习题第7题改编)已知点M 的直角坐标是(-1,3),求点M 的极坐标.解:⎝ ⎛⎭⎪⎫2,2k π+2π3(k∈Z )都是极坐标. 2. (选修44P 32习题第4题改编)求直线xcos α+ysin α=0的极坐标方程. 解:ρcos θcos α+ρsin θsin α=0,cos(θ-α)=0,取θ-α=π2.3. (选修44P 32习题第5题改编)化极坐标方程ρ2cos θ-ρ=0为直角坐标方程. 解:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0,或ρcos θ=x =1.∴ 直角坐标系方程为x 2+y 2=0或x =1.4. 求极坐标方程ρcos θ=2sin2θ表示的曲线.解:ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ,即ρ2=4ρsin θ,则θ=k π+π2,或x 2+y 2=4y.∴ 表示的曲线为一条直线和一个圆.5. (选修44P 33习题第14题改编)求极坐标方程分别为ρ=cos θ与ρ=sin θ的两个圆的圆心距.解:圆心分别为⎝ ⎛⎭⎪⎫12,0和⎝ ⎛⎭⎪⎫0,12,故圆心距为22.1. 极坐标系是由距离(极径)与方向(极角)确定点的位置的一种方法,由于终边相同的角有无数个且极径可以为负数,故在极坐标系下,有序实数对(ρ,θ)与点不一一对应.这点应与直角坐标系区别开来.2. 在极坐标系中,同一个点M 的坐标形式不尽相同,M(ρ,θ)可表示为(ρ,θ+2n π)(n∈Z ).3. 极坐标系中,极径ρ可以为负数,故M(ρ,θ)可表示为(-ρ,θ+(2n +1)π)(n∈Z ).4. 特别地,若ρ=0,则极角θ可为任意角.5. 建立曲线的极坐标方程,其基本思路与在直角坐标系中大致相同,即设曲线上任一点M(ρ,θ),建立等式,化简即得.6. 常用曲线的极坐标方程(1) 经过点A(a ,0)与极轴垂直的直线的极坐标方程为ρcos θ=a. (2) 经过点A(0,a)与极轴平行的直线的极坐标方程为ρsin θ=a. (3) 圆心在A(a ,0),且过极点的圆的极坐标方程为ρ=2acos θ.7. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.平面内任一点P 的直角坐标(x ,y)与极坐标(ρ,θ)可以互换,公式是⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 和⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x . [备课札记]题型1 求极坐标方程例1 如图,AB 是半径为1的圆的一条直径,C 是此圆上任意一点,作射线AC ,在AC 上存在点P ,使得AP²AC=1,以A 为极点,射线AB 为极轴建立极坐标系.(1) 求以AB 为直径的圆的极坐标方程; (2) 求动点P 的轨迹的极坐标方程; (3) 求点P 的轨迹在圆内部分的长度.解:(1) 易得圆的极坐标方程为ρ=2cos θ.(2) 设C(ρ0,θ),P(ρ,θ),则ρ0=2cos θ,ρ0ρ=1.∴ 动点P 的轨迹的极坐标方程为ρcos θ=12.(3) 所求长度为 3. 备选变式(教师专享)求以点A(2,0)为圆心,且过点B ⎝ ⎛⎭⎪⎫23,π6的圆的极坐标方程. 解:由已知圆的半径为 AB =22+(2 3)2-2³2³2 3cos π6=2.又圆的圆心坐标为A(2,0),所以圆过极点, 所以圆的极坐标方程是ρ=4cos θ.题型2 极坐标方程与直角坐标方程的互化例2 在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d.求d 的最大值.解:将极坐标方程ρ=3化为普通方程,得圆:x 2+y 2=9.极坐标方程ρ(cos θ+3sin θ)=2化为普通方程,得直线:x +3y =2.在x 2+y 2=9上任取一点A(3cos α,3sin α). 则点A 到直线的距离为d =|3cos α+33sin α-2|2=|6sin (α+30°)-2|2,∴ 所求d 的最大值为4. 变式训练在极坐标系中,圆C 的方程为ρ=2 2sin ⎝ ⎛⎭⎪⎫θ+π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的方程为y =2x +1,判断直线l 和圆C 的位置关系.解:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2,圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交. 题型3 极坐标的应用例3 若两条曲线的极坐标方程分别为ρ=1与ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3,它们相交于A 、B两点,求线段AB 的长.解:(解法1)联立方程⎩⎪⎨⎪⎧ρ=1,ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3,得交点坐标为A(1,0),B ⎝ ⎛⎭⎪⎫1,-2π3(注意坐标形式不唯一).在△OAB 中,根据余弦定理,得AB 2=1+1-2³1³1³cos 2π3=3,所以AB = 3.(解法2)由ρ=1,得x 2+y 2=1.∵ ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3=cos θ-3sin θ,∴ ρ2=ρcos θ-3²ρsin θ,∴ x 2+y 2-x +3y =0.由⎩⎨⎧x 2+y 2=1,x 2+y 2-x +3y =0,得A(1,0)、B ⎝ ⎛⎭⎪⎫-12,-32,∴AB =⎝ ⎛⎭⎪⎫1+122+⎝ ⎛⎭⎪⎫0+322= 3. 备选变式(教师专享)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0) 的一个交点在极轴上,求a 的值.解:曲线C 1的直角坐标方程是2x +y =1,曲线C 2的普通方程是直角坐标方程x 2+y 2=a 2,因为曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0)的一个交点在极轴上,所以C 1与x 轴交点横坐标与a 值相等,由y =0,x =22,知a =22.1. (2013²安徽)在极坐标系中,求圆ρ=2cos θ的垂直于极轴的两条切线方程. 解:在极坐标系中,圆心坐标ρ=1,θ=0,半径r =1,所以左切线方程为θ=π2,右切线满足cos θ=2ρ,即ρcos θ=2.2. (2013²天津)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,求|CP|. 解:由ρ=4cos θ得ρ2=4ρcos θ,即x 2+y 2=4x ,所以(x -2)2+y 2=4,圆心C(2,0).点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,即ρ=4,θ=π3,所以x =ρcos θ=4cos π3=2,y =ρsinθ=4sin π3=23,即P(2,23),所以|CP|=2 3.3. (2013²上海)在极坐标系中,求曲线ρ=cos θ+1与ρcos θ=1的公共点到极点的距离.解:联立方程组得ρ(ρ-1)=1 ρ=1±52.又ρ≥0,故所求为1+52.4. 在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:∵ 圆C 的圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点, ∴ 在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1.∴ 圆C 的圆心坐标为(1,0). ∵ 圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, ∴ 圆C 的半径为PC =(2)2+12-2³1³2cos π4=1.∴ 圆C 经过极点.∴ 圆C 的极坐标方程为ρ=2cos θ.1. (2013²北京)在极坐标系中,求点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离.解:在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin θ=2化为直角坐标方程为y =2.(3,1)到y =2的距离1,即为点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离1.2. (2013²福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上.(1) 求a 的值及直线的直角坐标方程;(2) 圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos αy =sin α,(α为参数),试判断直线与圆的位置关系.解:(1) 由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2. 所以直线的方程可化为ρcos θ+ρsin θ=2,从而直线的直角坐标方程为x +y -2=0.(2) 由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆心为(1,0),半径r =1, 因为圆心到直线的距离d =22<1,所以直线与圆相交. 3. 在极坐标系中,已知曲线C 1:ρ=12sin θ,曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6. (1) 求曲线C 1和C 2的直角坐标方程;(2) 若P 、Q 分别是曲线C 1和C 2上的动点,求PQ 的最大值.解:(1) 因为ρ=12sin θ,所以ρ2=12ρsin θ,所以x 2+y 2-12y =0,即曲线C 1的直角坐标方程为x 2+(y -6)2=36.又ρ=12cos ⎝⎛⎭⎪⎫θ-π6,所以ρ2=12ρ⎝ ⎛⎭⎪⎫cos θcos π6+sin θsin π6,所以x 2+y 2-63x -6y =0,即曲线C 2的直角坐标方程为(x -33)2+(y -3)2=36.(2) PQ max =6+6+(33)2+32=18.4. 圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.(1) 把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2) 求经过圆O 1、圆O 2交点的直线的直角坐标方程.解:以极点为原点、极轴为x 轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1) x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2=4x.即圆O 1的直角坐标方程为x 2+y 2-4x =0,同理圆O 2的直角坐标方程为x 2+y 2+4y =0.(2) 由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+4y =0,解得⎩⎪⎨⎪⎧x 1=0,y 1=0,⎩⎪⎨⎪⎧x 2=2,y 2=-2,即圆O 1、圆O 2交于点(0,0)和(2,-2),故过交点的直线的直角坐标方程为y =-x.由于平面上点的极坐标的表示形式不唯一,即(ρ,θ),(ρ,2π+θ),(-ρ,π+θ),(-ρ,-π+θ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程ρ=θ,点M ⎝ ⎛⎭⎪⎫π4,π4可以表示为⎝ ⎛⎭⎪⎫π4,π4+2π或⎝ ⎛⎭⎪⎫π4,π4-2π或⎝ ⎛⎭⎪⎫-π4,5π4等多种形式,其中,只有⎝ ⎛⎭⎪⎫π4,π4的极坐标满足方程ρ=θ.请使用课时训练(A )第1课时(见活页).[备课札记]。
江苏省2014年高考数学(文)二轮复习专题提升训练:8 平面向量的线性运算及综合应用

常考问题8 平面向量的线性运算及综合应用(建议用时:50分钟)1.(2012·苏州期中)已知向量a =(2,x ),b =(x -1,1),若a ∥b ,则x 的值为________. 解析 由a ∥b ,得2-x (x -1)=0,解得x =2或-1. 答案 2或-12.已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13则|b | 等于________. 解析 向量a 与b 的夹角为120°,|a |=3,|a +b |=13, 则a ·b =|a ||b |·cos 120°=-32|b |, |a +b |2=|a |2+2a ·b +|b |2.所以13=9-3|b |+|b |2,则|b |=-1(舍去)或|b |=4. 答案 43.已知非零向量a ,b ,c 满足a +b +c =0,向量a 与b 的夹角为60°,且|a |=|b |=1,则向量a 与c 的夹角为________.解析 因为a +b +c =0,所以c =-(a +b ).所以|c |2=(a +b )2=a 2+b 2+2a ·b =2+2cos 60°=3.所以|c |= 3.又c ·a =-(a +b )·a =-a 2-a ·b =-1-cos 60°= -32,设向量c 与a 的夹角为θ,则cos θ=a ·c |a ||c |=-321×3=-32.又0°≤θ≤180°,所以θ=150°. 答案 150°4.(2013·天一、淮阴、海门中学联考)在△ABC 中,已知AB →·AC →=4,AB →·BC →=-12,则|AB→|=________. 解析 将AB →·AC →=4,AB →·BC →=-12两式相减得AB →·(AC →-BC →)=AB →2=16,则|AB →|=4. 答案 45.(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD→=________.解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD→-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.答案 26.(2013·安徽卷改编)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是________.解析 由|OA →|=|OB →|=OA →·OB→=2,知cos ∠AOB =12,又0≤∠AOB ≤π,则∠AOB =π3,又A ,B 是两定点,可设A (3,1),B (0,2),P (x ,y ),由OP→=λOA →+μOB →,可得⎩⎨⎧x =3λ,y =λ+2μ⇒⎩⎪⎨⎪⎧λ=33x ,μ=y 2-36x .因为|λ|+|μ|≤1,所以⎪⎪⎪⎪⎪⎪33x +⎪⎪⎪⎪⎪⎪y 2-36x ≤1,当⎩⎨⎧x ≥0,3y -3x ≥0,时,3y +3x ≤6由可行域可得S 0=12×2×3=3,所以由对称性可知点P 所表示的区域面积S =4S 0=4 3. 答案 4 37.如图,在正方形ABCD 中,已知AB =2,M 为BC 的中点,若N 为正方形内(含边界)任意一点,则AM →·AN →的最大值是________.解析 由数量积的定义得AM →·AN →=|AM →|·|AN→|cos ∠NAM ,当N 点与C 点重合时,|AN→|cos ∠NAM 最大,解三角形得最大值为65,所以AM →·AN→的最大值是6.8.在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3P B →|的最小值为______. 解析 建立如图所示的直角坐标系,设DC =m ,P (0,t ),t ∈[0,m ],由题意可知,A (2,0),B (1,m ),P A →=(2,-t ),P B →=(1,m -t ),P A →+3P B →=(5,3m -4t ),|P A →+3P B →|=52+(3m -4t )2≥5,当且仅当t =34m 时取等号,即|P A →+3P B →|的最小值是5. 答案 59.(2013·南通模拟)已知a =(sin α,sin β),b =(cos(α-β),-1),c =(cos(α+β),2),α,β≠k π+π2(k ∈Z ). (1)若b ∥c ,求tan α·tan β的值; (2)求a 2+b·c 的值.解 (1)若b ∥c ,则2cos(α-β)+cos(α+β)=0, ∴3cos αcos β+sin αsin β=0,∵α,β≠k π+π2(k ∈Z ),∴tan αtan β=-3. (2)a 2+b·c =sin 2α+sin 2β+cos(α-β)cos(α+β)-2 =sin 2α+sin 2β+cos 2αcos 2β-sin 2αsin 2β-2 =sin 2α+cos 2αsin 2β+cos 2αcos 2β-2 =sin 2α+cos 2α-2=1-2=-1.10.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,C =π3,求△ABC 的面积. (1)证明 因为m ∥n ,所以a sin A =b sin B ,即a ·a 2R =b ·b 2R (其中R 是△ABC 外接圆的半径),所以a =b .所以△ABC 为等腰(2)解 由题意,可知m ·p =0,即a (b -2)+b (a -2)=0,所以a +b =ab ,由余弦定理,知4=c 2=a 2+b 2-2ab cos π3=(a +b )2-3ab ,即(ab )2-3ab -4=0,所以ab =4或ab =-1(舍去).所以S △ABC =12ab sin C =12×4×sin π3= 3.11.(2013·苏北四市模拟)如图所示,A ,B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),C 点坐标为(-2,0),平行四边形OAQP 的面积为S .(1)求O A →·O Q →+S 的最大值; (2)若CB ∥OP ,求sin ⎝ ⎛⎭⎪⎫2θ-π6的值.解 (1)由已知,得A (1,0),B (0,1),P (cos θ,sin θ), 因为四边形OAQP 是平行四边形, 所以O Q →=O A →+O P →=(1,0)+(cos θ,sin θ) =(1+cos θ,sin θ). 所以O A →·O Q →=1+cos θ. 又平行四边形OAQP 的面积为 S =|O A →|·|O P →|sin θ=sin θ,所以O A →·O Q →+S =1+cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4+1.又0<θ<π,所以当θ=π4时,O A →·O Q →+S 的最大值为2+1. (2)由题意,知C B →=(2,1),O P →=(cos θ,sin θ), 因为CB ∥OP ,所以cos θ=2sin θ.又0<θ<π,cos 2θ+sin 2θ=1, 解得sin θ=55,cos θ=255,所以sin2 θ=2sin θcos θ=45,cos2θ=cos 2θ-sin 2θ=35.所以sin ⎝ ⎛⎭⎪⎫2θ-π6=sin 2θcos π6-cos 2θsin π6=45×32-35×12=43-310. 备课札记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题21 坐标系与参数方程
1.在极坐标系中,已知圆C 的圆心坐标为C ⎝ ⎛
⎭⎪⎫2,π3,半径R =5,求圆C 的极
坐标方程.
解 将圆心C
⎝ ⎛
⎭⎪⎫2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5.
再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2
-4ρcos ⎝ ⎛⎭
⎪⎫
θ-π3-1=0.
此即为所求的圆C 的极坐标方程.
2.(2011·江苏卷)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧
x =5cos φ,
y =3sin φ(φ为参数)
的右焦点,且与直线⎩⎨⎧
x =4-2t ,
y =3-t
(t 为参数)平行的直线的普通方程.
解 由题意知,椭圆的长半轴长为a =5,短半轴长b =3,从而c =4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的方程为y =1
2(x -4),即x -2y -4=0. 3.(2010·江苏卷)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.
解 将极坐标方程化为直角方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.
由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a |
32+4
2
=1, 解得a =-8或a =2, 故a 的值为-8或2.
4.已知曲线C 1:⎩⎨⎧ x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩
⎨⎧
x =8cos θ,y =3sin θ
(θ为参数).
(1)化C 1、C 2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 1上的点P 对应的参数为t =π
2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎨⎧
x =3+2t ,
y =-2+t (t 为参数)距离的最小值.
解 (1)C 1:(x +4)2
+(y -3)2
=1,C 2:x 264+y 2
9=1.
C 1为圆心是(-4,3),半径是1的圆.
C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π
2时,P (-4,4),Q (8cos θ,3sin θ), 故M ⎝ ⎛⎭
⎪⎫
-2+4cos θ,2+32sin θ.
C 3为直线x -2y -7=0,M 到C 3的距离 d =5
5|4cos θ-3sin θ-13|.
从而当cos θ=45,sin θ=-35时,d 取得最小值85
5
.
5.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧
x =4+5cos t ,
y =5+5sin t (t 为参数),
以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解 (1)∵C 1的参数方程为⎩
⎨⎧
x =4+5cos t ,
y =5+5sin t ,
∴⎩⎨⎧
5cos t =x -4,
5sin t =y -5,∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C 2的直角坐标方程为x 2+y 2=2y ,
解方程组⎩⎨⎧ (x -4)2+(y -5)2
=25,x 2+y 2=2y ,得⎩⎨⎧ x =1,y =1或⎩⎨⎧
x =0,
y =2.
∴C 1与C 2交点的直角坐标为(1,1),(0,2). ∴C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫2,π4,⎝ ⎛⎭
⎪⎫2,π2.
6.(2013·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫
θ-π4=2 2.
(1)求C 1与C 2交点的极坐标;
(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪
⎧
x =t 3+a ,y =b 2
t 3
+1(t ∈R 为参数),求a ,b 的值.
解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.
解⎩⎨⎧ x 2+(y -2)2
=4,x +y -4=0,得⎩⎨⎧ x 1=0,y 1=4,⎩⎨⎧
x 2=2,y 2=2.
所以C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4,
注:极坐标系下点的表示不唯一.
(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab
2+1, 所以⎩⎪⎨⎪⎧
b 2=1,-ab
2+1=2,解得⎩
⎨⎧
a =-1,
b =2.
备课札记:。