2014江苏省高考数学模拟试题word版

合集下载

数学_2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷(含答案)

数学_2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷(含答案)

2014年江苏省无锡、苏州、常州、镇江四市联考高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合A ={1, 2, 3, 4},B ={m, 4, 7},若A ∩B ={1, 4},则A ∪B =________.2. 若复数z =1+3i 1−i (i 为虚数单位),则|z|=________.3. 已知双曲线x 2m−y 28=1的离心率为√3,则实数m 的值为________.4. 一容量为20的样本数据,分组后,组距与频数如下:[10, 20],2;(20, 30],3;(30, 40],4;(40, 50],5;(50, 60],4;(60, 70],2.则样本在(10, 50]上的频率是________.5. 执行如图所示的算法流程图,则最后输出的y 等于________.6. 设函数f(x)=αsinx +x 2,若f(1)=0,则f(−1)的值为________.7. 四棱锥P −ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA =4,则PC 与底面ABCD 所成角的正切值为________.8. 从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为________.9. 已知tan(α+β)=25,tanβ=13,则tan(α+π4)的值为________.10. 设等差数列{a n }的前n 项和为S n ,若a 1=−3,a k+1=32,S k =−12,则正整数k =________.11. 已知正数x ,y 满足x +2y =2,则x+8y xy的最小值为________.12. 如图,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD → // AG →,若AD →=15AB →+λAC →(λ∈R),则λ的值为________.13. 已知函数f(x)={(2x−x2)e x,x≤0,−x2+4x+3,x>0,g(x)=f(x)+2k,若函数g(x)恰有两个不同的零点,则实数k的取值范围为________.14. 在平面直角坐标系xOy中,已知点P(3, 0)在圆C:x2+y2−2mx−4y+m2−28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 设函数f(x)=6cos2x−2√3sinxcosx.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(B)=0且b=2,cosA=45,求a和sinC.16. 如图,在三棱柱ABC−A1B1C1中,侧面AA1B1B为菱形,且∠A1AB=60∘,AC=BC,D是AB的中点.(1)求证:平面A1DC⊥平面ABC;(2)求证:BC1 // 平面A1DC.17. 一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求θ的值,使体积V最大.18.如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A(3√2, 3√22),B(−3, −3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM →⋅ON →为定值并求出该定值.19. 设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n+1+λ)a n =(S n +1)a n+1对一切n ∈N ∗都成立.(1)若λ=1,求数列{a n }的通项公式; (2)求λ的值,使数列{a n }是等差数列. 20. 已知函数f(x)=mx −αlnx −m ,g(x)=ex e x,其中m ,α均为实数.(1)求g(x)的极值;(2)设m =1,α<0,若对任意的x 1,x 2∈[3, 4](x 1≠x 2),|f(x 2)−f(x 1)|<|1g(x 2)−1g(x 1)|恒成立,求a 的最小值;(3)设α=2,若对任意给定的x 0∈(0, e],在区间(0, e]上总存在t 1、t 2(t 1≠t 2),使得f(t 1)=f(t 2)=g(x 0)成立,求m 的取值范围.选修4-1:几何证明选讲 三、附加题【选做题】在21-24四小题中只能选做两题,每小题10分,第25题、第26题必做题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.21. 如图,⊙O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CDAB =ABBE .选修4-2:矩阵与变换22. 已知M =|1221|,β=|17|,计算M 5β.选修4-4:坐标系与参数方程23. 在平面直角坐标系xOy 中,圆的参数方程为{x =2+2cosαy =2sinα(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的直角坐标方程; (2)圆的极坐标方程.选修4-5:不等式选讲24. 已知函数f(x)=|x +1|+|x −2|−|α2−2α|,若函数f(x)的图象恒在x 轴上方,求实数α的取值范围.[必做题]第25、26题,每题10分,共计20分。

2014年高考江苏数学试题与答案(word解析版)

2014年高考江苏数学试题与答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh,其中s为圆柱的表面积,h为高.圆柱的侧面积公式:S圆柱=cl,其中c是圆柱底面的周长,l为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014年江苏,1,5分】已知集合A{2,1,3,4},B{1,2,3},则AB_______.【答案】{1,3}【解析】由题意得AB{1,3}.(2)【2014年江苏,2,5分】已知复数【答案】21 z(52i)(i为虚数单位),则z的实部为_______.2 2【解析】由题意22z(52i)25252i(2i)2120i,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n的值是_______.【答案】5n的最小整数解.2n20整数解为n5,因此输出的n5.【解析】本题实质上就是求不等式220(4)【2014年江苏,4,5分】从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有 2C46种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为21P.63(5)【2014年江苏,5,5分】已知函数ycosx与ysin(2x)(0≤),它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cossin(2)33 ,即21sin()32,2kk(1),(kZ),因为0,所36以.6(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.【答案】241【解析】由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.0150.025)106024.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}a中,若na8a62a4,则a21,a的值是________.6【答案】4【解析】设公比为q,因为a21,则由a8a62a4得64224220qqa,qq,解得22q,所以4a6a2q4.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为S,S,体积分别为12 V,V,若它们的侧面积相12等,且S1S294,则V1V2的值是_______.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为r、h,r2、h2,则2r1h12r2h2,11 h r12hr21,又2Sr112Sr2294,所以r1r232,则222Vrhrhrrr11111121222Vrhrhrrr2222221232.(9)【2014年江苏,9,5分】在平面直角坐标系xOy中,直线x2y30被圆长为________.22(x2)(y1)4截得的弦【答案】2555 【解析】圆22(x2)(y1)4的圆心为C(2,1),半径为r2,点C到直线x2y30的距离为22(1)33d,所求弦长为22512 229255 l2rd24.55(10)【2014年江苏,10,5分】已知函数f(x)xmx1,若对任意x[m,m1],都有f(x)0成立,则实2数m的取值范围是________.【答案】20,2【解析】据题意22f(m)mm102f(m1)(m1)m(m1)10,解得22m0.(11)【2014年江苏,11,5分】在平面直角坐标系xOy中,若曲线2byaxx(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是________.【答案】3【解析】曲线yax 2bxb b过点P(2,5),则4a5①,又y'2ax22x,所以b74a②,由①②解得42ab11,所以ab2.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD中,已知,AB8,AD5,CP3PD,APBP2,则ABAD的值是________.【答案】22【解析】由题意,1APADDPADAB,433BPBCCPBCCDADAB,44所以13APBP(ADAB)(ADAB)442132ADADABAB,216即1322564ADAB,解得ADAB22.216(13)【2014年江苏,13,5分】已知f(x)是定义在R上且周期为3的函数,当x[0,3)时,21f(x)x2x.2 若函数yf(x)a在区间[3,4]上有10个零点(互不相同),则实数a的取值范围是________.【答案】01,22【解析】作出函数 21 f(x)x2x,x[0,3)的图象,可见21 f(0),当x1时,21 f(x)极大, 27f ,方程f(x)a0在x[3,4]上有10个零点,即函数yf(x)和图象与直线 (3) 2ya 在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线ya 与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21 a(0,). 2(14)【2014年江苏,14,5分】若ABC 的内角满足sinA2sinB2sinC ,则cosC 的最小值是_______.【答案】624【解析】由已知sinA2sinB2sinC 及正弦定理可得a2b2c , cosC a2b 222 ab() 2 222abc 2ab2ab223a2b22ab26ab22ab628ab8ab4,当且仅当 22 3a2b ,即a b 2 3时等号成立,所以cosC的最小值为 62 4. 二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤. (15)【2014年江苏,15,14分】已知2,,sin5 5 .(1)求sin的值;4(2)求cos2 6的值. 解:(1)∵sin5,,,∴ 25225cos1sin5, 210sinsincoscossin(cossin).444210(2)∵43 sin22sincoscos2cossin,,sin22sincoscos2cossin2255∴3314334 cos2coscos2sinsin2666252510. (16)【2014年江苏,16,14分】如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知 PAAC ,PA6,BC8,DF5.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC . 解:(1)∵D ,E 为PC ,AC 中点∴DE ∥PA ∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF .(2)∵D ,E 为PC ,AC 中点,∴DE1PA3∵E ,F 为AC ,AB 中点,∴14 EFBC ,22∴DE 2EF 2DF 2,∴DEF90°,∴DE ⊥EF ,∵DE//PA ,PAAC ,∴DEAC , ∵ACEFE ,∴DE ⊥平面ABC ,∵DE 平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中, F ,F 分别是椭圆 12 22yxab的左、221(0)ab右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1B F22,求椭圆的方程;(1)若点C的坐标为41,,且33(2)若F CAB,求椭圆离心率e的值.13161解:(1)∵41C,,∴33 999ab22,∵2222BFbca,∴22(2)22a,∴b,21∴椭圆方程为2xy.21 2(2)设焦点F1(c,0),F2(c,0),C(x,y),∵A,C关于x轴对称,∴A(x,y),∵B,F,A三点共线,∴2bybcx,即bxcybc0①∵yb FCAB,∴11xcc ,即20xcbyc②①②联立方程组,解得xyca2bc222bc2bc22∴Cac2bc22,2222bcbcC在椭圆上,∴22ac2bc22bcbc2222ab221,化简得5ca,∴c522a5,故离心率为55.(18)【2014年江苏,18,16分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段O A上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O 正东方向170m处(OC为河岸),tan4BCO.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系x Oy.由条件知A(0,60),C(170,0),直线BC的斜率4k-tanBCO.BC3又因为AB⊥BC,所以直线AB的斜率3k.设点B的坐标为(a,b),AB4则k BC=b04a1703 ,k AB=603ba04,解得a=80,b=120.所以BC= 22(17080)(0120)150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60.) 由条件知,直线BC的方程为4(170)yx,即4x3y6800,3由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即因为O和A到圆M上任意一点的距离均不少于80m,|3d680|6803d r.55所以rd≥ 80r(60d)≥80,即6803d 5 6803d5d80 ≥ (60d)80≥,解得10≤d ≤35.故当d=10时, 6803d r 最大,即圆面积最大.所以当OM=10m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA,CB 交于点F .因为tan ∠BCO=43 .所以sin ∠FCO=45 ,cos ∠FCO=3 5 .因为OA=60,OC=170,所以OF=OCtan ∠FCO=680 3.CF= OC 850cosFCO3 , 4从而500AFOFOA.因为O A⊥OC,所以cos∠AFB=sin∠FCO=3 45,又因为A B⊥BC,所以BF=AFcos∠AFB== 4003,从而BC=CF-BF=150.因此新桥B C的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接M D,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60.)因为O A⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO= M DMDr3MFOFOM 6805d3所以6803dr.5因为O和A到圆M上任意一点的距离均不少于80m,所以rd≥80r(60d)≥80,即6803d56803d5d80≥(60d)≥80,解得10≤d≤35,故当d=10时,6803dr最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.5(19)【2014年江苏,19,16分】已知函数()eexxfx其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤em1在(0,)上恒成立,求实数m的取值范围;x(3)已知正数a满足:存在你的结论.x0[1,),使得3ea1与f(x)a(x3x)成立.试比较000a e1的大小,并证明解:(1)x R,f(x)eef(x),∴f(x)是R上的偶函数.xx(2)由题意,(ee)e1xxxm≤,∵x(0,),∴exex10,xxxm≤m,即(ee1)e1即e1xm≤对x(0,)恒成立.令e(1)tt,则xee1xx m1t≤对任意t(1,)恒成立.tt12∵1111tt≥,当且仅当t2时等号成立,∴1m≤.223tt1(t1)(t1)113t11t1(3)f'(x)ee,当x1时f'(x)0∴f(x)在(1,)上单调增,令xx h(x)a(x3x),h'(x)3ax(x1),33∵a0,x1,∴h'(x)0,即h(x)在x(1,)上单调减,∵存在x0[1,),使得f xaxx,∴f(1)e12a,即1e1()(3)a.3000e2e∵aaaa,设m(a)(e1)lnaa1,则m'(a)e11e1a e-1lnlnlne(e1)ln1e1a1eaaa1 ,11 ae.当2e 11eae1时,m'(a)0,m(a)单调增;当ae1时,m'(a)0,m(a)单调2e减,因此m(a)至多有两个零点,而m(1)m(e)0,∴当ae时,m(a)0,a e1ea1;当1e1ea 时,m(a)0,2ea e1e1;当ae 时,m(a)0, aae1ea1.(20)【2014年江苏,20,16分】设数列{}a 的前n 项和为S .若对任意的正整数n ,总存在正整数m ,使得 nnS a , nm则称{}a 是“H 数列”. nn(1)若数列{a}的前n 项和S2(n N ),证明:{a}是“H 数列”;nnn(2)设{a}是等差数列,其首项 na 11,公差d0.若{a }是“H 数列”,求d 的值; n (3)证明:对任意的等差数列{}a ,总存在两个“H 数列”{b}和{c},使得abc(n N )成立. nnnnnn 解:(1)当n ≥2时,nn1n1 aSS1222,当n1时,nnn a 1S 12, ∴n1时, S a ,当n ≥2时, 11 S a ,∴{a }是“H 数列”. nn1n(2) n(n1)n(n1) Snadnd ,对n N ,m N 使 n122Sa ,即 nm n(n1) nd1(m1)d , 2 5取n2得1d(m 1)d ,m21d,∵d0,∴m2,又m N ,∴m1,∴d1. (3)设{} a 的公差为d ,令 n b a1(n1)a1(2n)a1,对n N , nbba , n1n1 c (n1)(ad), n1 对n N , c cad ,则 n1n1b ca1(n1)da ,且{b},{c }为等差数列. nnnnn{b}的前n 项和 n n(n1) Tna(a),令 n112T(2m)a ,则 n1 n(n3) m2. 2 当n1时m1;当n2时m1;当n ≥3时,由于n 与n3奇偶性不同,即n(n3)非负偶数,m N . 因此对n ,都可找到m N ,使T b 成立,即{b}为“H 数列”. nmn{c }的前n项和 n n(n1) R(ad),令 n12c(m1)(ad)R ,则 n1m m n (n1) 2 1∵对n N ,n(n1)是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立, nm即{}c 为“H 数列”,因此命题得证. n数学Ⅱ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必 答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A 、B 、C 、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、D是圆O 上位于AB 异侧的两点.证明:∠OCB=∠D .解:因为B ,C 是圆O 上的两点,所以OB=OC .故∠OCB=∠B .又因为C,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B=∠D .因此∠OCB=∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵 1211 A ,B ,向量1x212 y , x ,y 为实数,若A α=B α,求x ,y 的值.解: 2y2 A ,2xy2y B α,由A α=B α得4y2y22y , 解得14x ,y .2xy4y ,2(21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2 x1t ,2(t 为参数),直线l 与抛物线2y2t2y 24x 交于A ,B 两点,求线段A B 的长. 解:直线l :xy3代入抛物线方程24 yx 并整理得x 210x90,∴交点A(1,2),B(9,6),故|AB|82. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知x0,y0,证明: 22 1xy1xy9xy .解:因为x>0,y>0,所以1+x+y 2≥33xy 20,1+x 2+y ≥ 2≥33xy 20,1+x 2+y ≥ 22222 333 3xy0,所以(1+x+y)(1+x+y)≥3xy3xy=9xy .【必做】第22、23题,每小题10分,计20分.请把答案写在.答.题.卡.的.指.定.区.域.内...完(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外全相同.6(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x,x,x,随机变量X表示123 x,x,x 123中的最大数,求X的概率分布和数学期望E(X).解:(1)一次取2个球共有 2C36种可能情况,2个球颜色相同共有9222CCC10种可能情况,432∴取出的2个球颜色相同的概率105P.3618(2)X的所有可能取值为4,3,2,则C14PX;(4)4C12649CCCC133131P(X3)4536;C6339 11P(X2)1P(X3)P(X4).∴X的概率分布列为:14X234P11 14 13631126故X的数学期望()2113134120EX.14631269(23)【2014年江苏,23,10分】已知函数sinxf(x)(x0)x ,设f(x)为nf x的导数,n N.n1()(1)求2f f的值;12222(2)证明:对任意的n N,等式 2nff成立.n1n4442解:(1)由已知,得sinxcosxsinxf(x)f(x)102xxx,于是cosxsinxsinx2cosx2sinx f(x)f(x)21223xxxxx ,所以4216f(),f(),122322故2f()f()1.12222(2)由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin(x),类似可得2 2f(x)xf(x)sinxsin(x),123 3f(x)xf(x)cosxsin(x),232 4f(x)xf(x)sinxsin(x2).34下面用数学归纳法证明等式nnfxxfxx对所有的nnn1()()sin()2N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kkf1(x)xf(x)sin(x).kk2因为[kf(x)xf(x)]kf(x)f(x)xf(x)(k1)f(x)f(x),k1kk1kkkk1(k1) kkk[sin(x)]cos(x)(x)sin[x],所以2222 (k1)f(x)f(x)kk1(k1)sin[x].2所以当n=k+1时,等式也成立.综合(i),(ii)可知等式nnf1(x)xf(x)sin(x)对所有的nnnN都成立.*2令x,可得4nnf1()f()sin()(nnn44442N).所以*2nff(nn1n()()4442N).*7。

2014江苏高考数学试卷及答案

2014江苏高考数学试卷及答案

2014江苏高考数学试卷及答案2014年江苏高考数学试卷如下:第一部分选择题(共12小题,每小题5分,共60分)1. 设四边形ABCD 是正方形,AB=1,则$\overrightarrow{DC}$的坐标是____。

A.(1,0)B.(-1,0)C.(2,0)D.(0,-1)2.已知函数$f(x)=x^2-3x+a$,当$x\in(1,2)$时,$f(2x)=x+1$,求$f(x)$的解析式。

3. 某种电子元件的寿命$X$(以小时计)的概率密度函数为$$f(x)=\begin{cases}e^{-x} &x>0\\0 &x\leq 0\end{cases}$$则$X$的均值为____。

4.某小组同学参加数学比赛,70\%的同学参加了选择题考试,80\%的同学正确完成了选择题考试.若已知至少有1位同学正确完成了选择题考试,则该小组同学参加选择题考试的概率为____.5.设函数$f(x)=(1+x)e^{x+1}$在$x=0$处的切线方程为y=2x+1,则$f(0)=____$.第二部分主观题(共8小题,每小题10分,共80分)6.如图,已知正方体ABCD-A'B'C'D'的棱长为1,直线PQ交线段AD、A'D'的中点分别为M、N,求MN的长。

7.如图,ABC是正三角形,AE是平面内一直线,点D在BC上,M是AE上的一动点,连接BM交AC于P,AN交BC于Q,求证:$\angle{PKG}=\angle{EPQ}$。

8.讨论不等式$x^2\leq4x+2$的解集。

9.已知函数$f(x)=ax^2+bx+c$,$f(-1)=-2$,$f(2)=4$,且在区间[-1,2]上有$f(x) \geq 0$,求a、b的值。

10.设三角形ABC的内角A、B、C所对的边长分别为a,b,c,若sin(A)=a,sin(B)=b,cos(C)=c,则$\vec{c}$的方向与$\vec{a} ×\vec{b}$的方向_________且与$\vec{a} ×\vec{b}$的夹角为_________。

2014年苏锡常镇高三数学一模试卷及参考答案(纯word版)

2014年苏锡常镇高三数学一模试卷及参考答案(纯word版)

2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题命题单位:常州市教育科学研究院 2014.3参考公式:柱体的体积公式:V 柱体=Sh ,其中S 是柱体的底面积,h 是高.直棱柱的侧面积公式:S 直棱柱侧=ch ,其中c 是直棱柱的底面周长,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B =,则AB = .2.若复数z =13i1i+-(i 为虚数单位),则 | z | = . 3.已知双曲线2218x y m -=m 的值为 .4.一个容量为20的样本数据分组后,分组与频数分别如下:(]10,20,2; (]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 .5.执行如图所示的算法流程图,则最后输出的y 等于 . 6.设函数2()sin f x a x x =+,若(1)0f =,则(1)f -的值为 .7.四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,P A ⊥底面ABCD 且P A = 4, 则PC 与底面ABCD 所成角的正切值为 .8.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 .9.已知2tan()5+=,1tan 3=,则)4tan(π+a 的值为 . 10.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=,12k S =-,则正整数k = .11.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .12.如图,在△ABC 中,BO 为边AC 上的中线,2BG GO =,设CD ∥AG ,若15AD AB AC =+λ()∈R λ,则λ的值为 .13.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不(第5题)(第12题)ABCDOG同的零点,则实数k 的取值范围为 .14.在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)设函数2()6cos cos f x x x x =-. (1)求()f x 的最小正周期和值域;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若()0f B =且2b =,4cos 5A =,求a 和sin C .16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点.(1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .17.(本小题满分14分)一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分.现要把其中111DC B AC BA (第16题)一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,,C D 在半圆上),设BOC∠=,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy中,已知A,B,C是椭圆22221(0)x ya ba b+=>>上不同的三点,θD CB A O(第17题)2A,(3,3)B--,C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明OM ON⋅为定值并求出该定值.19.(本小题满分16分)设各项均为正数的数列{}n a的前n项和为S n,已知11a=,且11()(1)n n n nS a S aλ+++=+对一切*n∈N 都成立.(第18题)(1)若λ = 1,求数列{}n a的通项公式;(2)求λ的值,使数列{}n a是等差数列.20.(本小题满分16分)已知函数e()ln,()e xxf x mx a x mg x=--=,其中m,a均为实数.(1)求()g x的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立, 求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区......域.内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,⊙O为四边形ABCD的外接圆,且AB AD=,E是CB延长线上一点,直线EA与圆O相切.求证:CD AB AB BE=.B.选修4—2:矩阵与变换已知矩阵1221⎡⎤=⎢⎥⎣⎦M,17⎡⎤=⎢⎥⎣⎦β,计算6Mβ.C.选修4—4:坐标系与参数方程在平面直角坐标系xOy中,圆的参数方程为22cos,()2sinxy=+⎧⎨=⎩为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.D.选修4—5:不等式选讲已知函数2()122f x x x a a=++---,若函数()f x的图象恒在x轴上方,求实数a的取值范围.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影E (第21-A题)响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次. (1)求甲同学至少有4次投中的概率; (2)求乙同学投篮次数的分布列和数学期望.23.(本小题满分10分)设01212(1)m m n n n n n m S C C C C ---=-+-+-,*,m n ∈N 且m n <,其中当n 为偶数时,2nm =; 当n 为奇数时,12n m -=. (1)证明:当*n ∈N ,2n ≥时,11n n n S S S +-=-; (2)记01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,求S 的值.2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.{}1,2,3,4,7 2 3. 4 4.710 5.63 6.2 7 8. 23 9. 9810.13 11.9 12.6513.27321,{0,22e+⎛⎫--⎪⎝⎭14. [3(327,3++--二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. 解:(1)1+cos2()622xf x x=⨯=3cos223x x+=)36x++.…………………3分所以()f x的最小正周期为22T==,…………………4分值域为[3-+.…………………6分(2)由()0f B=,得πcos(2)6B+=.B为锐角,∴ππ7π2666B<+<,π5π266B+=,∴π3B=. (9)分∵4cos5A=,(0,)A∈,∴3sin5A==.…………………10分在△ABC中,由正弦定理得32sinsinb AaB⨯===.…………………12分∴21sin sin()=sin()sin322C A B A A A=---=+=.…………………14分16.(1)证明:∵11ABB A为菱形,且160A AB∠=︒,∴△1A AB为正三角形.…………………2分D是AB的中点,∴1AB A D⊥.∵AC BC=,D是AB的中点,∴AB CD⊥.…………………4分1A D CD D=,∴AB⊥平面1A DC.…………………6分∵AB⊂平面ABC,∴平面1A DC⊥平面ABC.…………………8分(2)证明:连结1C A,设11AC AC E=,连结DE.∵三棱柱的侧面11AA C C是平行四边形,∴E为1AC中点.…………………10分在△1ABC中,又∵D是AB的中点,∴DE∥1BC.…………………12分∵DE⊂平面1A DC,1BC⊄平面1A DC,∴1BC∥平面1A DC.…………………14分17.解:(1)梯形ABCD的面积2cos 2sin 2ABCD S +=⋅=sin cos sin +,(0,)2∈. …………………2分 体积()10(sin cos sin ),(0,)2V =+∈. …………………3分(2)2()10(2cos cos 1)10(2cos 1)(cos 1)V '=+-=-+. 令()0V '=,得1cos 2=,或cos 1=-(舍). ∵(0,)2∈,∴3=. …………………5分当(0,)3∈时,1cos 12<<,()0,()V V '>为增函数;当(,)32∈时,10cos 2<<,()0,()V V '<为减函数. …………………7分∴当3=时,体积V 最大. …………………8分(3)木梁的侧面积210S AB BC CD =++⋅侧()=20(cos 2sin 1)2++,(0,)2∈. 2ABCD S S S =+侧=2(sin cos sin )20(cos 2sin 1)2++++,(0,)2∈.…………………10分设()cos 2sin 12g =++,(0,)2∈.∵2()2sin 2sin 222g =-++,∴当1sin22=,即3=时,()g 最大. …………………12分 又由(2)知3=时,sin cos sin +取得最大值,所以3=时,木梁的表面积S 最大. …………………13分综上,当木梁的体积V 最大时,其表面积S 也最大. …………………14分 18.解:(1)由已知,得222291821,991,a b a b ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2227,27.2a b ⎧=⎪⎨=⎪⎩ …………………2分所以椭圆的标准方程为22127272x y +=. …………………3分 (2)设点(,)C m n (0,0)m n <<,则BC 中点为33(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而23m n =-.① 又∵点C 在椭圆上,∴22227m n +=.②由①②,解得3n =(舍),1n =-,从而5m =-. …………………5分 所以点C 的坐标为(5,1)--. …………………6分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y .∵,,P B M 三点共线,∴011033233y y y x ++=++,整理,得001003()23y x y x y -=--.…………………8分 ∵,,P C N 三点共线,∴22011255y y y x ++=++,整理,得00200523y x y x y -=-+.…………………10分 ∵点C 在椭圆上,∴2200227x y +=,2200272x y =-.从而22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+. …………………14分 所以124552OM ON y y ⋅==. …………………15分 ∴OM ON ⋅为定值,定值为452. …………………16分 19.解:(1)若λ = 1,则11(1)(1)n n n n S a S a +++=+,111a S ==.又∵00n n a S >>,, ∴1111n n n nS a S a +++=+, ………………… 2分 ∴3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅=⋅⋅⋅+++, 化简,得1112n n S a +++=.① ………………… 4分 ∴当2n ≥时,12n n S a +=.②② - ①,得12n n a a +=, ∴12n na a +=(2n ≥). ………………… 6分 ∵当n = 1时, 22a =,∴n = 1时上式也成立,∴数列{a n }是首项为1,公比为2的等比数列, a n = 2n -1(*n ∈N ). …………………8分 (2)令n = 1,得21a λ=+.令n = 2,得23(1)a λ=+. ………………… 10分要使数列{}n a 是等差数列,必须有2132a a a =+,解得λ = 0. ………………… 11分 当λ = 0时,11(1)n n n n S a S a ++=+,且211a a ==. 当n ≥2时,111()(1)()n n n n n n S S S S S S +-+-=+-, 整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+, ………………… 13分 从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅=⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=. ……………… 15分 综上所述,1n a =(*n ∈N ),所以λ = 0时,数列{}n a 是等差数列. ………………… 16分20.解:(1)e(1)()exx g x -'=,令()0g x '=,得x = 1. ………………… 1分 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. …………………3分 (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. …………………4分 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立, ∴()h x 在[3,4]上为增函数. …………………5分 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. …………………6分∴11e ex x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3. ………………… 8分∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. …………………9分(3)由(1)知()g x 在(0,e]上的值域为(0,1]. …………………10分 ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意. ………………… 11分当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m <<,即2em >.① …………………12分此时()f x 在2(0,)m 上递减,在2(,e)m上递增, ∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.② 由①②,得3e 1m -≥. …………………13分 ∵1(0,e]∈,∴2()(1)0f f m =≤成立. …………………14分下证存在2(0,]t m ∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③ 设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立. 再证()e m f -≥1. ∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. …………………16分21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲证明:连结AC .EA 是圆O 的切线,∴EAB ACB ∠=∠. …………………2分AB AD =,∴ACD ACB ∠=∠. ∴ACD EAB ∠=∠. …………………4分圆O 是四边形ABCD 的外接圆,∴D ABE ∠=∠. …………………6分∴CDA ∆∽ABE ∆. …………………8分 ∴CD DAAB BE=, AB AD =,∴CD ABAB BE=. …………………10分 B .选修4—2:矩阵与变换 解:矩阵M 的特征多项式为212()2321f λλλλλ--==----.令12()031f λλλ===-,解得,,对应的一个特征向量分别为111⎡⎤=⎢⎥⎣⎦α,211⎡⎤=⎢⎥-⎣⎦α. …5分令12m n =+βαα,得4,3m n ==-.6666661212112913(43)4()3()433(1)112919⎡⎤⎡⎤⎡⎤=-=-=⨯--=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M βM ααM αM α.……………10分 C .选修4—4:坐标系与参数方程解:(1)圆的直角坐标方程为22(2)4x y -+=. …………………5分 (2)把cos ,sin ,x y ρθρθ=⎧⎨=⎩代入上述方程,得圆的极坐标方程为4cos ρθ=.…………………10分D .选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)设甲同学在5次投篮中,有x 次投中,“至少有4次投中”的概率为P ,则(4)(5)P P x P x ==+= …………………2分=441550552222()(1)()(1)3333C C -+-=112243. …………………4分 (2)由题意1,2,3,4,5=.2(1)3P ==,122(2)339P ==⨯=,1122(3)33327P ==⨯⨯=,3122(4)3381P ⎛⎫==⨯= ⎪⎝⎭, 411(5)381P ⎛⎫=== ⎪⎝⎭.的分布表为…………………8分的数学期望22221121123453927818181E =⨯+⨯+⨯+⨯+⨯=. …………………10分23.解:(1)当n 为奇数时,1n +为偶数,1n -为偶数, ∵1101221112(1)n n n n nn S CC C+++++=-++-,110122112(1)n n n n n n S C C C---+=-++-,11012211212(1)n n n n n n S C CC------=-++-,∴1111110011222221111111222()()(1)()(1)n n n n n n n n n n n n n n S S C C C C CCC-+-++-++-++++-=---++--+-=11012212112((1))n n n n n n CCCS --------++-=-.∴当n 为奇数时,11n n n S S S +-=-成立. …………………5分 同理可证,当n 为偶数时, 11n n n S S S +-=-也成立. …………………6分 (2)由01231007201420132012201110071111120142013201220111007S C C C C C =-+-+-,得 0123100720142013201220111007201420142014201420142013201220111007S C C C C C =-+-+-=0112233100710072014201320132012201220112011100710071231007()()()()2013201220111007C C C C C C C C C -+++-++-+=0121007012100620142013201210072012201120101006()()C C C C C C C C -+----+-+=20142012S S -. …………………9分 又由11n n n S S S +-=-,得6n n S S +=, 所以20142012421S S S S -=-=-,12014S =-. …………………10分。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一测试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =I _______. 【答案】{13}-,【分析】由题意得{1,3}A B =-I .(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【分析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【分析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【分析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =和sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【分析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【分析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,测试时间为120分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【分析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【分析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【答案】255【分析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-=. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫- ⎪⎝⎭, 【分析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线和直线7230x y ++=平行,则a b +的值是________. 【答案】3-【分析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r ,,则AB AD ⋅u u u r u u u r 的值是________. 【答案】22【分析】由题意,14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,3344BP BC CP BC CD AD AB =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以13()()44AP BP AD AB AD AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r 2213216AD AD AB AB =-⋅-u u u r u u u r u u u r u u u r ,即1322564216AD AB =-⋅-⨯u u u r u u u r ,解得22AD AB ⋅=u u u r u u u r .(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________.【答案】()102,【分析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象和直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =和函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 22sin A B C =,则cos C 的最小值是_______.62-【分析】由已知sin 22sin A B C =及正弦定理可得22a b c =,2222222()2cos 22a b a b a b c C ab ab ++-+-==2232222622628a b ab ab ab ab +---=,当且仅当2232a b =,即23a b =所以cos C 62- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=--=, ()210sin sin cos cos sin sin )444αααααπππ+=+=+=.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =I ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =(2)若1FC AB ⊥,求椭圆离心率e 的值. 解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 和河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并和BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 和直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠, 从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AFcos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 和BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -和e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a aa a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-, 取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+.当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 和3n -奇偶性不同,即(3)n n -非负偶数,m *∈N . 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵和变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系和参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2122x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 和抛物线24y x =交于A B ,两点,求线段AB 的长. 解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.测试时间30分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:X 2 3 4P11141363 1126 故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()12444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===-⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以12()()444n n nf f πππ-+n ∈*N ).。

2014年江苏省高考数学试题及答案

2014年江苏省高考数学试题及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={},,则 ▲ .2. 已知复数(i 为虚数单位),则的实部为 ▲ .3. 右图是一个算法流程图,则输出的的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数与(0≤),zxxk 它们的图象有一个横坐标为的交点,则的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列中,,则的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为,,体积分别为,,若它们的侧面积相等,且,则的值是 ▲ .9. 在平面直角坐标系中,直线被圆截得的弦长为 ▲ .10. 已知函数若对于任意,都有成立,则实数的取值范围是 ▲ .11. 在平面直角坐标系中,若曲线(a ,b 为常数) zxxk 过点,且该曲线在点P 处的切线与直线平行,则的值是 ▲ .12. 如图,在平行四边形中,已知,,4,3,1,2--}3,2,1{-=B =B A I 2)i 25(+=z z n x y cos =)2sin(ϕ+=x y πϕ<3πϕ}{n a ,12=a 4682a a a +=6a 1S 2S 1V 2V 4921=S S 21V V xOy 032=-+y x 4)1()2(22=++-y x ,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m xOy xbax y +=2)5,2(-P 0327=++y x b a +ABCD 8=AB 5=AD(第3题)100 80 90 110 120 底部周长/cm(第6题)(第12题),,则的值是 ▲ .13. 已知是定义在R 上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数的取值范围是 ▲ .14. 若△的内角满足,则的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知,.(1)求的值;(2)求的值.16.(本小题满分14分)如图,在三棱锥中,,E ,F 分zxxk 别为棱的中点.已知,求证: (1)直线平面;(2)平面平面.3=2=⋅BP AP ⋅)(x f )3,0[∈x |212|)(2+-=x x x f a x f y -=)(]4,3[-a ABC C B A sin 2sin 2sin =+C cos ),2(ππα∈55sin =α)4sin(απ+)265cos(απ-ABC P -D AB AC PC ,,AC PA ⊥,6=PA .5,8==DF BC //PA DEF ⊥BDE ABC (第16题)PD CEF B A17.(本小题满分14分)如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A ,过点A 作轴的垂线交椭圆于另一点C ,连结.(1)若点C 的坐标为,且,求椭圆的方程;(2)若求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),.(1)求新桥BC 的长;(2)当OM 多长时,19.(本小题满分16分)xOy 21,F F )0(12322>>=+b a by a x B ),0(b 2BF x C F 1)31,34(22=BF ,1AB C F ⊥OA 34tan =∠BCO已知函数,其中e 是自然对数的底数. (1)证明:是R 上的偶函数;(2)若关于的不等式≤在上恒成立,学科网求实数的取值范围;(3)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.20.(本小题满分16分)设数列的前项和为.若对任意正整数,学科网总存在正整数,使得,则称是“H 数列”. (1)若数列的前n 项和(N ),证明: 是“H 数列”;(2)设 是等差数列,其首项,公差.若 是“H 数列”,求的值;(3)证明:对任意的等差数列,总存在两个“H 数列”和,使得 (N )成立.x x x f -+=e e )()(x f x )(x mf 1e -+-m x ),0(+∞m a ),1[0+∞∈x )3()(030x x a x f +-<1e -a 1e -a }{n a n n S n m m n a S =}{n a }{n a n n S 2=∈n *}{n a }{n a 11=a 0<d }{n a d }{n a }{n b }{n c n n n c b a +=∈n *答案:12346791314二、解答题16171920【解析】(1)首先,当时,,所以,所112a S ==2n ≥111222n n n n n n a S S ---=-=-=12,1,2,2,n n n a n -=⎧=⎨≥⎩。

2014江苏高考数学一模试卷

2014江苏高考数学一模试卷

a3 a4 4 ,则 a5 a6 a7 a8


6、已知| a |=3,| b |=4,( a + b )( a +3 b )=33,则 a 与 b 的夹角为 ▲ 7、在 ABC 的边 AB 上随机取一点 P , 记 CAP 和 CBP 的面积分别 为 S1 和 S2 ,则 S1 2S2 的概率是 ▲ 8、执行如右图所示的程序框图,则输出结果 S 的值为 ▲ 9、已知直线 l 平面 ,直线 m 平面 ,给出下列命题: ①若 / / ,则 l m ;②若 ,则 l / / m ; ③若 l / / m ,则 ; ④若 l m ,则 / / . 其中,正确命题的序号是 ▲ 2 x y 4 10、若动点 P(m, n) 是不等式组 x 0 表示的平面区域内的动点, y 0
6
1 南京清江花苑严老师
(1)若 x

4
,求函数 f x 的值域;
2 2
5 3 A 5 (2) 设 A, B, C 为 ABC 的三个内角,若 f ,求 cos C 的值; , cos A C 14
16、 (本题 14 分)如图,在三棱锥 P ABC 中, PAB 和 CAB 都是 以 AB 为斜边的等腰直角三角形,D、E、F 分别是 PC、AC、BC 的中点. (1) 证明:平面 DEF//平面 PAB; (2) 证明: AB PC ; (3) 若 AB 2PC 2 ,求三棱锥 P ABC 的体积.

13、在平面直角坐标系 xoy 中,已知点 A 是半圆 x2 y 2 2 y 0 (1≤y≤2) 上的一个动点,点 C 在线段 OA 的延长线上.当 OA OC 10 时,则点 C 的横坐标的取值范围是 ▲ 14、设 f ( x) etx (t 0) ,过点 P(t ,0) 且平行于 y 轴的直线与曲线 C : y f ( x) 的交点为 Q, 曲线 C 过点 Q 的切线交 x 轴于点 R,若 S (1, f (1)) ,则 PRS 的面积的最小值是 ▲ 二、解答题: (本大题共 6 小题,共 90 分.解答应写出文字说明,证明过程或演算步骤. ) 15、 (本题 14 分)设函数 f x sin 2 x cos 2 x 3 sin x cos x .

2014年江苏高考数学试题(含详解)

2014年江苏高考数学试题(含详解)

识,考查运
算求解能力. 满分 14 分.
16 1
(1)∵C
4,1
,∴
9 a2
9 b2
9
33
∵ BF22 b2 c2 a ,∴ a ( 2)
2
2
2
∴椭圆方程为 x2 y2 1 2
2 ,∴b 1
2
(2)设焦点 F ( c ,0),F (c ,0),C(x ,y)
1
2
∵ A,C 关于 x 轴对称,∴ A(x , y)
a2
2
化简得5c 2
a2
,∴
c a
55 ,
2
b2bc2 b2c
故2 离心2 率为1 ,55
b
0) 的左、右焦点,顶点 B 的坐标为 (0,b) ,连结 BF 并延长交椭圆于
2
点 A,过点 A 作 x 轴的垂线交椭圆于另一点 C,连结 F1C .
(1)若点 C 的坐标为
43 ,13
,且 BF 2
2 ,求椭圆的方程;
(2)若 FC AB ,求椭圆离心率 e 的值. 1
【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知
(2)∵sin 2 2sin cos
4,cos 2 cos 2 sin2 53 5
∴ cos 6 2
cos 6 cos 2 sin 6 sin 2
23 3 1 52
4 5
3 130 4 .
16.(本小题满分 14 分)如图,在三棱锥 P ABC 中, D ,E ,F 分别为棱 PC ,AC ,AB 的中
的值;
2 , , sin
5. 5
(2)求 cos 6 2 的值.
【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.
2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.
3. 右图是一个算法流程图,则输出的n 的值是▲.
4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.
5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),xkb1它们的图象有一个横坐标为
3
π
的交点,则ϕ的值是▲.
6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在
抽测的60株树木中,有▲株树木的底部周长小于100cm.
7. 在各项均为正数的等比数列}
{n a 中,,12=a 4682a a a +=,则6a 的值是▲.
8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分
别为1V ,2V ,若它们的侧面积相等,且4
921=S S ,则
2
1
V V 的值是▲.
9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆
4)1()2(22=++-y x 截得的弦长为▲.
10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取
值范围是▲.
11. 在平面直角坐标系xOy 中,若曲线x
b
ax y +
=2(a ,b 为常数)xkb1过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.
12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,
(第3题)
100 80 90 110 /cm
(第6题)
PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.
13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|2
1
2|)(2+
-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.
14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......
内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)
已知),2
(ππ
α∈,55sin =α.
(1)求)4sin(απ
+的值;
(2)求)26
5cos(απ
-的值.
16.(本小题满分14分)
如图,在三棱锥A B C P -中,D ,E ,F 分xkb1别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC
求证: (1)直线//PA 平面DEF ;
(2)平面⊥BDE 平面ABC .
17.(本小题满分14分)
如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(123
22>>=+b a b
y a x 的左、右焦点,
顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,
过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.
(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程; (2)若,1AB C F ⊥求椭圆离心率e 的值.
(第16题)
P D C E
F B
A
xkb1
18.(本小题满分16分)
如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直。

保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正
北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),3
4
tan =∠BCO .
(1)求新桥BC 的长;
(2)当OM 多长时,圆形保护区的面积最大?
19.(本小题满分16分)
已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;
(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;
(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(03
00x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.
xkb1
20.(本小题满分16分)
设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.
(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”。

(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.。

相关文档
最新文档