温度控制系统设计及有关解读
温度控制系统

我们根据实际经验设定了三条模糊规则:
IfTin is S,PWM is small;
IfTin is M,PWM is middle;
IfTin is B,PWM is Big。
为了简化问题,此处,我们不适用模糊化的PWM,即是small=0;middle=50%;Big=100%;这将会使模糊推理时直接产生非模糊的PWM值,无需解模糊化。
y1=q(1,1)+q(1,2)*x2+q(1,3)*x3;
plot3(x3,x2,y1);
hold on
x=m(:,1);
y=m(:,2);
z=m(:,3);
plot3(x,y,z,'o')
grid on
end
2.模糊控制器算法
模糊化
function [ MemberShip ] = fuzzyT( T,TM )
%input Membership is the membership of the delta temperature to S,M and B
%output PWM is the duty of the PWM to motor
%fuzzy rule
%if T=S PWM=0;
%if T=M PWM=50%
所以我们对棒棒控制就行了适当改进,加入了滞环来解决这个问题,但这就带来了另外一个问题:即会出现稳态误差,这个误差与滞环大小有关,于是,出现了一个矛盾:
滞环越小,越容易抖动;滞环越大,稳态误差越大;
这个矛盾可以有结合PID控制器来解决,于是就出现PID+棒棒控制。
B.PID控制
PID控制可以说是一个经济适用性的算法,其应用十分广泛。其基本公式为PWM=P*er+D*der+I*fer;
温度控制系统及控制方案

温度控制系统及控制方案08自动化侯伟08378094【摘要】:本设计采用51单片机与pc机相结合,使用ADC0809对温度进行采样,所得的数据使用中位值平均滤波法进行滤波,然后使用专家模糊PID控制算法对加热炉进行控制,能够进行恒温定点加热,也能够使其温度按工艺所要求的温度曲线变化,在不同时段按要求加热。
【关键字】:PC机51单片机炉温控制专家模糊PID控制滤波一、概述温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方式也各不相同。
系统用温度传感器将检测到的实际炉温A/D转换,51单片机把所得值与设定值进行比较,使用专家模糊PID算法进行修正,求得对应的控制量控制可控硅驱动器,调节电炉的加热功率,从而实现对炉温的控制。
因此采集的炉温数据精度至关重要。
利用51单片机实现温度智能控制,能自动完成数据采集、处理、缓冲、转换、并进行PID实施控制,包括各参数数值的修正,并把数据传输给PC机进行动态直观显示,同时也可以通过PC机设定参数。
但在控制过程中应该注意,采样周期不能太短,否则使调节过于频繁,不但执行机构不能反应,而且计算机的利用率大为降低。
采样周期太长,也是不合适,因为干扰无法及时消除,使调节品质下降。
随着单片机在各行业控制系统中的普遍采用,其构成的实时控制系统日臻完善,使该温度控制系统的总体性能大大提高,功能更趋完善,并详细介绍了该系统的软、硬件实施手段及系统特点。
二、温度控制系统的硬件组成框图与其详细功能介绍PC机:根据51单片机传输过来的值绘制T-t曲线,同时在调试过程可以给单片机传输参数,而在曲线跟踪过程中也是通过pc机给单片机传输某时刻的设定值。
51机:接收adc采样得到的数值,并进行滤波处理,根据所得到的数值进行专家模糊PID控制,得到相应的PWM值,直接通过控制继电器的通断控制温控箱加热棒和风扇的通断。
温度控制系统要点

温度控制系统要点在现代化的工业生产中,温度控制是至关重要的一部分。
从食品加工到化学反应,从塑料制造到微电子产业,都需要对温度进行精确和可靠的控制。
本文将探讨温度控制系统的要点和关键组成部分。
1、温度传感器温度传感器是温度控制系统的核心组成部分,它能够感知并测量被控对象的温度。
根据不同的应用场景和精度要求,可以选择不同类型的温度传感器,如热电阻、热电偶、红外传感器等。
2、控制器控制器是温度控制系统的中枢,它根据温度传感器的读数来决定如何调整被控对象的温度。
控制器可以是简单的机械式控制器,也可以是更复杂的数字控制器。
数字控制器可以配备PID(比例-积分-微分)算法,以提供更精确的温度控制。
3、执行器执行器是控制系统的末端,它根据控制器的指令来调整被控对象的温度。
执行器可以是加热器、冷却器、风扇等设备。
执行器的选择取决于被控对象的特性和控制要求。
4、被控对象被控对象是温度控制系统需要控制的设备或过程。
在选择执行器和控制器时,需要考虑被控对象的特性和要求。
例如,被控对象可能是塑料成型机、发酵罐、半导体生产线等。
5、反馈系统反馈系统是将控制系统的输出与设定值进行比较的系统。
它向控制器提供信息,使其了解其命令是否已使系统达到所需的温度。
如果需要调整温度,控制器将发送新的指令给执行器。
6、电源和安全设备温度控制系统需要稳定的电源供应以确保其正常工作。
同时,为了确保安全,系统应配备过载保护、短路保护等安全设备。
总结:温度控制系统需要精确和可靠地控制温度,以确保工业过程的稳定性和产品的质量。
在构建或维护温度控制系统时,应考虑温度传感器、控制器、执行器、被控对象、反馈系统和电源及安全设备等关键要素。
通过选择合适的设备并优化系统设计,可以实现对温度的精确控制,从而提高生产效率和质量。
随着科技的不断发展,智能化成为各行各业的主要趋势。
温度控制作为日常生活和工业生产中的重要环节,如何实现智能化以提高效率、节约能源以及提高生产质量,已成为业界的焦点。
多点温度控制系统可行性分析及设计方案

多点温度控制系统可行性分析及设计方案一、可行性分析温度控制系统是一种用于监测和调节温度的系统,广泛应用于各个领域,如工业、医疗、农业等。
以下是对温度控制系统可行性的分析:1.市场需求:随着技术的发展和人们对生活质量的要求提高,对温度控制的需求也在不断增加。
各行各业都有温度控制的需求,因此市场潜力巨大。
2.技术可行性:目前,温度控制系统所需的传感器、控制器和执行器等关键技术已经非常成熟,可以满足各种需求。
同时,温度控制算法的研究也相对成熟,可以提供高精度的温度控制。
3.成本可行性:随着技术的进步,温度控制系统的成本逐渐下降。
同时,多种材料和设备的广泛应用也为温度控制系统提供了更多的选择,降低了成本。
4.政策环境:政府对于环境保护和能源节约的要求越来越高,温度控制系统可以有效地控制能源的消耗和减少对环境的影响,符合国家政策。
二、设计方案基于以上可行性分析,以下是一份300字多点温度控制系统的设计方案:该温度控制系统适用于工业生产中的多点温度监测和调节。
系统的主要组成部分包括传感器、控制器和执行器。
1.传感器:使用高精度的温度传感器,将多个监测点的温度数据实时传输给控制器。
传感器应具有快速响应、高精度和可靠性。
2.控制器:采用先进的控制算法,根据监测到的温度数据进行分析和判断,并通过控制执行器来实现温度的调节。
控制器应具有高速计算能力和稳定性。
3.执行器:根据控制器的指令,控制执行器来调节温度。
执行器可以是电磁阀、加热器、冷却器等,根据具体需求选择合适的执行器。
4.数据记录与报警:系统应具备数据记录功能,将温度数据进行存储和分析,以便进行后续统计和分析。
同时,系统还应具备报警功能,当温度超过设定的范围时,及时发出警报。
5.远程监控与控制:系统应支持远程监控和控制,可以通过网络对温度控制进行实时监测和调节,方便操作人员进行远程管理。
该多点温度控制系统具备可行性,并提供了一个基本的设计方案。
在实际应用中,可以根据具体需求进行调整和改进,以实现更好的温度控制效果。
温度控制系统ppt课件

研究意义 研究背景 研究内容 研究方法 硬件电路 软件设计 小插 曲 结论
➢研究意义
温度是生活及生产中最基本的物理量,它表征的 是物体的冷热程度。自然界中任何物理、化学过程 都紧密的与温度相联系。在很多生产过程中,温度 的测量和控制都直接和安全生产、提高生产效率、 保证产品质量、节约能源等重大技术指标相联系。 因此,温度的测量与控制在国民经济各个领域中均 受到了相当程度的重视。
➢研究背景
近年来,温度的检测在理论上发展比较成熟,但 在实际测量和控制中,如何保证快速实时地对温 度进行采样,确保数据的正确传输,并能对所测 温度场进行较精确的控制,仍然是目前需要解决 的问题 。 从工业控制器的发展过程来看,温度控制技术大 致可分以下几种:定值开关温控法、PID线性温 控法、智能温控法。
➢总结
同时本设计还存在着一些不足,例如:系统的硬件设计 方面有待完善,可以增加各种保护功能和故障检测功能。 还有可以用12864显示温度曲线,或者用电脑和单片机 描出图形,使得PID参数更好的调节。 通过本次毕业设计我感受很深,从中学到了很多东西。 通过本次实践,不但培养了我们独立思考问题的能力, 同时也增强了我的动手能力,为以后步入工作岗位奠定 了基础。
➢小插曲
1.困惑与PID三个参数的调节,本来我是想从纯理 论的方面去思索这个问题的后面与老师交谈了下 才知道PID的参数调节是与实际环境相关的。 2.鬼影,LCD1602出现鬼影。本来我并不知道这 个是鬼影,在网上搜索也就不知道检索什么关键 词。后面请教了公司的一个毕业不久的学长得知 是鬼影,解决方法是在VDD端和地之间串联个 10K的电位器,发现鬼影可调。
➢小插曲
5.矩阵键盘这块焊接的时候倒是发了我不少时间, 以前都是看着的以为自己会。这次我真正的感受到 动手和不动手的区别。矩阵键盘的程序也让我纠结 了点时间。这里有个思维过程。首先我确定了我的 这个电路是有按键按下是高电平的IO口会被拉低, 比如说11110000会变成1011000,让P0口和 00001111继续位或运算在按位取反,就可以得到是 第二列有按键按下,在赋值00001111就可以等到行 就能确定是哪个按键按下。这里要理清硬件电路的 关系才能编程。
(完整版)温度控制系统设计

(完整版)温度控制系统设计温度控制系统的设计包括传感器、信号调理、控制器、执行元件和用户界面等多个部分,这些部分通过相互协调合作来达到稳定的温度控制。
本文将介绍温度控制系统设计的各个部分以及如何进行系统参数的选择和调整。
传感器是温度控制系统的重要组成部分,通常使用热敏电阻、热偶和红外线传感器等。
热敏电阻是一种电阻值随温度变化的材料,通过使用一个电桥来测量电阻值的变化,从而得到温度值。
热偶由两种不同的金属线构成,当温度变化时,热偶两端产生电势差,通过测量电势差值得到温度值。
红外线传感器通过测量物体辐射的红外线功率来得到物体的表面温度。
在选择传感器时,需要根据需要测量的温度范围、精度、响应时间和稳定性等参数进行选择。
信号调理是将传感器信号进行放大和校正的过程,包括滤波、增益、放大、线性化和校正等。
常用的信号调理手段有运算放大器、滤波器和模拟乘法器等。
运算放大器可以将传感器信号放大到合适的电平,同时可以进行信号的滤波、加减运算和比较等。
滤波器可以去除传感器信号中的杂波和干扰数据。
模拟乘法器可用于将两个信号相乘以进行补偿或校正。
在进行信号调理时,需要根据传感器的参数和目标控制参数进行调整。
控制器是温度控制系统的核心部分,其主要功能是根据信号调理后的温度值和设定值之间的差异进行相应的控制,使温度保持在设定范围内。
控制器通常通过对执行元件的控制来实现对温度的调节。
常见的控制算法有比例控制、积分控制和微分控制等。
比例控制是根据偏差的大小来进行控制,当偏差越大时,控制力度也越大;积分控制可以对偏差的累计值进行控制,从而提高控制的准确性;微分控制可以对偏差的变化率进行控制,从而使控制具有更好的响应速度和稳定性。
在选择控制算法时,需要根据系统对响应速度和稳定性的要求进行选择,并进行相关的参数调整。
执行元件是通过电机或气动元件来调节温度控制系统的温度的元件,例如调节阀门、电热器、压缩机和风扇等。
执行元件的选择需要根据需要调节的温度范围、响应速度和精度等参数进行选择,并根据控制算法和控制器参数进行调整。
电阻炉温度控制系统的设计

电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
温度控制系统(课程设计)

长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。
题目。
摘要。
需求分析。
方案比较。
硬件设计。
硬件电路设计。
总体电路设计。
软件设计。
调试及结果分析。
附录1 电路程序。
附录2 电路总图。
题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。
控制对象为自定。
图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。
(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。
(4)温度控制的静态误差≤2℃。
扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。
恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度控制系统设计目录第一章系统方案论证 (3)1.1 总体方案设计 (3)1.2 温度传感系统 (3)1.3 温度控制系统及系统电源 (4)1.4 单片机处理系统(包括数字部分)及温控箱设计 (4)1.5 PID算法原理 (5)第二章重要电路设计 (7)2.1 温度采集 (7)2.2 温度控制 (7)第三章软件流程 (8)3.1 基本控制 (8)3.2 PID控制 (9)3.3 时间最优的PID控制流程图 (10)第四章系统功能及使用方法 (11)4.1 温度控制系统的功能 (11)4.2 温度控制系统的使用方法 (11)第五章系统测试及结果分析 (11)5.1 硬件测试 (11)5.2 软件调试 (12)第六章进一步讨论 (12)参考文献 (13)致谢......................................................................................................... 错误!未定义书签。
摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。
关键词:温度控制系统PID控制单片机Abstract: This paper introduces a temperature control system that is based on the single-chip microcomputer.The hard ware composition and software design are descried indetail combined with the project Comtrol System of Temperature.Keywords: Control system of temperature PID control Single-chip Microcomputer引言:温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
本文设计了以单片机为检测控制中心的温度控制系统。
温度控制采用改进的PID数字控制算法,显示采用LED静态显示。
该系统设计结构简单,按要求有以下功能:(1)温度控制范围为20~40°C;(2)有加热和制冷两种功能(3)指标要求:超调量小于2°C;过渡时间小于5min;静差小于0.5℃;温控精度0.2℃(4)实时显示当前温度值,设定温度值,二者差值和控制量的值。
第一章系统方案论证1.1 总体方案设计薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送A/D转换器采样、量化,量化后的数据送单片机做进一步处理;当前温度数据和设定温度数据经PID算法得到温度控制数据;控制数据经D/A转换器得到控制电压,经功率放大后供半导体致冷器加热或制冷,从而实现温度的闭环控制。
系统大致可以分为:传感、单片机处理、控制及温控箱。
图1-1 系统总体框图1.2温度传感系统换能部分采用了电压电路,这主要考虑了电压信号不容易受干扰、容易与后续电路接口的优势;经过铂电阻特性分析,在要求的温度范围内铂电阻的线性较好,所以不必要增加非线性校正电路;采样电压再经过高精度电压放大电路和隔离电路之后输出;另外,由于高精度的需要,电路对电源要求较高,所以采用稳压电源电路的输出电压,并且需要高精度运放。
因为温度变化并不是很快,所以电路对滤波器的要求并不高,这里采用了一阶滤波即可满足要求。
1.3 温度控制系统及系统电源1.3.1 温度控制系统温度控制系统需要完成的功能为:D/A转换器输出的电压控制信号,经过电压放大,再通过功率单元提高输出功率后,控制半导体制冷器件加热或制冷。
故此子系统可分为电压放大、功率输出两部分。
D/A转换器输出的电压控制信号经过电压放大、功率放大后,给两片半导体制冷器件供电。
另外单片机还输出一个用来控制是加热还是制冷的控制信号。
功率放大电路采用LM33稳压芯片,可承受高输出电流,且V out端输出电压与Vadj端的电压差保持不变的特点,可将控制信号利用运放方向放大后,输入至稳压芯片的Vadj端,输出信号的电压范围和功率放大至合适的大小。
具体设计为D/A输出的控制信号,经上述处理,在V out端利用继电器,由单片机输出的加热制冷控制信号控制继电器的闭合方向,改变半导体器件的电流方向,从而控制加热或制冷。
1.3.2 系统电源本设计需要供电的部分有温度采集部分须有基准电压+5V供电,单片机处理系统的数字电路部分需要+5V的电源,而实验室的5V电源会有纹波,故采用稳压芯片LM317自行设计,电路如图,调节可变电阻,即可得到所需的电压。
其中可变电阻R1是起到分压得作用,避免在LM317上的压降过大,否则LM317发热,会使电压不稳。
U11.4 单片机处理系统及温控箱设计1.4.1单片机系统单片机系统结构如下:①模数部分将传感信号量化为8位二进制数,并将其送入最小系统板;②控制层调用PID算法,计算出控制量,同时提供人机交互;③数模部分将控制量转换为模拟电压,送入温度控制部分。
最小系统板与外部数字电路部分(包括A/D、D/A、外部中断源信号等)的通信参照了微机原理与接口实验中的实验箱电路的连接方法。
调用PID 算法的中断采用的是内部定时器,可以简化外围电路。
1.4.2 温控箱设计我们用实验室提供的材料自己设计制作了温度控制箱体。
控温箱为正方体铝箱,在其中相对的两个内侧表面用导热硅胶粘贴了半导体致冷材料而成。
为提高箱体绝热性能,在除了粘有半导体材料之外的其他内表面,都贴有保温塑料层,为加强密闭性,尽量减少控制箱腔内体积,又要露出全部的半导体制冷片,我们采用的是“工字形”方案,即:将填入铝箱的保温塑料层做成一个无接缝的整体,相对的半导体制冷片的两侧挖空,露出其全部面积,中间留有一个很小的腔体作为温度控制的空间(插入热敏电阻与标准表探头)。
我们采用将箱体放入冷水中的方法解决温控箱的散热问题。
1.5 PID 算法原理1、基本PID 算法()[()(1)]()[()2(1)(2)]p i d P n K e n e n K e n K e n e n e n ∆=--++--+-其中()()o e t V V t =-V o 和V(t)都是八位二进制数,用一个字节存储。
在上述公式中,存在差项,需要用补码来表示负数。
所以必须用最高位作为符号位,V o 和V(t)用8位表示显然是不够的。
处理方法是在V o 和V(t)前面补一个值为零的字节,以两字节来表示,运算的最终结果结果取8位有效位。
基本的PID 算法,需要整定的系数是Kp (比例系数),Ki (积分系数),Kd (微分系数)三个。
这三个参数对系统性能的影响如下:(1) 比例系数 Kp① 对动态性能的影响 比例系数Kp 加大,使系统的动作灵敏,速度加快,Kp 偏大,振荡次数加多,调节时间加长。
当Kp 太大时,系统会趋于不稳定,若Kp 太小,又会使系统的动作缓慢;② 对稳态性能的影响 加大比例系数Kp ,在系统稳定的情况下,可以减小静差,提高控制精度,但是加大Kp 只是减少静差,不能完全消除。
(2) 积分系数 Ki① 对动态性能的影响 积分系数Ki 通常使系统的稳定性下降。
Ki 太大,系统将不稳定;Ki 偏大,振荡次数较多;Ki 太小,对系统性能的影响减少;而当Ki 合适时,过渡特性比较理想;② 对稳态性能的影响 积分系数能消除系统的静差,提高控制系统的控制精度。
但是若Ki 太小时,积分作用太弱,以致不能减小静差。
(3) 微分系数 Kd微分控制可以改善动态特性,如超调量减少,调节时间缩短,允许加大比例控制,使静差减小,提高控制精度。
但当Kd 偏大或偏小时,超调量较大,调节时间较长,只有合适的时候,才可以得到比较满意的过渡过程。
对系数实行“先比例,后积分,再微分”的整定步骤。
(1) 首先只整定比例部分。
即将比例系数由小到大,并观察相应的系统响应,直到得到反应快,超调小的响应。
(2) 加入积分环节。
整定时首先置积分系数Ki 一个较小的值,并将第(1)步中整定的比例系数略为缩小(例如缩小为原值的0.8倍),然后增大Ki ,使在保持系统良好动态性能的情况下,静差得到消除。
在此过程中,可根据响应的好坏反复改变比例系数与积分系数。
(3) 若使用比例积分调节器消除了静差,但动态过程经反复调整仍不能满意,则可加入微分环节。
在整定时,可先置微分系数为0,在第一步的基础上,增大Kd ,同时相应地改变比例系数和积分时间。
2、时间最优的控制算法采用上述PID 控制算法存在一个问题:当设定值比当前值高很多时,在相当一段时间内,控制增量都为正,而且在不断的积累增大;只有当温度上升到设定值以上时,控制增量才有可能变为负值;要用负的控制增量抵消以前积累的正控制量,需要的时间较长;这正是产生超调量的根本原因。
当设定值低于当前值时情况类似。
为解决这个问题,采用了时间最优的控制算法。
时间最优的PID 控制即开关控制(Bang-Bang 控制)与PID 控制相结合的控制方式。
其思想是:开关控制即指在当前值与设定值偏差较大的情况下,控制系统进入 “开”或者“关”两种状态。
具体到本系统,就是指当前温度和设定温度差别很大时,要么全功率(最大电压输出)的加热,要么就全功率的制冷。
{Bang-Bang PID ()()()r k c k e k αα><-=控制控制当前值与设定值相差在阈值α以内时,采用PID 算法计算输出控制量;当在α以外时,则直接输出最大值255作为控制量,不再调用PID 算法,不做控制量的累加。
这样处理可以在很大程度上改善控制性能。
第二章 重要电路设计 2.1 温度采集图2-1 温度采集电路用电桥采集温敏电阻值的变化,考虑到是小信号的放大,所以选择仪表放大电路,并且选择高精度,低温漂的OP07运算放大器。
电阻R29为薄膜铂电阻,与R28在电桥的两个臂上,将铂电阻的电阻转换为电压信号U3的放大倍数定为33倍,U4的作用是调节放大倍数,使输出电压为0~5V调节过程:1、把铂电阻定在18度的阻值106.6欧姆,调节R23,使输出为0。
2、把铂电阻定在40度的阻值114.8欧姆,调节R30,使输出为5V3、采用一阶滤波,目的是滤出高频得噪声干扰,所以f0定在几十HZ 。
2.2 温度控制1. 电压变换:电路图见图2-2图2-2 电压变换电路R420k说明:这部分电路先将D/A 输出的电压控制信号control(-5~0V) 用一个运放构成的反向放大器转移到电平0~8V ,然后通过小功率稳压芯片LM385降压2.5V 。