中国海洋大学成人高等教育概率论与数理统计期末考试复习题 完整版
2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
中国海洋大学期末历年真题

2006-2 06-07学年第2学期试题名称:概率论与数理统计A共2页第1页
专业年级学号姓名授课教师分数
题目
一
二
三
得分
一.填空题(每小题3分,共21分)
1.设 为随机事件,
则 。
2.总体 则 已知时, 的置信度为95%
区间估计为(,)。
3.若随机变量 的分布密度为
则常数 。
则下列结论中一定正确的是。
; 与 相容;
; 与 互不相容。
2.设 为两个随机事件,且 , ,
则下列结论中必然成立的是。
; ;
;
授课
教师
命题教师或命题负责人签字
刘宝生
院系负责人签字
年月日
3.若 , 都是分布函数,为使 是分布函数;
应取下列各组中的。
; ;
;
4.设 ,则随着 的增大,概率
的数值。
单调减少;单调增大;保持不变;增减不定。
容量为 的简单随机样本,求出参数 的最大似然估计,
并说明它们是否无偏估计?
(四)(10分)试写出总体 已知时,
参数假设检验 ( 己知)的检验水平为 的检验步骤
5.设随机变量 和 都服从标准正态分布,则
服从正态分布 服从 分布
都服从 分布 服从 分布
6.设随机变量 服从正态分布 ,对给定的 ,
数 ,若 ,则 等于
。
7.随机变量 、 的方差分别为4和1,相关系数为0.5,
则随机变量 的方差为。
46;52;28;34。
三.综合题(共51分)
(一)。(13分)一学生接连参加数学课的两次考试。第一次及格的概率为 ,若第一次及格则第二次及格的概率也为 ;若第一次不及格则第二次及格的概率为 。
概率论与数理统计期末试卷及答案(最新12)(推荐文档)

概率论与数理统计期末试卷及答案一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( )4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
成人教育 《概率论与数理统计》期末考试复习题及参考答案

概率论与数理统计练习题A一、填空题1、已知事件A 与B 相互独立,并且3.0)(,4.0)(==B P A P ,则=)(B A P .2.在书架上任意放上20本不同的书,其中指定的两本书放在首未的概率是 .3.设随机变量X ~),2(2σN ,且{}3.042=<<X P ,则{}=<0X P .4.若二维随机变量(X , Y )的区域{}222|),(R y x y x ≤+上服从均匀分布,则(X ,Y )的密度函数为 。
5.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则)(2X E = 。
6.设1X ,2X ,…,n X 为总体),0(~2σN X 的一个样本,则2σ 极大似然估计量为 .二、单选题1.已知====)(,8.0)|(,6.0)(,5.0)(B A P A B P B P A P ( ).A 0.5;B 0.6;C 0.7;D 0.8. 2.对于任意两事件A 和B ,)(B A P -=( ).A .)()(B P A P - ; B .)()()(AB P B P A P +-;C .)()(AB P A P -;D .)()()(B A P A P A P -+.3.设有4张卡片分别标以数字1,2,3,4,今任取一张,设事件A 为取到1或2,事件B 为取到1或3,则事件A 与B 是( ).A 互不相容;B 互为对立;C 相互独立;D 互相包含.4.设X 的为随机变量,则=-)32(X E ( ).A )(2X E ;B 3)(4-X E ;C 3)(2+X E ;D 3)(2-XE . 5.设X ,Y 是两个随机变量,则下列命题正确的是( ).A .X ,Y 不相关⇒X ,Y 不相互独立;B . X ,Y 相关⇒X ,Y 相互独立;C .X ,Y 不相关⇒X ,Y 相互独立;D .X ,Y 相互独立⇒X ,Y 不相关6.设1X ,2X ,…,n X 是总体),(2σμN 的样本,2S 是样本方差,则( ).A .)1(~)1(222--n S n χσ; B .)(~)1(222n S n χσ-; C .)1(~)1(22--n t S n σ ;D .)(~)1(22n t S n σ-.三、计算题1.已知40件产品中有3件次品,现从中随机地取出2件,求其中只有1件次品的概率和至少有1件次品的概率.2.在4重伯努力试验中,已知事件A 至少出现一次的概率为0.5,求在一次试验中事件A 出的概率.3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数。
概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计复习题
一、填空题(把正确的答案填在横格上。
每小题3分,共30分)
1.若A、B是两个互不相容的随机事件,则P(A∪B=P(A)+P(B)-P(AB)
2.已知P(A)=06,则P(A)=0.4
3.设A、B是两个任意随机事件,且P(AB)=p(A)P(A/B),则称事件A与B 相互独立
4.已知随机变量X服从标准正态分布,其密度函数d(x)=
5.设X与Y是相互独立的随机变量,则E(XY)=E(X)E(Y)
6已知随机变量ⅹ服从正态分布N(A,a2),则D(X)=
7.设x1,X2,……,Xn,是相互独立的随机变量,它们分别有有限的数学期望和方差,且方差有公共的,则任的0恒有xx小
8.假若总体分布为连续型随机变量,其概率密度函数为f(x),则样本X1X2
X的联合密度函
数为f(xx,x2,……,xn)=
9.总体均值μ的无偏估计量是X
10.在假设检验中,判断原假设H0成立的原理是小概率事件原理
二、是非判断题(认为正确的在题后括号内划∨,错误的打Ⅹ,每小题3分,共15分)
1、正确若A、B是两个互不相容的事件,则P(AB)=0,
2、若A与B相互独立,则A与B不独立错误
3、若X,Y是两个任意的随机变量,则D(X±Y)=D(X)±D(Y)错误
4、正确设X1,X2,
Xn,是来自总体X的样本,S
(X,-X)2,则S2是总体方差的无偏
估计量。
5、)错误已知随机变量X的概率分布表为
三、甲、已两人同时向一目标射击,已知甲的命中率为06,已的命中率是07,试求目标被击中的概率(8分)
答:未命中率是(1-0.6)/(1-0.7)=0.12
命中率是1-0.12=0.88
四、一批同样规格的产品是由甲、已、丙三个车间共同生产,三个车间的产品数量分别占这批产品总量的20%,40%,40%,已知这三个车间的次品率分别为5%,4%,3%,现从这批产品中任。