热力学统计物理期末考试卷
热力学与统计物理期末试题(杭师大)

一、填空(每小题1分,共20分)1.热力学和统计物理学的任务相同,但研究的方法是不同的。
热力学是热运动的 理论,统计物理学是热运动的 理论。
2.热力学第二定律揭示了自然界中与热现象有关的实际过程都是 。
3.定域系统和满足经典极限条件的玻色(费米)系统都遵从 玻耳兹曼 分布。
4.能量均分定理:对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项平均值等于 。
5.不满足12232>>)(hm kT N V π条件的气体称为 简并 气体,如果系统是由费米子构成,需要用 费米—狄拉克 分布处理。
6.光子是属于 玻色子 粒子,达到平衡后遵从 玻色—爱因斯坦 分布。
7.对粒子运动状态的描述可分为 经典 描述和 量子 描述, 经典 描述认为粒子运动遵从经典力学运动规律,粒子在任一时刻的力学运动状态由粒子的 广义坐标 和与之共轭的 广义动量 在该时刻的数值确定。
在不考虑外场的情况下,粒子的能量是其 广义坐标 和 广义动量 的函数。
量子 描述认为粒子的运动遵从量子力学的运动规律,从原则上说微观粒子是遵从 量子力学 运动规律的。
8.统计物理学从宏观物质系统是由大量微观粒子组成这一事实出发,认为物质的宏观特性是 大量微观粒子 行为的集体表现,宏观物理量是 微观物理量 的统计平均值。
9.电子是费米子粒子,强简并的费米子粒子构成的系统遵从费米分布,费米子系统的巨配分函数定义为l l l a e ωβε∏--+=Ξ]1[,其对数为∑--+la l l e )1ln(βεω10.在经典描述中,三维自由粒子的能量为)(21222z y x p p p m++=ε(其中x x m p v =,y y m p v =,z z m p v =),在量子描述中三维自由粒子的能量为)(21222z y x p p p m ++=ε(其中x x n L p π2=,y y n L p π2=,z z n Lp π2=,)或),2,1,,(2222222L h ±±=++=z y x z y x n n n Ln n n m πε。
统计物理期末试题及答案

统计物理期末试题及答案一、选择题(每题3分,共30分)1. 在统计物理中,描述粒子分布的函数是:A. 波函数B. 配分函数C. 统计权重D. 状态方程2. 温度的微观解释是:A. 粒子的平均动能B. 粒子的总动能C. 粒子的势能D. 粒子的动量3. 以下哪个量不是热力学系统的宏观状态量?A. 温度B. 体积C. 粒子数D. 动量4. 理想气体的熵变只与温度变化有关,这是因为:A. 理想气体分子间无相互作用B. 理想气体分子间有相互作用C. 理想气体分子间相互作用可以忽略D. 理想气体分子间相互作用对熵变有影响5. 根据玻尔兹曼统计,一个粒子在能量为E的态上的统计权重是:A. e^(-E/kT)B. e^(E/kT)C. e^(-E/kBT)D. e^(E/kBT)6. 一个系统从状态A到状态B的自由能变化等于:A. ΔF = ΔH - TΔSB. ΔF = ΔU - TΔSC. ΔF = ΔH + TΔSD. ΔF = ΔU + TΔS7. 热力学第二定律表明:A. 能量守恒B. 熵增原理C. 能量转换效率D. 热机效率8. 绝对零度是:A. 温度的下限B. 温度的上限C. 粒子动能的最小值D. 粒子动能的最大值9. 以下哪个过程是不可逆的?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等容膨胀10. 根据吉布斯自由能,一个化学反应在恒温恒压下自发进行的条件是:A. ΔG < 0B. ΔG > 0C. ΔG = 0D. ΔG ≠ 0二、填空题(每题2分,共20分)1. 在统计物理中,配分函数Z的定义是:Z = Σ e^(-E_i/kT),其中E_i是第i个能级的_________。
2. 一个系统从状态A到状态B的熵变可以通过公式ΔS = _________来计算。
3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的_________趋于一个常数。
热力学·统计物理期末考试卷

贵州大学2010—2011学年第二学期考试试卷 B热力学与统计物理注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间为120分钟。
TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQS =2. 以T 、p 为独立变量,特征函数为( )。
A .内能;B .焓;C .自由能;D .吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A .减小气体分子数密度; B .降低温度;C .选用分子质量小的气体分子;D .减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度; B .体积、粒子数、温度; C .内能、体积、粒子数; D .以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫⎝⎛∂∂TV U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii iA ν达到化学平衡的条件为 。
热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案

云南师范大学2010——2011学年上学期统一考试《热力学统计物理》试卷学院物电学院专业物理类班级学号姓名考试方式:闭卷考试时量:120分钟试卷编号:A卷题号一二三四总分评卷人得分一判断题(每小题2分,共20分,请在括号内打“√”或打“×”)1、()热力学是研究热运动的微观理论,统计物理学是研究热运动的宏观理论。
2、()热力学平衡态与孤立系统的熵最小、微观粒子混乱度最小以及微观状态数最少的分布对应。
3、()在等温等压系统中自由能永不减小,可逆过程自由能不变,不可逆过程自由能增加。
4、()对平衡辐射而言,物体在任何频率处的面辐射强度与吸收因数之比对所有物体相同,是频率和温度的普适函数。
5、()处于孤立状态的单元二相系,如果两相热平衡条件未能满足,能量将从高温相传到低温相去。
6、()在准静态过程中外界对系统所作的功等于粒子分布不变时由于能级改变而引起的的内能变化。
7、()玻耳兹曼分布是玻耳兹曼系统中微观状态数最多的分布,出现的概率最大,称为最概然分布。
8、()在弱简并情况下,费米气体的附加内能为负,量子统计关联使费米子间出现等效的吸引作用。
9、()出现玻色-爱因斯坦凝聚现象时,玻色系统的内能、动量、压强和熵均为零。
10、()费米气体处在绝对零度时的费米能量、费米动量和费米简并压强和熵均为零。
二填空题(每空2分,共20分)1、发生二级相变时两相化学势、化学势的一级偏导数,但化学势的级偏导数发生突变。
2、普适气体常数R与阿伏伽德罗常数N0和玻耳兹曼k之间的数学关系为。
3、孤立系统平衡的稳定性条件表示为和。
4、如果采用对比变量,则范氏对比方程表示为。
5、玻耳兹曼的墓志铭用数学关系表示为。
费米分布表示为。
6、绝对零度下自由电子气体的内能U(0)与费米能量μ(0)之间的数学关系为。
7、公式在低频段与普朗克辐射曲线相符合。
三简述题(每小题8分,共16分)1、简述热力学第一定律和热力学第二定律;谈谈你对节约能源、低碳生活以及可持续发展的认识。
热力学统计物理期末考试卷

热力学统计物理期末考试卷The pony was revised in January 2021热力学与统计物理1. 下列关于状态函数的定义正确的是( )。
A .系统的吉布斯函数是:pV TS U G +-=B .系统的自由能是:TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQ S = 2. 以T 、p 为独立变量,特征函数为( )。
A.内能;B.焓;C.自由能;D.吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A.减小气体分子数密度;B.降低温度;C.选用分子质量小的气体分子;D.减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度;B .体积、粒子数、温度;C .内能、体积、粒子数;D .以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫ ⎝⎛∂∂TV U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii i A ν达到化学平衡的条件为 。
6. 在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
热力学与统计物理期末题库

热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
热力学·统计物理期末考试卷

贵州大学2010—2011学年第二学期考试试卷 B热力学与统计物理注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
TSUF+= C.系统的焓是:pVUH-=D.系统的熵函数是:TQS=2.以T、p为独立变量,特征函数为( )。
A.内能;B.焓;C.自由能;D.吉布斯函数。
3. 下列说法中正确的是()。
A.不可能把热量从高温物体传给低温物体而不引起其他变化;B.功不可能全部转化为热而不引起其他变化;C.不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D.可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4.要使一般气体满足经典极限条件,下面措施可行的是()。
A.减小气体分子数密度;B.降低温度;C.选用分子质量小的气体分子;D.减小分子之间的距离。
5. 下列说法中正确的是()。
A.由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B.由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C.系统宏观物理量是相应微观量的统计平均值;D.系统各个可能的微观运动状态出现的概率是不相等的。
6.正则分布是具有确定的()的系统的分布函数。
A.内能、体积、温度;B.体积、粒子数、温度;C.内能、体积、粒子数;D.以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫⎝⎛∂∂TVU。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii iA ν达到化学平衡的条件为 。
6. 在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满 足关系 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学与统计物理
1. 下列关于状态函数的定义正确的是( )。
A .系统的吉布斯函数是:pV TS U G +-=
B .系统的自由能是:TS U F +=
C .系统的焓是:pV U H -=
D .系统的熵函数是:T
Q
S = 2. 以T 、p 为独立变量,特征函数为( )。
A.内能; B.焓; C.自由能; D.吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;
B .功不可能全部转化为热而不引起其他变化;
C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;
D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A.减小气体分子数密度; B.降低温度;
C.选用分子质量小的气体分子;
D.减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;
B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;
C .系统宏观物理量是相应微观量的统计平均值;
D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度; B .体积、粒子数、温度; C .内能、体积、粒子数; D .以上都不对。
二、填空题(共20分,每空2分)
1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫
⎝⎛∂∂T
V U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应
0=∑i
i i
A ν
达到化学平衡的条件为 。
6. 在满足经典极限条件1>>α
e 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满 足关系 。
7. 玻色-爱因斯坦凝聚现象是指 。
8. 在低温下,如果计及电子和离子振动的话,金属的定容热容量可表为 。
9. 按费米分布,处在能量为s ε的量子态s 上的平均粒子数为=s f 。
10.刘维尔定理表明,如果随着一个代表点沿正则方程所确定的轨道在相空间中运动,其邻域的 是不随时间改变的常数。
三、简答题(共20分,每小题4分) 1. 什么是热力学系统的强度量什么是广延量
2. 什么是特性函数若吉布斯函数为特性函数,其自然变量是什么
3. 证明在F 、T 不变的情形下,平衡态的V 最小。
4. 写出玻耳兹曼关系,并说明熵的统计意义。
5. 请分别写出正则分布配分函数的量子表达式和经典表达式
四、(12 分)设有1mol 的理想气体,其状态参量由(111,,T V p )变化到(222,,T V p ),假设此过程为一等温膨胀过程)(21T T T ==,求理想气体内能的改变U ∆,外界对理想气体所作的功
W ,理想气体从外界吸收的热量Q ,以及理想气体的熵变ΔS 。
五、(10分)定域系统含有N 个近独立粒子,每个粒子有两个非简并能级1ε和2ε,假设21εε<。
求在温度为T 的热平衡状态下系统
的内能和熵。
六、(10分)目前由于分子束外延技术的发展,可以制成几个原子层厚的薄膜材料,薄膜中的电子可视为在平面内做自由运动,电子面密度为n 。
试求0K 时二维电子气的费米能量和内能。
七、(10分)试应用正则分布求单原子分子理想气体的物态方程、内能和熵。
(提示: ⎰
∞
+∞
--=
a
dx e ax π
2
)
热力学与统计物理参考答案
一、选择题(共18分,每小题3分)
二、填空题(共20分,每空2分)
1.0。
2. 最小。
。
4. 在临界点μ及μ的一阶偏导数连续 5.
0=∑i
i
i ν
μ。
6. !
...N B
M D F E B Ω≈
Ω≈Ω。
7. 在C T T <时,有宏观量级的粒子在能级0=ε凝聚。
8. 3AT T C V +=γ。
9.
1
1++s
e
βεα。
10. 代表点密度。
三、简答题(共20分,每小题4分)
1.热力学系统的强度量是指与系统的质量或物质的量无关的热力学量(2分)。
热力学系统的广延量是指与系统的质量或物质的量成正比的热力学量(2分)。
2.如果适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数即称为特性函数。
(2分)
吉布斯函数的自然变量是:温度T 和体积p 。
(2分)
3.假设系统发生一虚变动,在虚变动中,有V p T S F δδδ--<。
在F ,T 不变的情形下, 有0,0==T F δδ,因此必有0<V δ(2分)。
如果系统达到了V 为极小的状态,它的体积 不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此在F ,T 不变的情形下,稳定平衡态的V 最小。
(2分) 4.Ω=ln k S (2分)。
熵是系统混乱程度的量度,某个宏观状态对应的微观状态数愈多, 它的混乱程度就愈大,熵也愈大(2分)。
5.量子表达式:∑-=S
E S
e
Z β 或 ∑-Ω=
l
E l l
e
Z β (2分)
经典表达式:⎰Ω=
-d e h
N Z p q E Nr ),(!1
β (2分)
四、(12分)解:等温膨胀过程,由于温度不变,理想气体内能仅是温度的函数,所以
0=∆U (3分)
1
2ln 2
1
V V RT V dV
RT pdV W V V B
A
-=-=-=⎰
⎰ (3分) 根据热力学第一定律,
1
2
ln
V V RT W Q =-= (3分) 等温膨胀过程引起的系统的熵变:
1
2ln V V R T Q
S ==
∆ (3分)
五、(10分)解:定域系统可以用玻尔兹曼分布处理。
系统的配分函数为
∑------+=+==l
l e e e e e Z l ]1[)(112121εεββεβεβεβεω (2分)
得系统的内能为 kT
e
N N e N N Z N U )
(121)(121112121)
(1)(ln εεεεβεεεεεεβ--+-+=+-+=∂∂-= (4分) 系统的熵为
)ln (ln 11Z Z Nk S ββ
∂∂-=}1)(]1{ln[)
(12)(1212εεβεεβεεβ---+-++=e e Nk })
1()(]1{ln[)
(12)
(1212kT
kT
e
kT e
Nk εεεεεε---+-+
+= (4分)
六、(10分)解:在面积A 内,在εεεd +→的能量范围内,二维自由电子的量子态数为 επεεmd h
A
d D 24)(= (2分) 0K 下自由电子的分布为 ⎩⎨⎧>≤=)
0( ,0)0(
,1)(μεμεεf (2分)
费米能量)0(μ由下式确定:
)0(44)()(2)0(020
μπεπεεεμm h
A
d m h A d D f N ===⎰⎰
∞
即 n m
h A N m h ππμ44)0(2
2==
(3分) 0K 下二维自由电子气体的内能为
)0(2)0(2
44)()(22)0(020
μμπεεπεεεεμN
m h A d m h A d D f U ====⎰⎰
∞
(3分)
七、(10分)解:由N 个单原子分子组成的理想气体,其能量为
∑==N
i i m
p E 3122 (1分)
配分函数
⎰
⋅⋅⋅⋅⋅⋅∑==-N
N m p N dp dp dq dq e
h N Z N
i i 31312331
2!1
β
2
32)2(!N N h
m
N V βπ= (3分)
物态方程 V NkT
V V N Z V p =∂∂=∂∂=
ln ln 1ββ (2分) 内能 kT N
N Z U 2
31ln 23ln =∂∂-=∂∂-
=βββ (2分) 熵 )(ln )ln (ln U Z k Z Z k S ββ
β
+=∂∂
-= ⎥⎦⎤⎢⎣
⎡+++=25)2ln(ln
232
32h mk Nk N V Nk NkT π (2分)。