STM32如何设置定时器
STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。
⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采⽤内部时钟。
TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。
这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。
{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。
⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。
如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。
stm32高级定时器使用教程

STM32 高级定时器-PWM简单使用2010-04-14 14:49:29| 分类:STM32 | 标签:|举报|字号大中小订阅高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。
共有4个通道有死区有互补。
先是配置IO脚:GPIO_InitTypeDef GPIO_InitStructure;/* PA8设置为功能脚(PWM) */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);/*PB13 设置为PWM的反极性输出*/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);/*开时钟PWM的与GPIO的*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);/*配置TIM1*/TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;void Tim1_Configuration(void){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;TIM_DeInit(TIM1); //重设为缺省值/*TIM1时钟配置*/TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18KTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不懂得不管 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值不懂得不管TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure); //初始化TIMx的时间基数单位/* Channel 1 Configuration in PWM mode 通道一的PWM */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效PA8 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效 PB13TIM_OCInitStructure.TIM_Pulse = 40; //占空时间144 中有40的时间为高,互补的输出正好相反 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态不管 TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx通道1这里2.0库为TIM_OCInit/* TIM1 counter enable开定时器*/TIM_Cmd(TIM1,ENABLE);/* TIM1 Main Output Enable 使能TIM1外设的主输出*/TIM_CtrlPWMOutputs(TIM1,ENABLE);}//设置捕获寄存器1void SetT1Pwm1(u16 pulse){TIM1->CCR1=pulse;}/*操作寄存器改变占空时间*//*****************************************************************************************************************TIM1的定时器通道时间1到4 分别为PB8 PA9 PA10 PA11 而互补输出分别为PB13 PB14PB15中止PB12 。
stm32 timer 用法

stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。
其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。
本文将详细介绍STM32定时器的用法。
2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。
其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。
3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。
计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。
当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。
4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。
5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。
(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。
STM32之TIM通用定时器

STM32之TIM通⽤定时器本⽂介绍如何使⽤STM32标准外设库配置并使⽤定时器,定时器就是设置⼀个计时器,待计时时间到之后产⽣⼀个中断,程序接收到中断之后可以执⾏特定的程序,跟现实中的闹钟功能类似。
与延时功能不同,定时器计时过程中程序可以执⾏其他程序。
最简单直观的应⽤为定时翻转指定IO引脚。
本例程使⽤通⽤定时器TIM3,每100ms翻转GPIOB的Pin5输出,如果该引脚外接有LED灯,可以看到LED灯周期性的闪烁。
STM32F103VE系列共有8个定时器,分为基本定时器、通⽤定时器和⾼级定时器,其中通⽤定时器包括TIM2/3/4/5共4个,如果⼀个定时器不够⽤,可以启动其他⼏个定时器。
本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。
TIM通⽤定时器分为两部分,初始化和控制。
1. 初始化分两步:通⽤中断、TIM。
1.1. 通⽤中断:优先级分组、中断源、优先级、使能优先级分组:设定合适的优先级分组中断源:选择指定的TIM中断源:TIM3_IRQn优先级:设定合适的优先级使能:调⽤库函数即可1.2. TIM:时钟、预分频器、定时器周期、分频因⼦、计数模式、初始化定时器、开启定时器中断、使能计数器。
结构体:typedef struct{uint16_t TIM_Prescaler;uint16_t TIM_CounterMode;uint16_t TIM_Period;uint16_t TIM_ClockDivision;uint8_t TIM_RepetitionCounter;} TIM_TimeBaseInitTypeDef;时钟:需要使能定时器时钟//开启定时器时钟,即内部时钟CK_INT=72MRCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);预分频器:默认定时器时钟频率为72M,那么预分频器设置为71,那么⼀次计数为1us//时钟预分频数为71,则计数器计数⼀次时间为1usTIM_TimeBaseStructure.TIM_Prescaler = 71;定时器周期:设置为999,那么产⽣⼀次定时器中断的时间为1ms//⾃动重装载寄存器为999,则产⽣⼀次中断时间为1msTIM_TimeBaseStructure.TIM_Period = 1000 - 1;计数模式:⼀般选择向上计数模式// 计数器计数模式,选择向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;时钟分频因⼦:⼀般选择1分频// 时钟分频因⼦,选择1分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;重复计数器的值:仅对⾼级定时器有效,⽆需设置初始化定时器:调⽤库函数即可//初始化定时器TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);开启定时器中断//开启计数器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);使能计数器//使能计数器TIM_Cmd(TIM3, ENABLE);2. 处理2.1. 中断服务函数定时器TIM3的中断服务函数名称为TIM3_IRQHandler ()。
第六章-STM32-定时器的使用-《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用 通用定时器配置步骤
1)TIM3时钟使能 这里我们通过APB1ENR的第1位来设置TIM3的时钟,因为 Stm32_Clock_Init函数里面把APB1的分频设置为2了, 所以我们的TIM3时钟就是APB1时钟的2倍,等于系统时 钟(72M)。 2)设置TIM3_ARR和TIM3_PSC的值 通过这两个寄存器,设置自动重装的值及分频系数。这 两个参数加上时钟频率就决定了定时器的溢出时间。
计数器寄存器:TIMx_CNT 预分频器寄存器:TIMx_PSC 自动装载寄存器:TIMx_ARR
第六章 STM32 定时器的使用 通用寄存器时基单元 1)计数器寄存器:TIMx_CNT
16位的计数器,设定值从1~65535
第六章 STM32 定时器的使用 计数器模式 向上计数模式:计数器从0计数到设定的数值,然后 重新从0开始计数并且产生一个计数器溢出事件。
在定时器配置完了之后,因为要产生中断,必不可少的 要设置NVIC相关寄存器,以使能TIM3中断。
6)编写中断服务函数 编写定时器中断服务函数,通过该函数处理定时器 产生的相关中断。中断产生后,通过状态寄存器的 值来判断此次产生的中断属于什么类型。然后执行 相关的操作。
第六章 STM32 定时器的使用 通用寄存器时基单元
第六章 STM32 定时器的使用
2)预分频器寄存器:TIMx_PSC 预分频器可以讲计数器的时钟频率按1到65536之间的任 意值分频,它是一个16位寄存器。 这个寄存器带有缓冲区,它能够在工作时被改变。新的 预分频器参数在下一次更新事件到来时被采。
第六章 STM32 定时器的使用 预分频器寄存器在事件更新时采用
定时器的工作频率计算公式为 CK_CNT=定时器时钟/(TIMx_PSC+1) 其中CK_CNT表示定时器工作频率 TIMx_PSC表示分频系数
STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)本教程将向您展示如何使用STM32CubeMX配置定时器触发的固定频率ADC采样,并使用DMA进行数据传输。
此配置可以用于您需要按照固定频率对模拟信号进行采样的应用中。
在开始之前,请确保已安装好STM32CubeMX和相应的IDE(如Keil、IAR等),并且您已熟悉STM32CubeMX的基本使用方法。
以下是配置步骤:1. 打开STM32CubeMX,并选择您的目标MCU型号。
2. 在"Pinout & Configuration"选项卡中,配置定时器和ADC引脚。
a.选择一个定时器,并设置其时钟源和频率。
您可以选择任何一个可用的定时器来触发ADC采样。
b.配置ADC引脚,将其连接到您的模拟信号源。
3. 在"Configuration"选项卡中,配置ADC。
a.启用ADC和DMA控制器。
b.配置ADC分辨率,采样时间和采样周期。
这些参数取决于您的应用需求。
c. 在"Mode"选项中,选择"Continuous Conversion Mode"。
这样ADC将会不断地根据定时器触发进行采样。
d. 启用"DMA Continuous Requests"。
这样当ADC完成一次采样后,DMA控制器将自动将数据传输到内存中。
4. 在"NVIC Settings"选项卡中,启用DMA和ADC中断。
5. 在"Project"选项卡中,选择生成代码所需的IDE和工程路径。
然后单击"Generate Code"按钮生成代码。
现在您已成功配置了定时器触发的固定频率ADC采样,并使用DMA进行数据传输。
您可以在生成的代码中初始化和启用各个模块,并编写相应的中断处理函数来处理DMA和ADC中断。
stm32定时器的使用流程

STM32定时器的使用流程1. 简介STM32定时器是STM32系列微控制器中重要的外设之一。
定时器可以用于生成特定的定时器事件,实现计时、测量时间间隔、产生PWM信号等功能。
本文将介绍STM32定时器的使用流程。
2. STM32定时器的基本工作原理STM32定时器通常由一个或多个计数器和若干个通道组成。
计数器用于计算时间的流逝,而通道用于控制输出。
计数器的计数范围和分辨率可以根据需求进行配置。
通常情况下,定时器通过外部时钟源进行计数,也可以使用内部时钟源。
3. STM32定时器的使用流程使用STM32定时器通常需要以下步骤:3.1 初始化定时器在使用定时器之前,需要初始化定时器的相关参数,包括计数器的计数范围、分频系数等。
通常可以通过寄存器的设置来完成初始化工作。
使用HAL库的话,可以使用HAL_TIM_Base_Init()函数进行初始化。
3.2 配置定时器的工作模式定时器可以根据需求配置为不同的工作模式,常见的模式包括单脉冲模式、连续模式、PWM输出模式等。
可以使用TIM_CR1、TIM_CR2等寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.3 配置定时器的中断和DMA定时器可以配置中断和DMA功能,在特定的条件下触发相应的中断或DMA请求。
可以使用TIM_DIER寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.4 启动定时器在配置完成后,需要启动定时器开始计数。
可以使用TIM_CR1寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.5 处理定时器中断如果配置了定时器中断,当定时器达到设定的计数值时,会触发中断。
在中断服务函数中可以根据需求进行相应的处理。
3.6 设置定时器输出如果配置了定时器的通道输出模式,可以在定时器计数到一定值时,通过通道输出相应的信号。
可以使用TIM_CCR1、TIM_CCR2等寄存器进行配置。
3.7 停止定时器如果需要停止定时器的计数,可以使用TIM_CR1寄存器进行配置。
STM32F407高级定时器TIM1定时配置

STM32F407高级定时器TIM1定时配置因为在网上很难找到高级定时器TIM1 的配置,而且高级定时器的配置跟普通定时器不太一样,所以记录一下。
实验板子:正点原子探索者STM32F407ZGT6TIM1、TIM8至TIM11的时钟为APB2时钟的两倍即168M,TIM2至TIM7、TIM12~TIM14的时钟为APB1的时钟的两倍即84M。
//初始化配置void Timer1_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStrecture;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); /*使能定时器1的时钟*/NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_TIM10_IRQn;/*定时器1的中断通道使能*/NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;/*定时器1的中断通道使能*/NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;/*抢占优先级*/NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;/*响应优先级*/NVIC_Init(&NVIC_InitStructure);/*配置中断分组,并使能中断*/TIM_TimeBaseInitStrecture.TIM_Period = arr;/*重装载寄存器*/TIM_TimeBaseInitStrecture.TIM_Prescaler = psc;/*预分配*/TIM_TimeBaseInitStrecture.TIM_ClockDivision = TIM_CKD_DIV1;/*时钟分频*/TIM_TimeBaseInitStrecture.TIM_CounterMode = TIM_CounterMode_Up;/*向上计数*/TIM_TimeBaseInitStrecture.TIM_RepetitionCounter = 0;/*重复计数寄存器*/TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStrecture);/*初始化*/TIM_ClearFlag(TIM1,TIM_FLAG_Update);/*清更新标志位*/TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);/*使能中断*/TIM_Cmd(TIM1,ENABLE);/*使能计数*/}中断函数//中断函数void TIM1_UP_TIM10_IRQHandler(void){if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)//检查指定的TIM中断发生与否:TIM 中断源{TIM_ClearITPendingBit(TIM1, TIM_IT_Update);//清除TIMx的中断待处理位:TIM 中断源/***************在此处添加中断执行内容******************/LED1 = ~LED1;printf('定时器1定时器1定时器1定时器1定时器1定时器1');}}主函数测试int main(void){NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2delay_init(168); //初始化延时函数uart_init(115200);//PA9 PA10 初始化串口波特率为115200//LED_Init(); //PF9 PF10Timer1_Init(10000-1,8400-1);// (10000 x 8400) / 168M = 0.5s.while(1){}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000*/
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
/* Enable theTIM2 global Interrupt*/
NVIC_Initnnel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
TIM_Cmd(TIM2, ENABLE); //是能定时器
始能定时器的中断:
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
在开启时钟里一定要打开TIM2的时钟,函数表达式如下:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_ITConfig(TIM2, TIM_IT_CC1,ENABLE);
中断中的设置为:
if (TIM_GetITStatus(TIM2, TIM_IT_CC1) !=RESET)
tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(NVIC_InitStructure);
}
5:中断函数的编写:
当有TIM2的无论哪个中断触发中断发生那么就会进入这个函数
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;//选择向
上计数
TIM_TimeBaseInit(TIM2, TIM_TimeBaseStructure);
4:中断向量函数的编写:
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
#ifdefVECT_TAB_RAM//如果程序在ram中调试那么定义中断向量表在
Ram中否则在Flash中
/* Set theVector Table baselocation at 0x20000000*/
STM32如何设置定时器
STM32如何设置定时器
下面以stm32的TIM2作为实例一步步配置成为定时器:
第一种
对定时器的基本配置
TIM_TimeBaseStructure.TIM_Period =1000; //设置自动装载寄存器
TIM_TimeBaseStructure.TIM_Prescaler =35999; //分频计数
TIM2_IRQHandler(void)
所以这个更新事件的中断判断要依靠以下语句:
if (TIM_GetITStatus(TIM2, TIM_IT_Update)==SET)
按照以上步骤配置可以顺利进行定时器的基本定时应用
第二种方法:
/* Enable TIM2Update interrupt [TIM2溢出中断允许]*/