STM32通用定时器_15-1-6
STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。
⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采⽤内部时钟。
TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。
这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。
{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。
⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。
如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。
STM32之TIM通用定时器

STM32之TIM通⽤定时器本⽂介绍如何使⽤STM32标准外设库配置并使⽤定时器,定时器就是设置⼀个计时器,待计时时间到之后产⽣⼀个中断,程序接收到中断之后可以执⾏特定的程序,跟现实中的闹钟功能类似。
与延时功能不同,定时器计时过程中程序可以执⾏其他程序。
最简单直观的应⽤为定时翻转指定IO引脚。
本例程使⽤通⽤定时器TIM3,每100ms翻转GPIOB的Pin5输出,如果该引脚外接有LED灯,可以看到LED灯周期性的闪烁。
STM32F103VE系列共有8个定时器,分为基本定时器、通⽤定时器和⾼级定时器,其中通⽤定时器包括TIM2/3/4/5共4个,如果⼀个定时器不够⽤,可以启动其他⼏个定时器。
本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。
TIM通⽤定时器分为两部分,初始化和控制。
1. 初始化分两步:通⽤中断、TIM。
1.1. 通⽤中断:优先级分组、中断源、优先级、使能优先级分组:设定合适的优先级分组中断源:选择指定的TIM中断源:TIM3_IRQn优先级:设定合适的优先级使能:调⽤库函数即可1.2. TIM:时钟、预分频器、定时器周期、分频因⼦、计数模式、初始化定时器、开启定时器中断、使能计数器。
结构体:typedef struct{uint16_t TIM_Prescaler;uint16_t TIM_CounterMode;uint16_t TIM_Period;uint16_t TIM_ClockDivision;uint8_t TIM_RepetitionCounter;} TIM_TimeBaseInitTypeDef;时钟:需要使能定时器时钟//开启定时器时钟,即内部时钟CK_INT=72MRCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);预分频器:默认定时器时钟频率为72M,那么预分频器设置为71,那么⼀次计数为1us//时钟预分频数为71,则计数器计数⼀次时间为1usTIM_TimeBaseStructure.TIM_Prescaler = 71;定时器周期:设置为999,那么产⽣⼀次定时器中断的时间为1ms//⾃动重装载寄存器为999,则产⽣⼀次中断时间为1msTIM_TimeBaseStructure.TIM_Period = 1000 - 1;计数模式:⼀般选择向上计数模式// 计数器计数模式,选择向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;时钟分频因⼦:⼀般选择1分频// 时钟分频因⼦,选择1分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;重复计数器的值:仅对⾼级定时器有效,⽆需设置初始化定时器:调⽤库函数即可//初始化定时器TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);开启定时器中断//开启计数器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);使能计数器//使能计数器TIM_Cmd(TIM3, ENABLE);2. 处理2.1. 中断服务函数定时器TIM3的中断服务函数名称为TIM3_IRQHandler ()。
stm32定时器

STM32定时器定时器功能简介区别于SysTick一般只用于系统时钟的计时,STM32的定时器外设功能非常强大。
STM32一共有8个都为16位的定时器。
其中TIM6、TIM7是基本定时器;TIM 2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。
这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身定做的。
定时器工作分析基本定时器基本定时器TIM6和TIM7只具备最基本的定时功能,就是累加的时钟脉冲数超过预定值时,能触发中断或触发DMA请求。
这两个基本定时器使用的时钟源都是TIMxCLK,时钟源经过PSC预分频器输入至脉冲计数器TIMx_CNT,基本定时器只能工作在向上计数模式,在重载寄存器TIMx_ARR中保存的是定时器的溢出值。
工作时,脉冲计数器TIMx_CNT由时钟触发进行计数,当TIMx_CNT的计数值X等于重载寄存器TIMx_ARR中保存的数值N时,产生溢出事件,可触发中断或DMA请求。
然后TIMx_CNT的值重新被置为0,重新向上计数。
通用定时器相比之下,通用定时器TIM2~TIM5就比基本定时器复杂得多了。
除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。
通用定时器的基本计时功能与基本定时器的工作方式是一样的,同样把时钟源经过预分频器输出到脉冲计数器TIMx_CNT累加,溢出时就产生中断或DMA请求。
而通用定时器比基本定时器多出的强大功能,就是因为通用定时器多出了一种寄存器----捕获/比较寄存器TIMx_CRR(capture/compareregister)它在输入时被用于捕获(存储)输入脉冲在电平发生翻转时脉冲计数器TI Mx_CNT的当前计数值,从而实现脉冲的频率测量;在输出时被用来存储一个脉冲数值,把这个数值用于与脉冲计数器TIMx_CNT的当前计数值进行比较,根据比较结果进行不同的电平输出定时器的时钟源从时钟源方面来说,通用定时器比基本定时器多了一个选择,它可以使用外部脉冲作为定时器的时钟源。
第六章 STM32 定时器的使用 《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用
AHB预分频 /1,2,…,512
APB1预分频 /1,2,4,8,16
最大36MHz
PCLK1 至APB1外设
20个外设时钟使能位
TIM2,3,4,5,6,7 如果APB1预分频=1, 则乘1输出,否则乘2输出
6个外设时钟使能位
TIMXCLK 至TIM2~7
APB2预分频 /1,2,4,8,16
第六章 STM32 定时器的使用
PWM模式 脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器 确定频率、由TIMx_CCRx寄存器确定占空比的信号。 在TIMx_CCMRx寄存器中的OCxM位写入‘110’(PWM 模式1)或‘111’(PWM模式2),能够独立地设置每个 OCx输出通道产生一路PWM。必须设置TIMx_CCMRx 寄存器OCxPE位以使能相应的预装载寄存器, 最后要设置TIMx_CR1寄存器的ARPE位,(在向上计数 或中心对称模式中)使能自动重装载的预装载寄存器。
这个倍频器的作用:当APB1的预分频系数为1时,倍 频器不起作用,定时器的时钟频率等于APB1的频率; 当APB1的预分频系数为其它数值(即预分频系数为2、4 、8或16)时,这个倍频器起作用,定时器的时钟频率 等于APB1的频率两倍。
第六章 STM32 定时器的使用 下面举一个例子说明。假定AHB=36MHz,因为APB1 允许的最大频率为36MHz,所以APB1的预分频系数可 以取任意数值;当预分频系数=1时,APB1=36MHz, TIM2~7的时钟频率=36MHz(倍频器不起作用);
第六章 STM32 定时器的使用
3)设置TIM3_DIER允许更新中断 因为我们要使用TIM3的更新中断,所以设置DIER 的UIE位,并使能触发中断。
第六章-STM32-定时器的使用-《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用 通用定时器配置步骤
1)TIM3时钟使能 这里我们通过APB1ENR的第1位来设置TIM3的时钟,因为 Stm32_Clock_Init函数里面把APB1的分频设置为2了, 所以我们的TIM3时钟就是APB1时钟的2倍,等于系统时 钟(72M)。 2)设置TIM3_ARR和TIM3_PSC的值 通过这两个寄存器,设置自动重装的值及分频系数。这 两个参数加上时钟频率就决定了定时器的溢出时间。
计数器寄存器:TIMx_CNT 预分频器寄存器:TIMx_PSC 自动装载寄存器:TIMx_ARR
第六章 STM32 定时器的使用 通用寄存器时基单元 1)计数器寄存器:TIMx_CNT
16位的计数器,设定值从1~65535
第六章 STM32 定时器的使用 计数器模式 向上计数模式:计数器从0计数到设定的数值,然后 重新从0开始计数并且产生一个计数器溢出事件。
在定时器配置完了之后,因为要产生中断,必不可少的 要设置NVIC相关寄存器,以使能TIM3中断。
6)编写中断服务函数 编写定时器中断服务函数,通过该函数处理定时器 产生的相关中断。中断产生后,通过状态寄存器的 值来判断此次产生的中断属于什么类型。然后执行 相关的操作。
第六章 STM32 定时器的使用 通用寄存器时基单元
第六章 STM32 定时器的使用
2)预分频器寄存器:TIMx_PSC 预分频器可以讲计数器的时钟频率按1到65536之间的任 意值分频,它是一个16位寄存器。 这个寄存器带有缓冲区,它能够在工作时被改变。新的 预分频器参数在下一次更新事件到来时被采。
第六章 STM32 定时器的使用 预分频器寄存器在事件更新时采用
定时器的工作频率计算公式为 CK_CNT=定时器时钟/(TIMx_PSC+1) 其中CK_CNT表示定时器工作频率 TIMx_PSC表示分频系数
STM32F103ZET6通用定时器

STM32F103ZET6通⽤定时器1、通⽤定时器简介 通⽤定时器是由⼀个可编程预分频器驱动的16位⾃动装载计数器构成。
通⽤定时器可以应⽤于多种场合,如测量输⼊信号的脉冲长度(输⼊捕获)或者产⽣输出波形(输出⽐较和PWM)。
使⽤通⽤定时器的预分频器和RCC时钟控制器的预分频器,脉冲长度和输出波形周期可以在⼏个微秒到⼏个毫秒间调整。
STM32内有多个通⽤定时器,每个通⽤定时器都是完全独⽴的,没有互相共享任何资源。
通⽤定时器的主要功能包括: 16位向上、向下、向上/向下⾃动装载计数器。
16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值。
4个独⽴通道可以实现4路:输⼊捕获、输出⽐较、PWM输出、单脉冲模式输出。
使⽤外部信号控制定时器和定时器互连的同步电路。
⽀持针对定位的增量(正交)编码器和霍尔传感器电路。
通⽤定时器框图如下:2、通⽤定时器的时基单元 通⽤定时器的时基单元主要由⼀个16位计数器和与其相关的⾃动装载寄存器。
这个计数器可以向上计数、向下计数或者向上向下双向计数。
通⽤定时器的计数器的时钟由预分频器分频得到,⾄于预分频器之前的时钟在时钟选择的时候回说到。
通⽤定时器的计数器、⾃动装载寄存器和预分频器寄存器可以由软件读写,在计数器运⾏时仍可以读写。
如下图红⾊框部分就是通⽤定时器的时基部分: 时基单元包含: CNT计数器(TIMx_CNT)。
PSC预分频器(TIMx_PSC)。
⾃动重装载寄存器(TIMx_ARR)。
CNT 计数器和⾃动重装载寄存器: TIMx_ARR寄存器是预先装载的,写或读TIMX_ARR寄存器将访问预装载寄存器。
通⽤定时器根据TIMx_CR1寄存器中的ARPE 位,来决定写⼊TIMx_ARR寄存器的值是⽴即⽣效还是要等到更新事件(溢出)后才⽣效。
在计数器运⾏的过程中,ARPE位的作⽤如下: 当ARPE = 0时,写⼊TIMx_ARR寄存器的值⽴即⽣效,即TIMx_CNT计数器的计数范围⽴马更新。
STM32通用定时器

STM32通用定时器一、定时器的基础知识三种STM32定时器区别通用定时器功能特点描述:STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括:位于低速的APB1总线上(APB1)16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。
16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。
4 个独立通道(TIMx_CH1~4),这些通道可以用来作为:①输入捕获②输出比较③ PWM 生成(边缘或中间对齐模式)④单脉冲模式输出可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。
如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器):①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)③输入捕获④输出比较⑤支持针对定位的增量(正交)编码器和霍尔传感器电路⑥触发输入作为外部时钟或者按周期的电流管理STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。
使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。
STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。
定时器框图:倍频得到),外部时钟引脚,可以通过查看数据手册。
也可以是TIMx_CHn,此时主要是实现捕获功能;框图中间的时基单元框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。
二、定时器相关的寄存器和寄存器操作库函数时钟选择, 计数器时钟可以由下列时钟源提供:时钟选择①内部时钟(CK_INT)②外部时钟模式1:外部输入脚(TIx)③外部时钟模式2:外部触发输入(ETR)④内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。
STM32F4通用定时器详细讲解

TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除中断标志位
}
然后main()函数中TIM3_Int_Init(5000-1,8400-1);即可
可以计算进入中断的频率为2Hz即LED灯每500ms现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
STM32F4系列共有14个定时器,功能很强大。14个定时器分别为:
2个高级定时器:Timer1和Timer8
10个通用定时器:Timer2~timer5和timer9~timer14
TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //定时器分频
TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);//初始化TIM3
3使能中断
TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE); //允许定时器3更新中断。
4打开Timer3。
TIMnitStructure.NVIC_IRQChannelPreemptionPriority=0x01; //抢占优先级1
NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x03; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通用定时器的相关配置
1、预装入(Preload)
预装入实际上是设置TIMx_ARR寄存器有没有缓冲,根据“The auto-reload register is preloaded。
Writing to or reading from the auto-reload register accesses the preload register。
”可知:
1)如果预装入允许,则对自动重装寄存器的读写是对预装入寄存器的存取,自动重装寄存器的值在更新事件后更新;
2)如果预装入不允许,则对自动重装寄存器的读写是直接修改其本身,自动重装寄存器的值立刻更新;
3)设置方式:TIMx_CR1 →ARPE(1)
2、更新事件(UEV)
1)产生条件:①定时器溢出
②TIMx_CR1→ UDIS = 0
③或者:软件产生,TIMx_EGR→ UG = 1
2)更新事件产生后,所有寄存器都被“清零”,注意预分频器计数
器也被清零(但是预分频系数不变)。
若在中心对称模式下或DIR=0(向上计数)则计数器被清零;若DIR=1(向下计数)则计数器取TIMx_ARR的值。
3)注意URS(复位为0)位的选择,如下:
如果是软件产生更新,则URS→1,这样就不会产生更新请求
和DMA请求。
4)更新标志位(UIF)根据URS的选择置位。
5)可以通过软件来失能更新事件:
3、计数器(Counter)
计数器由预分频器的输出时钟(CK_CNT)驱动,TIMx_CR1→CEN = 1 使能,注意:真正的计数使能信号(CNT_EN)在 CEN 置位后一个周期开始有效。
4、预分频器(Prescaler)
预分频器用来对时钟进行分频,分频值由TIMx_PSC决定,计数器的时钟频率CK_CNT= fCK_PSC / (PSC[15:0] + 1)。
根据“It can be changed on the fly as this control register
is buffered。
The new prescaler ratio is taken into account at the next update event。
”分频值可以在任何时候更改,但是新的分频比只在下个更新事件时才起作用。
注意:预分频计数器、预分频系数是不同概念;
5、影子寄存器
可以发现预分频器寄存器、自动重载寄存器和捕捉/比较寄存器下面有一个阴影,其他的寄存器有些也有阴影。
这表示在物理上这个寄存器对应2个寄存器:一个是可以写入或读出的寄存器,称为预装载寄存器,另一个是我们看不见的、无法真正对其读写操作的,但在使用中真正起作用的寄存器,称为影子寄存器。
数据手册介绍预装载寄存器的内容可以随时传送到影子寄存器,即两者是连通的(permanently),或者在每一次更新事件(UEV)时才把预装载寄存器的内容传送到影子寄存器。
原文如下: The auto-reload register is preloaded。
Writing to or reading from the auto-reload register accesses the preload register。
The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register。
在图中的,表示对应寄存器的影子寄存器可以在发生更新事件时,被更新为它的预装载寄存器的内容;而图中的部分,表示对应的
自动重载寄存器可以产生一个更新事件(U)或更新事件中断(UI)。
设计预装载寄存器和影子寄存器的好处是,所有真正需要起作用的寄存器(影子寄存器)可以在同一个时间(发生更新事件时)被更新为所对应的预装载寄存器的内容,这样可以保证多个通道的操作能够准确地同步。
如果没有影子寄存器,软件更新预装载寄存器时,则同时更新了真正操作的寄存器,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上例如中断等其它因素,多个通道的时序关系有可能会混乱,造成是不可预知的结果。
计数器的三种计数模式:
1)向上计数模式:0→TIMx_ARR→产生更新(上溢)事件
2)向下计数模式:TIMx_ARR→0→产生更新(下溢)事件
3)中央对齐模式(向上/向下计数):0→TIMx_ARR-1→产生更新(上
溢)事件→ TIMx_ARR→1→产生更新(下溢)事件
计数模式选择方式:IMx_CR1→CMS
如果使用中央对齐模式,CMS≠00,DIR位此时不能写入;如果不使用
中央对齐模式计数,CMS =00,通过选择DIR位来确定是向上/向下计数模式,如下:
时钟选择:
●内部时钟:CK_INT
●外部时钟引脚:TIx
●外部触发输入:ETR
●内部触发输入:ITR
时钟的选择要配合定时器模式:TIMx_SMCR→SMS
1、外部时钟引脚输入:TIx
根据框图配置时钟流程如下(以TI2为例):
1)配置定时器输入通道(CH0至CH4),TIMx_CCMR→CCxS[1:0],将通道映射到TI2上;
2)配置定时器输入滤波器周期,TIMx_CCMR→ICxF[3:0],这几位定义了TI输入的采样频率及数字滤波器长度,如果不需要滤波,ICF = 0000;
3)配置定时器计数边沿极性,TIMx_CCER→CCxP;
4)配置定时器为外部时钟模式,TIMx_SMCR→SMS = 111;
5)选择TI2作为时钟源,TIMx_SMCR→TS = 110;
6)使能计数器,开始计数,TIMx_CR1→CEN = 1
2、外部触发输入:ETR
1)配置计数器流程如下(在每2个ETR上升沿计数):
2)配置外部触发极性,TIMx_SMCR→ ETP = 0(ETR不反相,高
电平或上升沿有效);
3)配置外部触发预分频,外部触发信号的频率最多是内部时
(CK_INT)的1/4,若果外部触发信号较快,则需要预分频,TIMx_SMCR →ETPS,(此处ETPS = 01,每两个ETR上升沿计数一次)
4)配置外部触发滤波,TIMx_SMCR →ETF[3:0] = 0000(不需滤
波);
5)外部时钟使能,TIMx_SMCR→ ECE = 1,使能外部时钟模式2
(外部触发输入),注意事项如下:
6)使能计数器,开始计数,TIMx_CR1→CEN = 1。