地理坐标系和大地坐标系

合集下载

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系地理坐标系是指用经纬度表示地面点位的球面坐标系。

在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。

大地控制的主要任务是确定地面点在地球椭球体上的位置。

这种位置包括两个方面:一是点在地球椭球面上的平面位置,即经度和纬度;二是确定点到大地水准面的高度,即高程。

为此,必须首先了解确定点位的坐标系。

1.地理坐标系对地球椭球体而言,其围绕旋转的轴叫地轴。

地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。

以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(图2-3)。

其以本初子午线为基准,向东,向西各分了1800,之东为东经,之西为西经;以赤道为基准,向南、向北各分了900,之北为北纬,之南为南纬。

地理坐标系是指用经纬度表示地面点位的球面坐标系。

在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。

(1)天文经纬度天文经度在地球上的定义,即本初子午面与过观测点的子午面所夹的二面角;天文纬度在地球上的定义,即为过某点的铅垂线与赤道平面之间的夹角。

天文经纬度是通过地面天文测量的方法得到的,其以大地水准面和铅垂线为依据,精确的天文测量成果可作为大地测量中定向控制及校核数据之用。

(2)大地经纬度地面上任意一点的位置,也可以用大地经度L、大地纬度B表示。

大地经度是指过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角(图2-3)。

大地经纬度是以地球椭球面和法线为依据,在大地测量中得到广泛采用。

(3)地心经纬度地心,即地球椭球体的质量中心。

地心经度等同于大地经度,地心纬度是指参考椭球体面上的任意一点和椭球体中心连线与赤道面之间的夹角。

大地坐标系和地理坐标系有什么区别

大地坐标系和地理坐标系有什么区别

大地坐标系和地理坐标系的区别是性质不同,地理坐标系是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系,大地坐标系是大地测量中以参考椭球面为基
准面建立起来的坐标系。

地理坐标系定义了地表点位的经纬度,并且根据其所采用的参考椭球体参数还可求得点位的绝
对高程值。

大地坐标系是大地测量的基本坐标系,它是大地测量计算,地球形状大小研究和地
图编制等的基础。

地理坐标转换到大地坐标的过程可理解为投影。

对坐标系的理解

对坐标系的理解

对坐标系的理解从上了GIS这条船以来,就不断听到坐标系相关的名词,比如地理坐标系,投影坐标系,大地坐标系,高程坐标系,椭球体等,这些概念令人混乱。

最近在GISB课程的复习中又遇到了这些东西,索性来个总结,争取做个了断。

先从ArcGIS安装目录下Coordinate Systems文件夹里的三个子文件夹开始理解。

三个文件夹名分别为:Geographic Coordinate SystemsProjected Coordinate SystemsVertical Coordinate Systems1 .Geographic Coordinate Systems,是存放地理坐标系的文件夹。

地理坐标系,也可称为真实世界的坐标系,用于确定地物在地球上位置。

用经纬度来表达位置信息。

因为地球是不规则的近梨形,所以在定义地理坐标系之前,需要对地球做近似逼近。

即假想地球绕地轴高速旋转形成一个表面光滑的球体,这就是地球椭球体(也称旋转椭球体或双轴椭球体)。

地球椭球体(Spheroid)的常用四个参数是:地球引力常数(GM)长半径(a)扁率(f)地球自转角速度(w)。

四个参数的不同也就形成了不同的椭球体。

比如:克拉索夫斯基椭球体,WGS-84椭球体等等。

有了椭球体后还不能形成地理坐标系,还需要一个大地基准面(Datum)将椭球体定位,大地基准面是利用特定椭球体对特定地区地球表面的逼近。

因此每个国家和地区均有各自的基准面,北京54坐标系和西安80坐标系即为我国的两大基准面。

其中54坐标系采用的椭球体为克拉索夫斯基椭球体, 西安80坐标系采用的是国际大地测量协会推荐的1975地球椭球体。

(经过大地基准面定位的椭球体称为参考椭球体?待考证….. )(由于四个椭球参数的不同形成了不同的椭球体由于一个椭球体可对应多个大地基准形成了不同地理坐标系)完成了椭球体和大地水准面的定义后,就形成了地理坐标系,也称大地坐标系。

打开Geographic Coordinate Systems文件夹中的Beijing 1954.prj文件,我们可以看到:GEOGCS["GCS_Beijing_1954",DA TUM["D_Beijing_1954",SPHEROID["Krasovsky_1940 ",6378245,298.3]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]] 地理坐标系名称GEOGCS为:GCS_Beijing_1954大地基准面为:D_Beijing_1954采用的椭球体为:Krasovsky_1940起始坐标参考点: Greenwich (格林尼治)单位: Degree2. Projected Coordinate Systems,是存放投影坐标系的文件夹。

地理坐标与大地坐标的转换

地理坐标与大地坐标的转换

把文件输出为DXF格式(DXFOUT)在正式版CAD中打开生成的DXF文件,打印时不会提示版本问题。

打印时无教育版打印戳记哈哈,问题解决了!关键词:地图投影,坐标系,TIC点,标准分幅。

前言:MAPGIS是国家科技部和建设部推广的国产GIS软件,是国内优秀GIS平台之一,目前在城市勘测单位使用越来越广泛,很多单位用它来做矢量化、数据编辑、入库的平台。

但由于大部分城市勘测单位都是做1:500到1:2000的大比例尺地形图,对投影变换用的比较少,偶尔要用到地方坐标系和国家坐标系的转换,以及换带计算等就觉得非常困难,笔者经过大量的生产实践发现:巧用MAPGIS的投影变换不仅可以轻松解决各种坐标系之间的转换问题,还可以进行坐标展点及高斯坐标的正反算等,下面就对这些问题的参数设置、操作过程进行详细的说明。

在具体说明之前,先对几个关键词的含义进行说明。

地图投影即按某种数学规则将椭球球面上一点与地图平面上的一点相对应。

地图投影的参数有椭球的长半径,短半径,扁率,第一偏心率,第二偏心率。

数学规则有等角映射、等面积映射等。

我国地图制图普遍采用的是高斯-克吕格(GAUSS-KRUGER)投影,它是一种等角横切椭圆柱投影,该投影以中央经线和赤道投影后为坐标轴,为控制长度变形,一般采取分带投影。

我国1:2.5-1:50万的地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带。

MAPGIS的坐标系为数学坐标系,与投影平面直角坐标系中的X、Y坐标相反,即横坐标为X,纵坐标为Y,未经投影变化之前均为毫米表示。

MAPGIS的用户坐标系是指由用户指定的相对二维坐标系,一般与实际地物定位无关;地理坐标系是以经纬度表示的,经度的起点在格林威治,向东为正,纬度自赤道起,向北为正,常用来坐标定位;投影平面直角坐标系是将地球球面投影到平面后所设定的坐标系。

我们常说的1954年北京坐标系,1980年西安坐标系均为高斯投影的投影平面直角坐标系,只不过它们采用了不同的椭球参数;北京坐标系使用克拉索夫斯基椭球,西安坐标系采用IAG1975年推荐椭球。

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义 -回复

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义 -回复

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义-回复基坐标系、工件坐标系、工具坐标系和大地坐标系是在不同领域中使用的不同坐标系。

在以下文章中,我们将逐步回答并简述这些坐标系的定义和用法。

一、基坐标系:基坐标系是空间中的一个参考点,用于定义其他坐标系的起点。

通常,基坐标系的原点被定义为零点,三个坐标轴被定义为X、Y和Z轴。

这种坐标系可以用于描述物体的位置和姿态。

基坐标系可以是直角坐标系、极坐标系、柱坐标系等。

二、工件坐标系:工件坐标系是在机械加工领域中使用的一种坐标系。

它是基于加工零部件的几何特性而定义的。

通常,工件坐标系的原点和轴都与零件的某个特定特征(例如孔或边缘)相关联。

工件坐标系用于确定零件上各个特征的位置和相对位置,并确定其在整个加工过程中的定位和补偿。

三、工具坐标系:工具坐标系也是在机械加工领域中使用的一种坐标系。

它是基于机床上的工具而定义的。

通常,工具坐标系的原点和轴与切削工具的某个特定部分(例如刀尖或针尖)相关联。

工具坐标系用于确定刀具的位置和方向,以便正确执行切削操作,并确保零件符合预期的几何形状和尺寸要求。

四、大地坐标系:大地坐标系也被称为地理坐标系或地理参考系。

它是用来描述地球表面上的地理位置的一种坐标系。

大地坐标系通常使用经度和纬度来确定一个地点的位置。

经度表示东西方向上的位置,纬度表示南北方向上的位置。

大地坐标系在地图制作、导航、地理信息系统等领域中被广泛使用。

在机械制造领域中,基坐标系、工件坐标系和工具坐标系通常用于确定加工过程中零件和刀具的位置和方向。

这对于确保加工质量和准确性非常重要。

基坐标系提供了一个参考点,用于将工件和工具坐标系与机床进行关联。

工件坐标系用于标定零件上的特征点和特征轴,以便在加工过程中进行位置控制和补偿。

工具坐标系用于标定切削刀具的位置和方向,以确保切削操作的准确性和一致性。

大地坐标系在地理领域中起着关键作用。

它用于确定地球表面上的位置,以便制作地图、进行导航、测量地理现象等。

测量中的常用坐标系及坐标转换概述

测量中的常用坐标系及坐标转换概述

三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20

大地高H:某点沿投影方向到基准面(参考椭球面)的距离。

在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系

定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。

在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系

在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )

地理坐标和度带划分

地理坐标和度带划分
高斯投影是将地球按经线划分成带,称为投影带,6 度投影带是从首子午线起,每隔经
度 6° 划分为一带(称为统一 6° 带投影),自西向东将整个地球划分为 60 个带。带号从首子
午线开始,用阿拉伯数字表示。
统一 3° 带是自东经 1.5 度开始,每隔 3 度为一带,全球共 120 带。
138°144° 150°156°162°168°174°118800°°174°168°162°156°150°144°138°
测量学教案 3
二、大地坐标系和高程
表示地面点在某个空间坐标系中的位置需要(至少)三个参数,确定地面点 位的实质就是确定其在某个空间坐标系中的三维坐标。
基本的面、线、圈认识
测量上将空间坐标系分解成点的球面位置的坐标系(二维)和高程系(一维)。确 定点的球面位置的坐标系常见有地理坐标系、空间直角坐标系和平面直角坐标系 三类。
90°
x
y
第四象限
270°
第三象限
0° 第一象限
y90°
第二象限
180° 高斯平面直角坐标系
第二象限
第一象限
180°
第三象限
x0°
第四象限
270° 笛卡尔直角坐标系
为了将高斯投影的变形限制在一定允许范围之内,可以将投影区域限制在中央子午线两 侧的一定范围内,这就是分带投影的思想。投影宽度以两条中央子午线间的经差来划分的。 有 6 度带和 3 度带两种{实际工作中顾及变形影响(一般不大于 1/40000)有时可按照 1.5 度带或者任意带划分}。
132°126° 120°114°108°102°
96°
90°
84°
A
B
C
D
E
F
G

我国三大坐标系

我国三大坐标系

我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地理坐标系VS大地坐标系
winner发表于2008年12月22日 10:32 阅读(10) 评论(0) 分类:个人日记
举报
地理坐标转换到大地坐标的过程可理解为投影。

(投影:将不规则的地球曲面转换为平面)在ArcGIS中预定义了两套坐标系:
地理坐标系(Geographic coordinate system)
投影坐标系(Projected coordinate system)
1、首先理解地理坐标系(Geographic coordinate system),Geographic
coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。

很明显,Geographic coordinate system是球面坐标系统。

我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。

这样的椭球体具有特点:可以量化计算的。

具有长半轴,短半轴,偏心率。

以下几行便是Krasovsky_1940椭球及其相应参数。

Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening(扁率): 298.300000000000010000
然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。

在坐标系统描述中,可以看到有这么一行:
Datum: D_Beijing_1954
表示,大地基准面是D_Beijing_1954。

有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。

完整参数:
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian(起始经度): Greenwich (0.000000000000000000)
Datum(大地基准面): D_Beijing_1954
Spheroid(参考椭球体): Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。

Projection: Gauss_Kruger
Parameters:
False_Easting: 500000.000000
False_Northing: 0.000000
Central_Meridian: 117.000000
Scale_Factor: 1.000000
Latitude_Of_Origin: 0.000000
Linear Unit: Meter (1.000000)
Geographic Coordinate System:
Name: GCS_Beijing_1954
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian: Greenwich (0.000000000000000000)
Datum: D_Beijing_1954
Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。

投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。

那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。

好了,投影的条件就出来了:
a、球面坐标
b、转化过程(也就是算法)
也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法去投影!
即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。

关于北京54和西安80是我们使用最多的坐标系
先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。

具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。

为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。

由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为
500km。

为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。

在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:
Beijing 1954 3 Degree GK CM 75E.prj
Beijing 1954 3 Degree GK Zone 25.prj
Beijing 1954 GK Zone 13.prj
Beijing 1954 GK Zone 13N.prj
对它们的说明分别如下:
三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号
三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前加带号
六度分带法的北京54坐标系,分带号为13,横坐标前不加带号
在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化:
Xian 1980 3 Degree GK CM 75E.prj
Xian 1980 3 Degree GK Zone 25.prj
Xian 1980 GK CM 75E.prj
Xian 1980 GK Zone 13.prj
西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。

大地坐标(Geodetic Coordinate):大地测量中以参考椭球面为基准面
的坐标。

地面点P的位置用大地经度L、大地纬度B和大地高H表示。

当点在参考椭球面上时,仅用大地经度和大地纬度表示。

大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。

方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。

因为是每隔
整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。

在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。

为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。

1:2 5万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。

我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。

直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y 轴,它们的交点为坐标原点。

这样,坐标系中就出现了四个象限。

纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。

虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。

但是我们在一副
地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯投影),也是平面坐标。

相关文档
最新文档