电磁感应 大题(DOC)
电磁感应-题库及答案

电磁感应一、单选题:1、(1932A15) 如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) [ ] 2、(2124A10) 一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21v Bl . (C) v Bl . (D) 2v Bl . [ ]3、(2126A15) 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ ]4、(2145A15)两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ]5、(2147A10)一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]6、(2404A10)一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.BI O(D)I O(C)O (B)t O (A)t O (C)t O (B) tO (D) I(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]7、(2405B35) 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ ]8、(2416A20)将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]9、(2490A10) 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大.(B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大.(D) 在情况Ⅰ和Ⅱ中相同. [ ]10、(2491B30)在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度.(B) 把线圈绕通过其直径的OO ′轴转一个小角度.(C) 把线圈向上平移.(D) 把线圈向右平移.11、(2492A10)一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.[ ]b c d b c d b c d v v ⅠⅢⅡ I12、(2493A10)如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]13、(2494A15)如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动.(C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ ]14、(2495A15) 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |. [ ]15、(2501A20) 如图所示,一矩形线圈,放在一无限长载流直导线附近,开始时线圈与导线在同一平面内,矩形的长边与导线平行.若矩形线圈以图(1),(2),(3),(4)所示的四种方式运动,则在开始瞬间,以哪种方式运动的矩形线圈中的感应电流最大?(A) 以图(1)所示方式运动.(B) 以图(2)所示方式运动. (C) 以图(3)所示方式运动.(D) 以图(4)所示方式运动. [ ]16、(2506A20) 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍. (D) 把线圈的角速度ω增大到原来的两倍. [ ]i I A B I O B a b ω I ω ω v v ⊗ (2) (3) (4) v 向纸面平移O ′O B ω17、(2517A15) 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时(A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]18、(2518A15) 有甲乙两个带铁芯的线圈如图所示.欲使乙线圈中产生图示方向的感生电流i ,可以采用下列哪一种办法?(A) 接通甲线圈电源. (B) 接通甲线圈电源后,减少变阻器的阻值.(C) 接通甲线圈电源后,甲乙相互靠近.(D) 接通甲线圈电源后,抽出甲中铁芯.19、(2618A20) 在如图所示的装置中,当不太长的条形磁铁在闭合线圈内作振动时(忽略空气阻力),(A) 振幅会逐渐加大. (B) 振幅会逐渐减小.(C) 振幅不变. (D) 振幅先减小后增大.[ ]20、(2756A20)在一通有电流I 的无限长直导线所在平面内,有一半径为r 、电阻为R 的导线小环,环中心距直导线为a ,如图所示,且a >> r .当直导线的电流被切断后,沿着导线环流过的电荷约为(A) )11(220ra a R Ir +-πμ (B) a r a R Ir +ln 20πμ (C) aR Ir 220μ (D) rRIa 220μ [ ] 21、(5137A10)尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同.(B) 感应电动势相同,感应电流相同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ ] 磁极 磁极 甲乙 Ia22、(5139B25)如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)?[ ]23、(2123A15) 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(C) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ ]24、(2125A10) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 25、(2314A20) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动. (B) 转动.(C) 向左移动. (D) 向右移动. [ ] 26、(2315B30) 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω. (D) =2l B ω,U a – U c =221l B ω-. [ ] 0 t I 0 I0 t I 0 I (A) (B) (C) (D) v c a bd N M B B a b c l ω27、(2411A15) 两条金属轨道放在均匀磁场中.磁场方向垂直纸面向里,如图所示.在这两条轨道上垂直于轨道架设两条长而刚性的裸导线P 与Q .金属线P 中接入一个高阻伏特计.令导线Q 保持不动,而导线P 以恒定速度平行于导轨向左移动.(A)─(E)各图中哪一个正确表示伏特计电压V 与时间t 的关系?[ ] 28、(2504A10) 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动. (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上产生涡流.(D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高. [ ]29、(2505A20) 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 30、(2146A10)自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为:(A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . [ ]31、(2156A15)两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心.(A) 两线圈的轴线互相平行放置. (B) 两线圈并联.(C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. [ ]32、(2332A10)两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线. ××××××××金属轨道Q V V V V (B) (D) (E)t V tt t t P (C) (A)V ×××× B O B ω L O θ b(D) 两线圈中电流方向相反. [ ]33、(2417A10)对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系.(B) 变小.(C) 不变.(D) 变大,但与电流不成反比关系. [ ]34、(2421A20)已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ] 35、(2522A20) 如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确? (A) K 接通时,I A >I B . (B) K 接通时,I A =I B .(C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]36、(2686A15)有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]37、(2752A15)在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数:(A) 一定为零. (B)一定不为零.(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的.[ ]38、(2809A15)一个电阻为R ,自感系数为L 的线圈,将它接在一个电动势为 (t )的交变电源上,线圈的自感电动势为tI LL d d -= , 则流过线圈的电流为: (A) R t /)( (B) R t L /])([ -(C) R t L /])([ + (D) R L / [ ]39、(5138B25) 在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ ]40、(5142A20) 面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为:(A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ] 41、(5143C50) 如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀速运动,磁场方向垂直导轨所在平面.若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定后在电容器的M 极板上(A) 带有一定量的正电荷. (B) 带有一定量的负电荷.(C) 带有越来越多的正电荷. (D) 带有越来越多的负电荷. [ ]42、(5492A10)在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0.(C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0. [ ]tttt t (b)(a)图(2)43、(5493A10)在一中空圆柱面上绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和bb ′如图(1)绕制及联结时,ab 间自感系数为L 1;如图(2)彼此重叠绕制及联结时,ab 间自感系数为L 2.则 (A) L 1 = L 2 =0. (B) L 1 = L 2 ≠ 0. (C) L 1 = 0,L 2 ≠ 0.(D) L 1 ≠ 0,L 2 = 0. [ ]44、(2154A15) 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是(A) 4. (B) 2. (C) 1. (D) 21. [ ] 45、(2623A10)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]46、(5141B30)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ]47、(5673A15)两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ] 48、(5675A10)a a ′b b ′ aa ′b b ′ 图(1)图(2)I I d 2r 0P真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 49、(5676B25)两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的(A) 总磁能将增大. (B) 总磁能将减少.(C) 总磁能将保持不变. (D) 总磁能的变化不能确定. [ ]50、(5677B25)真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图.已知导线中的电流为I ,则在两导线正中间某点P 处的磁能密度为 (A) 200)2(1a I πμμ (B) 200)2(21a I πμμ (C) 200)(21aI πμμ (D) 0 [ ]二、填空题:1、(2112A15)判断在下述情况下,线圈中有无感应电流,若有,在图中标明感应电流的方向.(1) 两圆环形导体互相垂直地放置.两环的中心重合,且彼此绝缘,当B 环中的电流发生变化时,在A 环中__________________________.(2) 无限长载流直导线处在导体圆环所在平面并通过环的中心,载流直导线与圆环互相绝缘,当圆环以直导线为轴匀速转动时,圆环中__________________.2、(2113A15)用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为d B /d t =___________________________.3、(2114B25) 如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a (a >>r )的大金属圆环共面且同心.在大圆环中通以恒定的电流I ,方向如图.如果小圆环以匀角速度ω绕其任一方向的直径转动,并设小圆环的电阻为R ,则任一时刻t 通过小圆环的磁通量Φ =______________________.小圆环中的感应电流i =__________________________________________.I (1) (2)⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ 4、(2115B25) 一段导线被弯成圆心在O 点、半径为R 的三段圆弧ab 、bc 、ca ,它们构成了一个闭合回路,ab 位于xOy 平面内,bc 和ca 分别位于另两个坐标面中(如图).均匀磁场B 沿x 轴正方向穿过圆弧bc 与坐标轴所围成的平面.设磁感强度随时间的变化率为K (K >0),则闭合回路abca 中感应电动势的数值为______________;圆弧bc 中感应电流的方向是_________________.5、(2116B25) 一半径r =10 cm 的圆形闭合导线回路置于均匀磁场B (B =0.80 T)中,B 与回路平面正交.若圆形回路的半径从t = 0开始以恒定的速率d r /d t =-80 cm/s 收缩,则在这t = 0时刻,闭合回路中的感应电动势大小为______________;如要求感应电动势保持这一数值,则闭合回路面积应以d S /d t =____________的恒定速率收缩.6、(2128A15) 如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行.(1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为________________________________. (2) 矩形线圈绕AD 边旋转,当BC 边已离开纸面正向外运动时,线圈中感应动势的方向为_________________________.7、(2129B25)磁换能器常用来检测微小的振动.如图,在振动杆的一端固接一个N 匝的矩形线圈,线圈的一部分在匀强磁场B 中,设杆的微小振动规律为x=A cos ω t ,线圈随杆振动时,线圈中 的感应电动势为_______________________.8、(2136B25) 如图所示,一导线构成一正方形线圈然后对折,并使其平面垂直置于均匀磁场B .当线圈的一半不动,另一半以角速度ω张开时(线圈边长为2l),线圈中感应电动势的大小 =____________________.(设此时的张角为θ,见图)9、(2148B25) 半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为_________________________________.10、(2149B25)一面积为S 的平面导线闭合回路,置于载流长螺线管中,回路的法向与螺线管轴线平行.设长螺线管单位长度上的匝数为n ,通过的电流为t I I m ωsin =(电流的正向与回路的正法向成右手关系),其中I m 和ω为常数,t 为时间,则该导线回路中的感生xI L Cω θ × × × × d a b c B × ×× × × × × × ⌒电动势为__________________.11、(2175A10) 如图所示,一磁铁竖直地自由落入一螺线管中,如果开关K 是断开的,磁铁在通过螺线管的整个过程中,下落 的平均加速度____________重力加速度;如果开关K 是闭合的,磁铁在通过螺线管的整个过程中,下落的平均加速 度____________重力加速度.(空气阻力不计.填入大于,小于或等于)12、(2529A15)在一马蹄形磁铁下面放一铜盘,铜盘可自由绕轴转动,如图所示.当上面的磁铁迅速旋转时,下面的铜盘也跟着以相同转向转动起来.这是因为________________________________________________________________________________.13、(2614A10)将条形磁铁插入与冲击电流计串联的金属环中时,有q =2.0×10-5 C 的电荷通过电流计.若连接电流计的电路总电阻R =25 Ω,则穿过环的磁通的变化∆Φ =_____________________.14、(2615A15)半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为_____________________________.15、(2616A15)桌子上水平放置一个半径r =10 cm 的金属圆环,其电阻R =1Ω.若地球磁场磁感强度的竖直分量为5×10-5 T .那么将环面翻转一次,沿环流过任一横截面的电荷q =_________________________.16、(2676A05)在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈.直导线中的电流由下向上,当线圈平行于导线向下运动时,线圈中的感应电 动势______________________;当线圈以垂直于导线的速度靠近导线时,线圈中 的感应电动势__________________.(填>0,<0或=0)(设顺时针方向的感应电动势为正).17、(2693A10)已知在一个面积为S 的平面闭合线圈的范围内,有一随时间变化的均匀磁场 )(t B ,则此闭合线圈内的感应电动势 =______________________.18、(2760B25)如图所示.电荷Q 均匀分布在一半径为R ,长为L (L >>R )的绝缘长圆筒上. 一静止的单匝矩形线圈的一个边与圆筒的轴线重合.若筒以角速度)1(0t αωω-=减速旋转,则线圈中的感应电流为 _______________________.19、(2130B30)如图所示,等边三角形的金属框,边长为l ,放在均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速 度ω 转动时,bc 边上沿bc 的电动势为 _________________,ca 边上沿ca 的电动势为_________________,金属框内的总Ll b B c a l lω电动势为_______________.(规定电动势沿abca 绕向为正值)20、(2132B25) 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B 的匀强磁场垂直于xy 平面.当aOc 以速度v 沿x 轴正向运动时,导 线上a 、c 两点间电势差U ac =____________;当aOc 以速度v 沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.21、(2133B30) 载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度v 沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________. 22、(2134B25) 金属杆AB 以匀速v =2 m/s 平行于长直载流导线运动,导线与AB 共面且相互垂直,如图所示.已知导线载有电流I = 40 A ,则此金属杆中的感应电动势i =____________,电势较高端为______.(ln2 = 0.69) 23、(2135A20) 四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为 ______________,电势最高点是在______________处. 24、(2144B20) 金属圆板在均匀磁场中以角速度ω 绕中心轴旋转,均匀磁场的方向平行于转轴,如图所示.这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小_________,方向__________________. 25、(2317B30)半径为L 的均匀导体圆盘绕通过中心O 的垂直轴转动,角速度为ω,盘面与均匀磁场B 垂直,如图. (1) 图上Oa 线段中动生电动势的方向为_________________. (2) 填写下列电势差的值(设ca 段长度为d ): U a -U O =__________________. U a -U b =__________________. U a -U c =__________________.26、(2318B40) 在竖直向上的均匀稳恒磁场中,有两条与水平面成θ角的平行导轨,相距L ,导轨下端与电阻R 相连,一段质量为m 的裸导线ab 在导轨上保持匀速下滑.在忽略导轨与导线的电阻和其间摩擦的情况下,感应电动势 ix ×××××c a 的方向Bωa=_____________________;导线ab 上__________端电势高;感应电流的大小i =______________,方向______________.27、(2337B25) 由导线弯成的宽为a 高为b 的矩形线圈,以不变速率v 平行于其宽度方向从无磁场空间垂直于边界进入一宽为3a 的均匀磁场中,线圈平面与磁场方向垂直(如图),然后又从磁场中出来,继续在无磁场的空间运动.设线圈右边刚进入磁场时为t =0时刻,试在附图中画出感应电流I 与时间t 的函数关系曲线.线圈的电阻为R ,取线圈刚进入磁场时感应电流的方向为正向.(忽略线圈自感)28、(2403A15) 在磁感强度为B 的磁场中,以速率v 垂直切割磁力线运动的一长度为L 的 金属杆,相当于____________,它的电动势 =____________,产生此电动势的 非静电力是______________.29、(2412B25)长为l 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动.如果转轴在导线上的位置是在____________,整个导线上的电动势为最大,其值为____________;如果转轴位置是在____________,整个导线上的电动势为最小, 其值为____________.30、(2413B25)一段直导线在垂直于均匀磁场的平面内运动.已知导线绕其一端以角速度ω转动时的电动势与导线以垂直于导线方向的速度v 作平动时的电动势相同,那么,导线的长度为____________________. 31、(2424B30) 在图示的电路中,导线AC 在固定导线上向右匀速平移,速度v = 2m/s .设5=AC cm ,均匀磁场随时间的变化率d B /d t = -0.1 T/s ,某一时刻B = 0.5 T ,x =10 cm ,则这时动生电动势的大小为 __________________,总感应电动势的大小为 ______________.以后动生电动势的大小随着AC 的运动而____________.32、(2508B35)一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B 的方向垂直图面向内.导线以角速度ω在图面内绕O 点 匀速转动,则此导线中的动生电动势 i =___________ ,电势最高的点是________________________.33、(2510B25)如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________. 34、(2690A15) 一根直导线在磁感强度为B 的均匀磁场中以速度 v 运动切割磁力线.导线bI中对应于非静电力的场强(称作非静电场场强)=K E ____________.35、(2702B25) 如图所示,一直角三角形abc 回路放在一磁感强度为B 的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab 边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生 电动势为____________________________.36、(2753A15) 如图所示,在与纸面相平行的平面内有一载有电流I 的无限长直导线和一接有电压表的矩形线框.线框与长直导线相平行的边的长度为l ,电压表两端a 、b 间的距离和l 相比可以忽略不计.今使线框在与导线共同所在的平面内以速度v 沿垂直于载流导线的方向离开导线,当运动到线框与载流导线相平行的两个边距导线分别为r 1和r 2 (r 2> r 1)时,电压表的读数V =__________________________,电压表的正极端为____________.37、(2787A15)在直角坐标系中,沿z 轴有一根无限长载流直导线,另有一与其共面的短导体棒.若只使导体棒沿某坐标轴方向平动而产生动生电动势,则(1) 导体棒平行x 轴放置时,其速度方向而沿_____________ 轴.(2) 导体棒平行z 轴放置时,其速度方向而沿_____________ 轴.38、(2158A15)一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉 长一些,则它的自感系数将____________________.39、(2159A15)无铁芯的长直螺线管的自感系数表达式为V n L 20μ=,其中n 为单位长度上 的匝数,V 为螺线管的体积.若考虑端缘效应时,实际的自感系数应___________ (填:大于、小于或等于)此式给出的值.若在管内装上铁芯,则L 与电流__________ (填:有关,无关).40、(2521A20) 一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)41、(2525A15)一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400 V ,则线圈的自感系数为L =____________.42、(2619A15)位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.B IIt LtO。
电磁感应练习试题

电磁感应练习一.选择题(共25小题)1.图示电路中,灯泡L1和L2完全相同,线圈L的自感系数很大,直流电阻忽略不计。
下列说法正确的是()A.闭合开关S时,灯泡L1、L2同时亮B.闭合开关S时,灯泡L2先亮,灯泡L1后亮C.断开开关S时,灯泡L2立刻熄灭,灯泡L1过一会儿熄灭D.断开开关S时,灯泡L1立刻熄灭,灯泡L2过一会儿熄灭2.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。
A和B是两个完全相同的小灯泡。
下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下3.如图所示,A1和A2是两个规格完全相同的灯泡,A1与自感线圈L串联后接到电路中,A2与可变电阻串联后接到电路中。
先闭合开关S,缓慢调节电阻R,使两个灯泡的亮度相同,再调节电阻R1,使两个灯泡都正常发光,然后断开开关S.对于这个电路,下列说法中正确的是()A.再闭合开关S时,A1先亮,A2后亮B.再闭合开关S时,A1和A2同时亮C.再闭合开关S,待电路稳定后,重新断开开关S,A2闪亮一下,过一会儿熄灭D.再闭合开关S,待电路稳定后,重新断开开关S,A1和A2都要过一会JL才熄灭4.如图所示电路中,L为电感线圈。
实验时,断开S瞬间,灯A突然闪亮,随后逐渐变暗。
下列说法正确的是()A.接通开关S后,灯A逐渐变亮B.接通开关S后,通过灯A的电流恒定C.灯A的电阻值大于线圈L的直流电阻值D.断开开关S前后,通过灯A的电流方向相同5.如图,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。
下面说法正确的是()A.闭合开关S,A、B灯同时亮B.闭合开关S,A灯比B灯先亮C.A、B灯最后一样亮D.断开开关S,A灯慢慢熄灭,B灯闪亮一下再慢慢熄灭6.电流传感器A的作用相当于一个电流表,它与计算机相连接可以捕捉到瞬间电流的变化,并能在屏幕上显示电流随时间变化的图象。
第十三章 电磁感应与电磁波精选试卷测试题(Word版 含解析)

第十三章电磁感应与电磁波精选试卷测试题(Word版含解析)一、第十三章电磁感应与电磁波初步选择题易错题培优(难)1.如图所示,通电螺线管置于水平放置的光滑平行金属导轨MN和PQ之间,ab和cd是放在导轨上的两根金属棒,它们分别静止在螺线管的左右两侧,现使滑动变阻器的滑动触头向左滑动,则ab和cd棒的运动情况是()A.ab向左运动,cd向右运动B.ab向右运动,cd向左运动C.ab、cd都向右运动D.ab、cd保持静止【答案】A【解析】【分析】【详解】由安培定则可知螺线管中磁感线方向向上,金属棒ab、cd处的磁感线方向均向下,当滑动触头向左滑动时,螺线管中电流增大,因此磁场变强,即磁感应强度变大,回路中的磁通量增大,由楞次定律知,感应电流方向为a→c→d→b→a,由左手定则知ab受安培力方向向左,cd受安培力方向向右,故ab向左运动,cd向右运动;A. ab向左运动,cd向右运动,与结果一致,故A正确;B. ab向右运动,cd向左运动,与结果不一致,故B错误;C. ab、cd都向右运动,与结果不一致,故C错误;D. ab、cd保持静止,与结果不一致,故D错误;2.如图所示,三根相互平行的固定长直导线1L、2L和3L垂直纸面如图放置,与坐标原点分别位于边长为a的正方形的四个点上,1L与2L中的电流均为I,方向均垂直于纸面向外,3L中的电流为2I,方向垂直纸面向里(已知电流为I的长直导线产生的磁场中,距导线r处的磁感应强度kIBr(其中k为常数).某时刻有一质子(电量为e)正好沿与x轴正方向成45°斜向上经过原点O,速度大小为v,则质子此时所受磁场力为( )A.方向垂直纸面向里,大小为23kIveaB .方向垂直纸面向外,大小为32kIveC .方向垂直纸面向里,大小为32kIveD .方向垂直纸面向外,大小为23kIve【答案】B 【解析】 【详解】根据安培定则,作出三根导线分别在O 点的磁场方向,如图:由题意知,L 1在O 点产生的磁感应强度大小为B 1= kI a,L 2在O 点产生的磁感应强度大小为B 2=2a L 3在O 点产生的磁感应强度大小为B 3=2 kIa,先将B 2正交分解,则沿x 轴负方向的分量为B 2x = 2a °= 2kIa,同理沿y 轴负方向的分量为B 2y =2a °= 2kI a ,故x 轴方向的合磁感应强度为B x =B 1+B 2x =3 2kIa,y 轴方向的合磁感应强度为B y =B 3−B 2y =32kI a ,故最终的合磁感应强度的大小为22322x y kI B B B a==,方向为tanα= yxB B =1,则α=45°,如图:故某时刻有一质子(电量为e)正好沿与x轴正方向成45°斜向上经过原点O,由左手定则可知,洛伦兹力的方向为垂直纸面向外,大小为f=eBv=322kIvea,故B正确; 故选B.【点睛】磁感应强度为矢量,合成时要用平行四边形定则,因此要正确根据安培定则判断导线周围磁场方向是解题的前提.3.如图甲,一电流强度为I的通电直导线在其中垂线上A点处的磁感应强度B∝,式中r 是A点到直导线的距离.在图乙中是一电流强度为I的通电圆环,O是圆环的圆心,圆环的半径为R,B是圆环轴线上的一点,OB间的距离是r0,请你猜测B点处的磁感应强度是( )A.22R IBr∝B.()3222IBR r∝+C.()23222R IBR r∝+D.()23222r IBR r∝+【答案】C【解析】因一电流强度为I的通电直导线在其中垂线上A点处的磁感应强度B∝Ir,设比例系数为k ,得:B=K I r ,其中 Ir的单位A/m ;220R I r 的单位为A ,当r 0为零时,O 点的磁场强度变为无穷大了,不符合实际,选项A 错误.()32220IRr+ 的单位为A/m 3,单位不相符,选项B 错误,()232220R IRr+的单位为A/m ,单位相符;当r 0为零时,也符合实际,选项C 正确.()2032220r IRr+ 的单位为A/m ,单位相符;但当r 0为零时,O 点的磁场强度变为零了,不符合实际,选项D 错误;故选C .点睛:本题关键是结合量纲和特殊值进行判断,是解决物理问题的常见方法,同时要注意排除法的应用,有时能事半功倍.4.在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步.下列表述符合物理学史实的是( )A .法拉第首先引入电场线和磁感线,极大地促进了人类对电磁现象的研究B .伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证C .牛顿利用“理想斜面实验”推翻了“力是维持物体运动的原因”的观点D .胡克认为弹簧的弹力与弹簧的长度成正比 【答案】A 【解析】 【详解】A 、法拉第首先引入电场线和磁感线,极大地促进了他对电磁现象的研究,故A 正确;B 、伽利略用数学和逻辑推理得出了自由落体的速度与下落时间成正比,而不是直接用实验验证这个结论.故B 错误.C 、伽利略利用“理想斜面实验”推翻了“力是维持物体运动的原因”的观点,故C 错误;D 、胡克认为弹簧的弹力与弹簧的形变量成正比,故D 错误.故选A. 【点睛】本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一.5.如图所示,三根完全相同的通电直导线a 、b 、c 平行固定,三根导线截面的连线构成一等边三角形,O 点为三角形的中心,整个空间有磁感应强度大小为B 、方向平行于等边三角形所在平面且垂直bc 边指向a 的匀强磁场。
电工基础第4章磁场与电磁感应题库(可编辑修改word版)

四、计算题
1.有一环状铁心线圈,流过的电流为5A,要使磁动势达到2000A,试求线圈的匝数。
2.有一圆环形螺旋线圈,外径为60cm,内径为40c:m,线圈匝数为1200匝,通有5A的电流,求线圈内分别为空气隙和软铁时的磁通(设软铁的相对磁导率为700H/m)。
3.磁感应强度和磁场强度有哪些异同?
4—3 磁场对电流的作用一、填空题
1.通常把通电导体在磁场中受到的力称为,也称,通电直导体在磁场内的受力方向可用定则来判断。
2.把一段通电导线放人磁场中,当电流方向与磁场方向时,导线所受到的电磁力最大;当电流方向与磁场方向时,导线所受的电磁力最小。
3.两条相距较远且相互平行的直导线,当通以相同方向的电流时,它们;当通以相反方向的电流时,它们。
第四章磁场与电磁感应
一、填空题(每空 1 分)
[问题]
某些物体能够的性质称为磁性。具有的物体称为磁体,磁体分为和两大类。
[答案]
吸引铁、镍、钴等物质磁性天然磁体人造磁体
[问题]
磁体两端的部分称磁极。当两个磁极靠近时,它们之间也会产生相互作用力,即同名磁极相互,异名磁极相互。
[答案]
磁性最强排斥吸引
[问题]
2.在一自感线圈中通人如图所示电流,前2s内产生的自感电动势为1V,则线圈的自感系数是多少?
第 3s、第 4s 内线圈产生的自感电动势是多少?第 5s 内线圈产生的自感电动势是多少?
54—7 互感一、填空题
1.由于一个线圈中的电流产生变化而在中产生电磁感应的现象叫互感现象。
2.当两个线圈相互时,互感系数最大;当两个线圈相互时,互感系数最小。
1.当线圈中通入()时,就会引起自感现象。A.不变的电流
初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应习题精编

电磁感应习题训练一、单选题1. 如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc的ab边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab边垂直。
则下列各图中哪一个可以定性地表示线框在进入磁场的过程中感应电流随时间变化的规律()A. AB. BC. CD. D2. 如图甲所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图乙所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间及外力F与时间t的关系图线是()A. B.C. D.3. 空间有竖直边界为AB、CD且垂直纸面向里的有界匀强磁场区域。
一闭合金属圆环用绝缘细线挂于O点,将圆环拉至如图所示位置静止释放,圆环在摆动过程中环面始终与磁场垂直。
若不计空气阻力,则下列说法中正确的是()A. 圆环完全进入磁场后离最低点越近,感应电流越大B. 圆环在进入和穿出磁场时,圆环中均有感应电流C. 圆环向左穿过磁场后再返回,还能摆到原来的释放位置D. 圆环最终将静止在最低点4. 如图所示电路,两根光滑金属导轨,平行放置在倾角为的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab质量为m,受到沿斜面向上且与金属棒垂直的恒力F的作用,金属棒沿导轨匀速下滑,则它在下滑高度h的过程中,以下说法正确的是()A. 作用在金属棒上各力的合力做正功B. 重力做的功等于系统产生的电能C. 金属棒克服安培力做的功等于电阻R上产生的焦耳热D. 金属棒克服恒力F做的功等于电阻R上产生的焦耳热二、多选题5. 如图(a)所示,半径为r1的n匝的圆形金属线圈,阻值为2R,与阻值为R的电阻连结成闭合回路。
八年级物理练习题:电磁感应

八年级物理练习题:电磁感应电磁感应练习题
题目一:
1. 一根导线被连接到一个电池的两个端口上,并放在一块磁铁附近。
当电流通过导线时,磁铁受到吸引。
请说明这是如何发生的?
题目二:
2. 一个长直导线垂直放置在一块保持不变的磁场中。
如果导线中的电流方向与磁场方向相同,导线将受到一个向上的力。
如果电流方向与磁场方向相反,导线将受到一个向下的力。
请解释这个现象。
题目三:
3. 当电磁感应发生时,电流是如何产生的?请解释法拉第电磁感应定律。
题目四:
4. 简述发电机的工作原理。
说明在发电机中如何利用电磁感应产生电流。
题目五:
5. 请解释电磁感应在变压器中的应用。
说明变压器如何将电能从一个线圈传输到另一个线圈。
题目六:
6. 电磁感应可用于许多设备和技术中。
请举例并解释其中一个实际应用。
题目七:
7. 描述电磁感应实验的步骤。
设计并实施一个简单的电磁感应实验。
题目八:
8. 某个发电站的输出电压为220V。
计算电磁感应原理下,需要多少匝才能将
输出电压增加到440V?
题目九:
9. 当一个磁场变化时,经过具有多个匝数的线圈时,电压的大小会受到影响。
请说明匝数如何影响电磁感应中的电压大小。
题目十:
10. 电磁感应也被应用于感应炉。
解释感应炉是如何利用电磁感应加热金属的。
电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理建模电磁感应中的“杆+导轨”模型模型构建“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.模型分类及特点1.单杆水平式物理模型动态分析设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,a、v同向,随v的增加,a减小,当a=0时,v最大,I=BL vR恒定收尾状态运动形式匀速直线运动力学特征a=0v恒定不变电学特征I恒定2.单杆倾斜式物理模型动态分析棒释放后下滑,此时a=g sin α,速度v↑E=BL v↑I=ER↑F=BIL↑a↓,当安培力F=mg sin α时,a=0,v最大收尾状态运动形式匀速直线运动力学特征a=0v最大v m=mgR sin αB2L2电学特征I恒定不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.图9-2-14 2、(2012·广东理综,35)如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d的平行金属板.R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.3、轻质细线吊着一质量为m=0.32 kg、边长为L=0.8 m、匝数n=10的正方形线圈,总电阻为r=1Ω.边长为L2的正方形磁场区域对称分布在线圈下边的两侧,如图9-2-25甲所示.磁场方向垂直纸面向里,大小随时间变化如图乙所示.从t=0开始经t0时间细线开始松弛,取g=10 m/s2.求:(1)在前t0时间内线圈中产生的电动势;(2)在前t0时间内线圈的电功率;(3)t0的值.图9-2-25 4、(2013·汕头模拟)如图9-2-26所示,两根平行金属导轨固定在同一水平面内,间距为l,导轨左端连接一个电阻.一根质量为m、电阻为r的金属杆ab垂直放置在导轨上.在杆的右方距杆为d处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B.对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab的阻力大小f;(2)杆ab中通过的电流及其方向;(3)导轨左端所接电阻的阻值R.图9-2-26考题一电磁感应中的电路和图象问题一、电磁感应中的电路问题1.电磁感应中电路知识的关系图2.电磁感应中电路问题的题型特点闭合电路中磁通量发生变化或有部分导体做切割磁感线运动,在回路中将产生感应电动势和感应电流.从而考题中常涉及电流、电压、电功等的计算,也可能涉及电磁感应与力学、电磁感应与能量的综合分析.3.分析电磁感应电路问题的基本思路(1)确定电源:用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向,电源内部电流的方向是从低电势流向高电势;(2)分析电路结构:根据“等效电源”和电路中其他元件的连接方式画出等效电路.注意区别内外电路,区别路端电压、电动势;(3)利用电路规律求解:根据E=BL v或E=n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.5、(2013·广东卷,36)如图1(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件,流过电流表的电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点,ω>0代表圆盘逆时针转动.已知:R=3.0 Ω,B=1.0 T,r=0.2 m.忽略圆盘、电流表和导线的电阻.(1)根据图(b)写出ab、bc段对应的I与ω的关系式;(2)求出图(b)中b、c两点对应的P两端的电压U b、U c;(3)分别求出ab、bc流过P的电流I P与其两端电压U P的关系式.图16、如图5甲所示,MN、PQ是相距d=1.0 m足够长的平行光滑金属导轨,导轨平面与水平面间的夹角为θ,导轨电阻不计,整个导轨处在方向垂直于导轨平面向上的匀强磁场中,金属棒ab垂直于导轨MN、PQ放置,且始终与导轨接触良好,已知金属棒ab的质量m=0.1 kg,其接入电路的电阻r=1 Ω,小灯泡电阻RL=9 Ω,重力加速度g取10 m/s2.现断开开关S,将棒ab由静止释放并开始计时,t=0.5 s时刻闭合开关S,图乙为ab的速度随时间变化的图象.求:(1)金属棒ab开始下滑时的加速度大小、斜面倾角的正弦值;(2)磁感应强度B的大小.图57、如图9甲所示,空间存在一宽度为2L的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L的正方形金属线框,其质量m=1 kg、电阻R=4 Ω,在水平向左的外力F作用下,以初速度v0=4 m/s匀减速进入磁场,线框平面与磁场垂直,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时.(1)求匀强磁场的磁感应强度B;(2)求线框进入磁场的过程中,通过线框的电荷量q;(3)判断线框能否从右侧离开磁场?说明理由.图98、(2011·重庆理综,23)有人设计了一种可测速的跑步机,测速原理如图所示.该机底面固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R.绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U,求:(1)橡胶带匀速运动的速率;(2)电阻R消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功.9、如图20所示,边长L=0.20 m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且与导线框对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动至AC的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN上通过的电流大小和方向;(3)导线框消耗的电功率.图2010、如图21甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图乙所示.求杆的质量m和加速度a.考题二电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(1)安培力的大小由感应电动势E=BL v,感应电流I=ER和安培力公式F=BIL得F=B2L2vR.(2)安培力的方向判断2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带:4.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=Bl v R+r.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl或B2l2vR总,根据牛顿第二定律列动力学方程:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力平衡条件列平衡方程:F合=0.11、如图3所示,间距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面夹角为30°,导轨的电阻不计,导轨的N、Q端连接一阻值为R的电阻,导轨上有一根质量一定、电阻为r的导体棒ab垂直导轨放置,导体棒上方距离L以上的范围存在着磁感应强度大小为B、方向与导轨平面垂直向下的匀强磁场.现在施加一个平行斜面向上且与棒ab重力相等的恒力,使导体棒ab从静止开始沿导轨向上运动,当ab进入磁场后,发现ab开始匀速运动,求:(1)导体棒的质量;(2)若进入磁场瞬间,拉力减小为原来的一半,求导体棒能继续向上运动的最大位移.图312、如图1所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.图113、如图3甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.图3二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q的三种方法14、如图6所示,平行金属导轨与水平面间夹角均为37°,导轨间距为1 m,电阻不计,导轨足够长.两根金属棒ab和以a′b′的质量都是0.2 kg,电阻都是1 Ω,与导轨垂直放置且接触良好,金属棒和导轨之间的动摩擦因数为0.25,两个导轨平面处均存在着垂直轨道平面向上的匀强磁场(图中未画出),磁感应强度B的大小相同.让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为8 W.求:(1)ab下滑的最大加速度;(2)ab下落了30 m高度时,其下滑速度已经达到稳定,则此过程中回路电流的发热量Q为多大?(3)如果将ab与a′b′同时由静止释放,当ab下落了30 m高度时,其下滑速度也已经达到稳定,则此过程中回路电流的发热量Q′为多大?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)图615、如图8所示,水平放置的足够长的平行金属导轨MN、PQ的一端接有电阻R0,不计电阻的导体棒ab静置在导轨的左端MP处,并与MN垂直.以导轨PQ的左端为坐标原点O,建立直角坐标系xOy,Ox轴沿PQ方向.每根导轨单位长度的电阻为r.垂直于导轨平面的非匀强磁场磁感应强度在y轴方向不变,在x轴方向上的变化规律为:B=B0+kx,并且x≥0.现在导体棒中点施加一垂直于棒的水平拉力F,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a.设导体棒的质量为m,两导轨间距为L.不计导体棒与导轨间的摩擦,导体棒与导轨接触良好,不计其余部分的电阻.(1)请通过分析推导出水平拉力F的大小随横坐标x变化的关系式;(2)如果已知导体棒从x=0运动到x=x0的过程中,力F做的功为W,求此过程回路中产生的焦耳热Q;(3)若B0=0.1 T,k=0.2 T/m,R0=0.1 Ω,r=0.1 Ω/m,L=0.5 m,a=4 m/s2,求导体棒从x=0运动到x=1 m的过程中,通过电阻R0的电荷量q.图816、间距为L=2 m的足够长的金属直角导轨如图4甲所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m=0.1 kg的金属细杆ab、cd与导轨垂直放置形成闭合回路.杆与导轨之间的动摩擦因数均为μ=0.5,导轨的电阻不计,细杆ab、cd的电阻分别为R1=0.6 Ω,R2=0.4 Ω.整个装置处于磁感应强度大小为B=0.50 T、方向竖直向上的匀强磁场中(图中未画出).当ab在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动.测得拉力F与时间t的关系如图乙所示.g=10 m/s2.(1)求ab杆的加速度a.(2)求当cd杆达到最大速度时ab杆的速度大小.(3)若从开始到cd杆达到最大速度的过程中拉力F做了5.2 J的功,通过cd杆横截面的电荷量为2 C,求该过程中ab杆所产生的焦耳热.图417、如图6所示,足够长的光滑平行金属导轨MN、PQ竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g取10 m/s2.试求:时间t(s)00.10.20.30.40.50.60.7下滑距离s(m)00.10.30.7 1.4 2.1 2.8 3.5(1)当t=0.7 s时,重力对金属棒ab做功的功率;(2)金属棒ab在开始运动的0.7 s内,电阻R上产生的焦耳热;(3)从开始运动到t=0.4 s的时间内,通过金属棒ab的电荷量.图618、(2012·江苏单科,13)某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N的矩形线圈abcd的边长ab=cd=l、bc=ad=2l.线圈以角速度ω绕中心轴匀速转动,bc边和ad边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小E m;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.考题三综合应用动力学观点和能量观点分析电磁感应问题19、如图14甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L=1 m.质量为m的金属杆ab垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.P、M间接有阻值为R1的定值电阻,Q、N间接电阻箱R.现从静止释放ab,改变电阻箱的阻值R,测得最大速度为v m,得到1v m与1R的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g取10 m/s2.求:(1)金属杆的质量m和定值电阻的阻值R1;(2)当电阻箱R取4 Ω时,且金属杆ab运动的加速度为12g sin θ时,此时金属杆ab运动的速度;(3)当电阻箱R取4 Ω时,且金属杆ab运动的速度为v m2时,定值电阻R1消耗的电功率.图1420、如图9甲所示,MN、PQ是相距d=1 m的足够长平行光滑金属导轨,导轨平面与水平面成某一夹角,导轨电阻不计;长也为1 m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,ab的质量m=0.1 kg、电阻R=1 Ω;MN、PQ的上端连接右侧电路,电路中R2为一电阻箱;已知灯泡电阻RL=3 Ω,定值电阻R1=7 Ω,调节电阻箱使R2=6 Ω,重力加速度g=10 m/s2.现断开开关S,在t=0时刻由静止释放ab,在t=0.5 s时刻闭合S,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab的速度随时间变化图象.(1)求斜面倾角α及磁感应强度B的大小;(2)ab由静止下滑s=50 m(此前已达到最大速度)的过程中,求整个电路产生的电热;(3)若只改变电阻箱R2的值.当R2为何值时,ab匀速下滑中R2消耗的功率最大?消耗的最大功率为多少?图921、(2014·安徽·23)(16分)如图10甲所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“∧”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP 长度均为2.5 m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m、质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2.(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差UCD;(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图乙中画出F -x关系图像;(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.图1022、如图15所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L=0.5 m,上方连接一个阻值R=1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B=2 T的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8 m处由静止释放,进入磁场后恰做匀速运动.(g取10 m/s2)(1)求金属杆的质量m为多大?(2)若金属杆2从磁场边界上方h1=0.2 m处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J的电热,则此过程中流过电阻R的电荷量q为多少?图1523、(2013·全国新课标Ⅰ,25)如图16所示,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.图1624、如图10甲所示,一边长L=2.5 m、质量m=0.5 kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8 T的匀强磁场中,金属线框的一边与磁场的边界MN重合.在水平力F作用下金属线框由静止开始向左运动,经过5 s金属线框被拉出磁场,测得金属线框中的电流随时间变化的图象如图乙所示.(1)在金属线框被拉出的过程中,求通过线框截面的电荷量及线框的电阻.(2)写出水平力F随时间变化的表达式.(3)已知在这5 s内力F做功1.92 J,那么在此过程中,线框产生的焦耳热是多少?图1025、(2013·常州水平检测)如图11所示,水平的平行虚线间距为d,其间有磁感应强度为B的匀强磁场.一个长方形线圈的边长分别为L1、L2,且L2<d,线圈质量m,电阻为R.现将线圈由其下边缘离磁场的距离为h处静止释放,其下边缘刚进入磁场和下边缘刚穿出磁场时的速度恰好相等.求:(1)线圈刚进入磁场时的感应电流的大小;(2)线圈从下边缘刚进磁场到下边缘刚出磁场(图中两虚线框所示位置)的过程做何种运动,求出该过程最小速度v;(3)线圈进出磁场的全过程中产生的总焦耳热Q总.图1126、如图12(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属棒ab从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd在位于区域Ⅰ内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=t x时刻(t x未知)ab棒恰进入区域Ⅱ,重力加速度为g.求:(1)通过cd棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率;(3)ab棒开始下滑的位置离EF的距离;(4)ab棒从开始下滑至EF的过程中回路中产生的热量.图1227、如图4所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向右的磁场,磁感应强度为B.螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为θ,两导轨间距为L.导轨电阻忽略不计.导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中.金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动.已知金属杆ab的质量为m,电阻为R2,重力加速度为g.忽略螺线管磁场对金属杆ab的影响,忽略空气阻力.(1)螺线管内方向向右的磁场B不变,当ab杆下滑的速度为v时,求通过ab杆的电流的大小和方向;(2)当ab杆下滑的速度为v时,螺线管内方向向右的磁场才开始变化,其变化率ΔBΔt=k(k>0).讨论ab杆加速度的方向与k的取值的关系.图428、(2014·新课标Ⅱ·25)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图6所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g.求:(1)通过电阻R的感应电流的方向和大小;(2)外力的功率.图6。