2012届湖北高考理科综合模拟2(答题卡)
2012届湖北高考理科综合模拟2(附答案)答题卡见同标题文档-推荐下载

A.样方法和标志重捕法分别是调查群落中植物和动物丰富度的常用方法
B.短期记忆可能与新突触的建立有关
C.建立自然保护区能够提高 K 值,是保护大熊猫的有效措施
D.长跑后肌肉酸痛是因为运动过程中骨骼肌细胞只进行无氧呼吸,积累了大量酸性
物质所致
7.从下列事实所得出的相应结论正确的是( )
实验事实
结论
① Cl2 的水溶液可以导电
高三理综 第 2 页 共 14 页
D.与乙醇反应时,NH5 被还原 11.用惰性电极电解下列溶液一段时间后,再加入一定量的另一种物质(方括号内),
溶液能与原来溶液完全一样的是( )
A. CuCl2[CuSO4 ] C. NaCl[HCl]
12.难挥发性二硫化钽(TaS2 )可采用如下装置提纯。将不纯的 TaS2 粉末装入石英管 一端,抽真空后引入适量碘并封管,置于加热炉中。反应如下:
①“观察 DNA 和 RNA 在细胞中的分布实验”中,盐酸有利于染色剂进入细胞
②“观察根尖分生组织细胞的有丝分裂”实验中,盐酸有利于细胞相互分离开来
③“低温诱导植物染色体数目的变化”实验先用盐酸解离,再在低温室内诱导培养36h
④“影响酶活性的条件”实验中,用不同浓度的盐酸和不同浓度的 NaOH 溶液处理酶, 探究不同 pH 对酶活性的影响
A.电子在磁场中运动的时间为 t=vA
高三理综 第 3 页 共 14 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014届湖北高三第一次模拟考试

2012届高三第一次模拟考试理科综合能力试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部部分,共300分,考试用时150分钟。
考试结束后,将答题卷和答题卡一并交回。
可能用到的原子量:H:1N:14O:16Mg:24 Al:27Cu:64Zn:65、第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,再选涂其他答案标号。
答在试卷上的无效。
一、选择题(本题共13小题,每小题6分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.现有甲、乙两种植株(均为二倍体纯种),其中甲种植株的光合作用能力高于乙种植株,但乙种植株很适宜在盐碱地种植。
要利用甲、乙两种植株各自优势,培育出高产、耐盐的植株,有多种生物技术手段可以利用。
下列所采用的技术手段中不可行的是()A.利用植物体细胞杂交技术,可获得满足要求的四倍体杂种目的植株B.将乙种植株耐盐基因导入到甲种植株的受精卵中,可培育出目的植株C.两种植株杂交后,得到的F1再利用单倍体育种技术可较快获得纯种的目的植株D.诱导两种植株的花粉融合并培育成幼苗,幼苗用秋水仙素处理,可培育出目的植株2.图示夏季白天C3植物和C4植物叶片光合作用强度的曲线。
下列说法错误的是()A.温度较高、气孔关闭,是造成图中d曲线所示植物中午光合强度下降的主要原因B.曲线C表示C4植物光合作用强度,因为C4植物能利用低浓度的CO2C.曲线C表示的植物在中午温度较高时,叶片的气孔不会因蒸腾作用过强而关闭D.在高温、干旱环境条件下,C植物比C3具有较高的光合作用效率3.A和B是属于同一生物体内的两个细胞,通过对其DNA分子含量的测定发现,A细胞中的DNA含量是B细胞的两倍,最可能的解释是()A.A细胞是有丝分裂过程中中心体相互分离时的细胞,B细胞是减数分裂过程中着丝点分裂染色体移向两极时的细胞B.A细胞是正常的体细胞,B细胞是处于减数第一次分裂结束时的细胞C.A细胞是处于有丝分裂前期的细胞,B细胞是处于有丝分裂后期的细胞D.A细胞是处于有丝分裂后期的细胞,B细胞是处于有丝分裂前期的细胞4.某科研工作者用葡萄糖和乳糖作碳源的培养基培养大肠杆菌。
2012年湖北高考理科综合模拟试题及答案

2012年湖北高考理科综合模拟试题及答案(二)第I卷(选择题共126分)一、选择题:本大题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
1.下列生物学实验中,有关使用盐酸试剂的过程及目的叙述正确的有()①“观察DNA和RNA在细胞中的分布实验”中,盐酸有利于染色剂进入细胞②“观察根尖分生组织细胞的有丝分裂”实验中,盐酸有利于细胞相互分离开来③“低温诱导植物染色体数目的变化”实验先用盐酸解离,再在低温室内诱导培养36h④“影响酶活性的条件”实验中,用不同浓度的盐酸和不同浓度的NaOH溶液处理酶,探究不同pH对酶活性的影响A.一项B.两项C.三项D.四项2. 图甲是H202酶活性受pH影响的曲线,图乙表示在最适温度下,pH =b时H202分解产生的O2量随时间的变化。
若该酶促反应过程中改变某一初始条件,以下叙述正确的是()A.温度降低时,e点不移,d点右移B.H2O2量增加时,e点不移,d点左移C.pH=c时,e点为OD.pH=a时,e点下移,d点左移3.线粒体和叶绿体都是进行能量转换的细胞器,下列相关叙述错误的是()A.需氧型生物细胞均有线粒体,叶绿体中均有色素B.两者都有内膜和外膜,两膜都有选择透过性功能C.两者都含有磷脂、DNA和多种酶D.两者都能产生A TP,但最初的能量来源不同4.下列有关生物体内遗传信息流动的叙述不正确的是()A.有丝分裂过程中遗传信息由母细胞流向子细胞B.在有性生殖过程中遗传信息由亲代流向子代C.已进行分化的细胞内不再有遗传信息的流动D.DNA复制、转录、翻译都有遗传信息的流动过程5.达尔文的自然选择学说与孟德尔的遗传定律分别奠定了进化理论与遗传学的基础,下面有关遗传和进化的分析,正确的一项是()①遗传是进化的基础,通过遗传使控制性状的基因在子代中得以延续和传递②根据自由组合定律可知基因突变与基因重组为进化提供了丰富的原材料③遗传出现性状分离,然后自然选择淘汰不利变异个体,保留有利变异个体④自然选择、基因重组、基因突变、种群过小,都会影响种群基因频率的稳定A.①②B.③④C.①③D.②④6.下列有关稳态与环境的叙述,正确的是()A.样方法和标志重捕法分别是调查群落中植物和动物丰富度的常用方法B.短期记忆可能与新突触的建立有关C.建立自然保护区能够提高K值,是保护大熊猫的有效措施D.长跑后肌肉酸痛是因为运动过程中骨骼肌细胞只进行无氧呼吸,积累了大量酸性物质所致8.在一个蒸馏烧瓶里装有体积比为7:1的NO2和O2的混合气体,现将此烧瓶倒扣于足量的水中充分反应后,求烧瓶中溶质的浓度(在此过程中溶质没有从烧瓶中流失)A.0.038mol/L B.0.036mol/L C.0.022mol/L D.无法确定9.进行化学实验,观察实验现象,通过分析推理得出正确的结论是化学学习的方法之一。
湖北2012届高三八校第二次联考理综物理部分

2012届高三第二次联考理科综合能力测试襄阳四中命题人:康博士冯彧刘纶武审题人:周永丽李茂炽杨虎考试时间:2012年3月30上午9:00——11:30全卷满分300分。
考试时间150分钟。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上所粘贴的条形码中“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
3.考试结束,监考员将试题卷和答题卷一并收回。
二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.14.在电磁学发展过程中,许多科学家做出了贡献,下列说法中符合物理学发展史的是( )A.奥斯特发现了点电荷的相互作用规律B.库仑发现了电流的磁效应C.安培发现了磁场对运动电荷的作用规律D.法拉笫最早引入电场的概念,并发现了磁场产生电流的条件和规律15.质量为lkg的物体在水平面内做曲线运动,已知互相垂直方向上的速度图象分别如图所示,下列说法正确的是( )A.质点初速度的方向与合外力方向垂直B.质点所受的合外力为3NC.质点的初速度为5 m/sD.2s末质点速度大小为7 m/s16.如图所示,水平面上质量相等的两木块A、B用一轻弹簧相连接,用一竖直向上的力F拉动木块A,使木块A缓慢上升至弹簧恢复原长.现改变力F使木块A 由静止开始匀加速上升.研究从木块A开始匀加速运动到木块B刚离开地面这个过程,并且选定这个过程中木块A的起始位置为坐标原点,则下列图象中可以表示力,和木块A的位移x之间关系的是(A)17.如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度)当电磁铁线圈电流的方向与图示方向一致时,使电子在真空室中沿虚线加速击中电子枪左端的靶,下列说法中正确的是( ) A.真空室中磁场方向竖直向上 B.真空室中磁场方向竖直向下 C.电流应逐渐减小D.电流应逐渐增大18.图中理想变压器原、副线圈的匝数之比为2:1,现在原线圈两端加上交变电压U =311sin (100πt +π)V 时,灯泡L 1、L 2均正常发光,电压表和电流表可视为理想电表.则下列说法中正确的是( ) A.该交流电的频率为100HzB.电压表的示数为l55.5 VC.若将变阻器的滑片P 向上滑动,则L 1将变暗、L 2将变亮D.若将变阻器的滑片P 向上滑动,则电流表读数变大19.2012年2月25日凌晨0时l 2分,我国在西昌卫星发射中心用“长征三号丙”,运载火箭,将第十一颗北斗卫星G 5成功送入地球同步轨道.按照计划,在2020年左右,我国将建成由30余颗卫星组成的北斗卫星导航系统.关于G5到地心的距离r 可由r 3=a 2b 2c4π2求出,已知式中a 的单位是m ,b 的单位是s ,c 的单位是m/s 2,则( )A.a 是地球半径,b 是地球自转的周期,c 是地球表面处的重力加速度B.a 是地球半径,b 是G5卫星绕地心运动的周期,c 是G5卫星的加速度C.a 是赤道周长,b 是地球自转的周期,c 是G5卫星的加速度D.a 是地球半径,b 是G5卫星绕地心运动的周期,c 是地球表面处的重力加速度 20.如图,在重力、电场力和洛伦兹力作用下,一带电液滴做直线运动,下列关于带电液滴的性质和运动的说法中不正确的是( ) A.液滴可能带负电 B.液滴一定做匀速直线运动C.不论液滴带正电或负电,运动轨迹为同一条直线D.液滴不可能在垂直电场的方向上运动21.如图所示为竖直平面内的直角坐标系.一质量为m 的质点,在恒力F 和重力的作用下,沿直线ON 斜向下运动,直线ON 与y 轴负方向成θ角(θ<90°),不计空气阻力,则以下说法正确的是( ) A.当F =mgtan θ时,拉力F 最小 B.当F =mgsinθ时,拉力F 最小C.当F=mgsinθ时,质点的机械能守恒,动能不变D.当F=mgtanθ时,质点的机械能可能减小也可能增大第Ⅱ卷 (非选择题,共l74分)注意事项:第Ⅱ卷须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
湖北省襄阳市2012届高三3月调研考试理科综合试题

湖北省襄阳市普通高中2012年3月高三调研统一测试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分,全卷满分300分。
考试时间150分钟。
注意事项:1.答卷前,请考生认真阅读答题卡上的注意事项。
非网评考生务必将自己的学校、班级、姓名、考号填写在答题卡密封线内,将考号最后两位填在登分栏内的座位号内。
网评考生务必将自己的姓名、考号填写在答题卡上指定位置,贴好条形码将考号对应数字涂黑。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的清洁。
考试结束后,监考人员将答题卡和机读卡一并收回,按小号在上、大号在下的顺序分别封装。
以下数据可供解题时参考:可能用到的相对原子质量:H 1 C 12 O 16 S 32 Fe 56 Cu 64第I卷(选择题,共126分)1.如图所示,图1为细胞膜亚显微结构示意图,图2为突触结构示意图,则相关叙述正确的是A.图1中I侧为细胞膜内侧,Ⅱ侧为细胞膜外侧B.脂质分子可优先通过细胞膜与图1中A密切相关C.图2中E为突触后膜,F为突触前膜,C物质被释放出来依靠主动运输D.图2中C名称为神经递质,C与D结合后,突触后膜电位可以由外正内负变为外负内正2.农科所技术员研究温度对某蔬菜新品种产量的影响,将实验结果绘制成如下曲线。
据此提出以下结论,你认为合理的是A.光合作用酶的最适温度高于呼吸作用酶的最适温度B.阴影部分表示5~35℃时蔬菜的净光合速率小于零C.光照越强,该蔬菜新品种的产量越高D.温室栽培该蔬菜时温度最好控制在25~30℃3.如图是某二倍体生物细胞分裂模式图。
有关此图的下列说法正确的是A .该生物的基因型一定是AaBB B .该生物的体细胞中染色体数最多为4条C .该细胞有可能是次级精母细胞或第一极体D .如果1是X 染色体,那么,2是Y 染色体,3和4为常染色体 4.HIV 能通过细胞表面的CD4(一种受体蛋白)识别T 细胞,如果给AIDS 患者大量注射用CD4修饰过的红细胞,红细胞也会被HIV 识别、入侵。
2012年湖北高考数学理科试卷(带详解)

2012年湖北高考数学理科试卷(带详解)2012湖北高考理科数学一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程2+6+13=0x x 的一个根是 ( )A .3+2i -B .3+2i C .22i -+ D .2+2i【测量目标】复数的一元二次方程求根. 【考查方式】给出一元二次方程,由求根公式求出它的根. 【难易程度】容易 【参考答案】A【试题解析】根据复数求根公式:26613432i2x --⨯==-±,所以方程的一个根为32i -+,答案为A. 2.命题“300x x ∃∈∈R Q Q,”的否定是( ) A .300x x ∃∉∈RQ Q, B .300x x ∃∈∉RQ Q,C .30x x ∀∉∈R Q Q,D .300x x ∀∈∉RQ Q,【测量目标】常用逻辑用语,含有一个量词的命题的否定.【考查方式】给出了存在性命题,根据逻辑用语写出命题的否定.【难易程度】容易【参考答案】D【试题解析】根据对命题的否定知,是把谓词取否定,然后把结论否定因此选D.3.已知二次函数=()y f x的图象如图所示,则它与x 轴所围图形的面积为()第4题图A.2π5B. 43C.32D.π2【测量目标】定积分的几何意义.【考查方式】给出了二次函数的图象,求出函数解析式,由定积分的几何意义可求得面积.【难易程度】容易一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 5.设a ∈Z ,且013a <,若201251a+能被13整除,则a =( )A .0B .1C .11D .12 【测量目标】二项式定理.【考查方式】给出二项式,根据其展开式的系数求解.【难易程度】中等 【参考答案】D【试题解析】由于51=52-1,2012020121201120111201220122012(521)C 52C 52C 521-=-+-+…又由于13|52,所以只需13|1+a ,0a <13,所以a =12选D.6.设,,,,,a b c x y z 是正数,且222++=10a b c ,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .34【测量目标】不等式的基本性质.【考查方式】给出含未知量的3个方程,根据柯西不等式的使用及其去等条件可得出答案. 【难易程度】中等 【参考答案】C【试题解析】由于2222222()()()a b c x y z ax by cz ++++++等号成立当且仅当ab ct x y z===,则a tx b ty c tz ===,,, 2222()10t x y z ++=(步骤1)所以由题知12t =,又a b c a b cx y z x y z++===++(步骤2), 所以12a b c t xy z ++==++,答案选C.(步骤3) 7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,{}()nf a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2xf x =; ③()f x x=;④()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为( )A .① ② B.③④C .① ③D .② ④ 【测量目标】等比数列性质及函数计算. 【考查方式】给出了保等比数列的定义,判断所给4个函数是否为保等比数列. 【难易程度】中等 【参考答案】C【试题解析】等比数列性质,221n n n a a a ++=,①222222211()()()()nn n n n n f a f aa a a f a ++++=== (步骤1) 2212221()()2222()n n n n n a a a a a n n n f a f a f a ++++++==≠=②(步骤2) ()222211()()()n n n n n n f a f a a a a f a ++++===③(步骤3)2221()()=ln ln ()n n n n n f a f a a a f a +++≠④选C.(步骤4)8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( )A .21π-B .112π- C .2π D .1π第8题【测量目标】几何概型及平面图形面积公式. 【考查方式】给出扇形根据面积公式求出扇形面积以及阴影部分的面积,算出他们的比值即为概率. 【难易程度】中等【参考答案】A 【试题解析】令1OA =,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积, (步骤1)221111π2π122228S -⎛⎫=-⨯⨯=⎪⎝⎭.在扇形OAD 中12S 为扇形面积减去三角形OAC 面积和22S ,21211π2π(1)284216S S -=--=,12π24S S -+=,扇形OAB 面积1π4S =, 选A.(步骤2)第8题图9.函数2()cos f x x x =在区间[]0,4上的零点个数为( )A .4B . 5C .6D .7【测量目标】三角函数的周期性以及函数零点的判断.【考查方式】给出复合函数,根据函数周期性确定其在区间类的零点个数. 【难易程度】容易 【参考答案】C【试题解析】()0f x =,则0x =或2cos 0x=,2ππ+,2xk k =∈Z又[]0,4x ∈,0,1,2,3,4k =所以共有6个解.选C.10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式3169d V ≈人们还用过一些类似的近似公式. 根据π=3.14159...判断,下列近似公式中最精确的一个是( ) A .3169d V ≈B .32d V≈C .3300157d V ≈D .32111d V ≈【测量目标】球的体积公式以及估算. 【考查方式】根据球的体积估算圆周率. 【难易程度】中等 【参考答案】D 【试题解析】由34π32d V ⎛⎫= ⎪⎝⎭,得36πV d =,设选项中常数为ab ,则6π=b a (步骤1);A 中代人得69π 3.37516⨯==,B 中代入得6π32==,C 中代入得π61573.14300⨯==,D 中代人得611π= 3.142857,21⨯=由于D 中值最接近π的真实值,故选D.(步骤2) 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设ABC △的内角,,A B C 所对的边分别为,,a b c 若()()a b c a b c ab+-++=,则角C = .【测量目标】余弦定理,解三角形.【考查方式】给出三角形的各边关系,利用余弦定理求出角C . 【难易程度】容易 【参考答案】120【试题解析】由()(+)a b c a b c ab +--=,得222ab c ab+-=-根据余弦定理2221cos ,222a b c ab C ab ab +-==-=-故120C ∠=.12.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .第12题图 【测量目标】循环结构的程序框图.【考查方式】给出程序框图,通过输入、赋值、输出语句,得出满足条件的s . 【难易程度】容易 【参考答案】9【试题解析】程序在运行过程中各变量的值如下表示:第一圈循环:当n=1时,得s=1,a=3.(步骤1)第二圈循环: 当n=2时,得s=4,a=5 (步骤2)第三圈循环:当n=3时,得s=9,a=7 (步骤3)此时n=3,不再循环,所以解s=9 . (步骤4)13.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,...,99.3位回文数有90个:101,111,121, (191)202,…,999.则(Ⅰ)4位回文数有个;(Ⅱ)21()+∈N位回文数有个.n n+【测量目标】排列、组合及其应用.【考查方式】根据回文数的定义求出4位回文数以及21()+∈N回文数的个数.n n+【难易程度】较难【参考答案】(I)90;(II)910n⨯【试题解析】(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有91090⨯=种,答案:90. (Ⅱ)法一、由上面多组数据研究发现,2n +1位回文数和2n +2位回文数的个数相同,所以可以算出2n +2位回文数的个数.2n +2位回文数只用看前n +1位的排列情况,第一位不能为0有9种情况,后面n 项每项有10种情况,所以个数为910n⨯.法二、可以看出2位数有9个回文数,3位数90个回文数.计算四位数的回文数是可以看出在2位数的中间添加成对的“00,11,22,……99”,因此四位数的回文数有90个,按此规律推导22102nn s s =-,而当奇数位时,可以看成在偶数位的最中间添加0~9这十个数,因21210n nss +=,则答案为910n⨯.14.如图,双曲线22221(,0)x y a b a b-=>的两顶点为12A A ,虚轴两端点为12B B ,两焦点为12F F ,. 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则第14题图(Ⅰ)双曲线的离心率e = ;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S的比值12SS = .【测量目标】双曲线的标准方程、定义、离心率,以及一般平面几何图形的面积计算.【考查方式】给出了双曲线和平面几何图形的位置关系求出离心率,根据面积公式求出面积比. 【难易程度】较难 【参考答案】(I )51e +=,(II )1225SS+=【试题解析】(Ⅰ)由于以12A A 为直径的圆内切于菱形1122F B F B ,因此点O 到直线22F B 的距离为a ,又由于虚轴两端点为12B B ,,因此2OB 的长为b ,那么在22F OB △中,由三角形的面积公式知,2222111222bc a B F a b c ==+1),又由双曲线中存在关系222ca b =+联立可得出222(1)ee -=,根据(1,)e ∈+∞解出51e +=(步骤2)(II )菱形1122F B F B 的面积12S bc =,设矩形ABCD ,2BC m =,2BA n =∴m c n b=(步骤3),∵222m n a +=,∴2222m n b c b c ==++步骤4) ∴面积222244a bcS mn b c==+,∴221222S b c S a +=(步骤5)∵222bc a =-∴12252SS+=(步骤6).(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,点D 在O 的弦AB 上移动,4AB =,连接OD ,过点D作OD 的垂线交O 于点C ,则CD 的最大值为 .第15题图 【测量目标】直线与圆的位置关系.【考查方式】根据直线与圆的位置关系,判断点D 的位置从而求出线段最大值. 【难易程度】容易 【参考答案】2【试题解析】(由于OD CD ⊥,因此22CD OC OD =-线段OC 长为定值,即需求解线段OD 长度的最小值,根据弦中点到圆心的距离最短,此时D 为AB 的中点,点C与点B 重合,因此122CD AB == 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知射线π4θ=与曲线21(1)x t y t =+⎧⎨=-⎩(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为 . 【测量目标】平面直角坐标与极坐标系下的曲线方程交点.【考查方式】给出了两曲线的极坐标方程,将它们化为一般方程并求出交点. 【难易程度】中等【参考答案】55(,)22 【试题解析】π4θ=在直角坐标系下的一般方程为()y x x =∈R ,将参数方程21(1)x t y t =+⎧⎨=-⎩(t 为参数)转化为直角坐标系下的一般方程为222(1)(11)(2)y t x x =-=--=-表示一条抛物线(步骤1),联立上面两个方程消去y 有2540xx -+=,设A B,两点及其中点P 的横坐标分别为0ABx x x 、、(步骤2),则有韦达定理0522A B x x x+==,又由于点P 点在直线y x=上,因此AB 的中点P 55(,)22.(步骤3) 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量(cos sin sin )x x x ωωω=-,a ,(cos sin ,23cos )x x x ωωω=--b ,设函数()()f x x λ=+∈R a b 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π,04⎛⎫⎪⎝⎭,求函数()f x 在区间3π0,5⎡⎤⎢⎥⎣⎦上的取值范围.【测量目标】平面向量的数量积运算,三角函数的变换及化简.【考查方式】求出函数解析式,根据三角变换求得最小正周期和在特定区间类函数的取值范围.【难易程度】容易【试题解析】(I )因为22()sin cos cos f x x x x ωωωλ=-+cos23sin 2.x x ωωλ=-+π2sin(2)6x ωλ=-+(步骤1).由直线πx =是()y f x =图象的一条对称轴,可πsin(2π)16ω-=±,所以ππ2ππ+()62k k ω-=∈Z ,即1().23k k ω=+∈Z 又1(,1)2k ω∈∈Z ,,所以k =1,故56ω=,所以()f x 的最小正周期为6π5.(步骤2)(II )由()y f x =的图象过点π(,0)4,得π()04f =,(步骤3)即5πππ2sin()2sin 2,6264λ=-⨯-=-=-即2λ=- 故5π()2sin()2,36f x x =--(步骤4)由3π0,5x有π5π5π,6366x --所以15πsin()1236x --,得5π122sin()222,36x ----故函数()f x 在3π0,5⎡⎤⎢⎥⎣⎦上的取值范围为12,22⎡---⎣.(步骤5)18.(本小题满分12分)已知等差数列{}na 前三项的和为3-,前三项的积为8.(Ⅰ)求等差数列{}na 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}na 的前n 项和.【测量目标】等差数列的通项,前n 项和. 【考查方式】由等差数列的前三项和以及积的大小求出通项,由前三项成等比关系求出新数列的前n 和. 【难易程度】容易【试题解析】(I )设等差数列{}na 的公差为d ,则21aa d=+,312aa d=+.有题意得1111333()2a d a a d a d +=-⎧⎨++⎩()=8解得123a d =⎧⎨=-⎩或143a d =-⎧⎨=⎩(步骤1)所以由等差数列通项公式可得23(1)35,n a n n =--=-+或43(1)37.nan n =-+-=-故35,nan =-+或37.nan =-(步骤2)(II )当35na n =-+时,231,,a a a 分别为1,4,2--,不成等比数列. 当37na n =-时,231,,a a a 分别为1,2,4,--成等比数列,满足条件.故37,1,237.37,3nn n an n n -+=⎧=-=⎨-⎩(步骤3)记数列{}na 的前n 项和为nS .当n =1时,114;S a ==当n =2时,2125;S a a =+=当n 3,234...5(337)(347) (37)n n S S a a a n =++++=+⨯-+⨯-++-=[]2(2)2(37)311510.222n n n n -+-+=-+当2n =时,223112210522S=⨯-⨯+=综上,24131110,122n n S n n n =⎧⎪⎨-+⎪⎩,>.(步骤4)19.(本小题满分12分)如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD折起,使90BDC ∠=(如图2所示).(Ⅰ)当BD 的长为多少时,三棱锥A BCD -的体积最大;(Ⅱ)当三棱锥A BCD -的体积最大时,设点E ,M分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN与平面BMN 所成角的大小.图1图2第19题图【测量目标】三棱锥的体积公式,均值不等式求最值,利用导数求函数的最值,空间直角坐标系的建立,平行与垂直关系的综合应用.【考查方式】给出了空间几何体的边、角等,通过均值不等式或者导数求出体积的最大值,利用空间向量或者垂直与平行关系求得线面角的大小.【难易程度】中等【试题解析】(I )解法1:在如图1所示的△ABC 中,设BD =x (03)x <<,则3CD x =-.由,45AD BC ACB ⊥∠=知,△ADC 为等腰直角三角形,所以AD =CD =3x -.(步骤1)由折起前AD ⊥平面BCD .又90BDC ∠=,所以11(3).22BCD S BD CD x x ==-△于是1111(3)(3)2(3)333212A BCD BCD V AD S x x x x x x -==--=-△(-)312(3)(3)21233x x x +-+-⎡⎤=⎢⎥⎣⎦当且仅当23,x x =-即当x =1时,等号成立, 故当x =1,即BD =1时,三棱锥A BCD -的体积最大.(步骤2) 解法2:同解法1,得321111=(3)(3)(69).3326A BCD BCD V AD S x x x x x x -=--=-+△(步骤1)令321()(69),6f x x x x =-+由1()(1)(3)02f x x x '=--=,03,x <<解得x =1.当(0,1)x ∈时,()0;f x '>当(1,3)x ∈时,()0f x '<. 所以当x =1,()f x 取1得最大值.故当BD =1时,三棱锥A BCD -的体积最大.(步骤2)(II)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(I )知,当三棱锥A BCD -的体积最大时,1,2BD AD CD ===.于是可得1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A M E且(1,1,1).BM =-(步骤3)设1(0,,0),=2N EN λλ则(-,-1,0).因为EN BM ⊥等价于0EN BM =,即111022λλ+-=(-,-1,0)(-1,1,1)=,故11,(0,,0)22N λ=(步骤4)所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.设平面BMN 的一个法向量为n(,,),x y z =由BNBM⎧⊥⎪⎨⊥⎪⎩n n ,及1(1,,0),2BN =- 得2y x z x=⎧⎨=-⎩可取(1,2,1)=-n .(步骤5)3cos EN <>=,n即EN 与平面BMN 所成角的大小60.(步骤6)第19题图a解法2:由(I)知,当三棱锥A BCD-的体积最大时,1, 2.===(步骤3)BD AD CD如图b,取CD的中点F,连接,MF BF,EF,则MF AD.由(I)知AD⊥平面BCD,所以MF⊥平面BCD.(步骤4)如图c,延长FE至P点使得FP=DB,连接BP,DP,则四边形DBPF为正方形,所以.⊥取DF得中点N,连接EN,又DP BFE为FP的中点,则EN DP,所以.⊥因为MF⊥平面BCD,又EN⊂面EN BFBCD,所以MF EN⊥.又=MF BF F,因为MF∈面BMF,所以EN⊥BM..因为EN BM⊥当且仅当,⊥而点F是唯一EN BF的,所以点N是唯一的.即当1DN=(即N是CD的靠近点D的一个2四等分点),EN BM⊥.连接MN,ME,由计算得NB=NM=EB=EM5所以△NMB与△EMB是两个共底边的全等的等腰三角形,(步骤5)如图d.BM EGN⊥平面在平面EGN中,过点E作EH GN⊥于H,则EH⊥平面BMN.故ENH∠是EN与平面BMN所成的角.,所在△EGN中,易得EG=GN=NE=22以△EGN是正三角形,故=60EGN∠,即EN与平面BMN所成角的大小为60.(步骤6)图b图c图d第19题图 20.(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,降水量X300X <300700X << 700900X << 900X 工期延0 2 6 100.7,0.9. 求:(Ⅰ)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【测量目标】概率的加法公式与方差,条件概率. 【考查方式】给出了降水量与工期延误的关系,根据概率的加法公式以及方差公式求出延误天数的均值与方差、条件概率.【难易程度】中等【试题解析】(I)由已知条件和概率的加法公式有:(300)0.3,(300700)(700)(300)=0.70.30.4P X P X P X P X==--=<<<<<(700900)=(900)700=0.90.70.2P X P X P X--=<<(<)(900)1(900)=10.90.1.P X P X=--=<(步骤1)所以Y的分布列为:Y0 2 6 1 0P0.0.0.0于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8.D Y =-⨯+-⨯+-⨯+-⨯=故工期延误天数Y 的均值为3,方差9.8.(步骤2)(II )由概率的加法公式,(300)1(300)0.7P X P X =-=<,又(300900)(900)(300)0.90.30.6P X P X P X =-=-=<<<.由条件概率,得(300900)0.66(6300)(900300)(300)0.77P X P YXP X XP X ====<<.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.(步骤3)21.(本小题满分13分)设A 是单位圆221xy +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足(01),DM m DA m m =≠>,且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .3 4 2 .1(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的k >0,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】双曲线的标准方程,直线的方程,直线与双曲线的位置关系,双曲线中的定点问题.【考查方式】给出了圆的方程以及直线与圆的位置关系,从而判断轨迹为何种曲线,根据直线与方程的联立求出满足条件的点. 【难易程度】较难【试题解析】(I )如图1,设0(,),(,),M x y A x y 则由(01),DM m DA m m =≠>,且可得0,,x x y m y ==所以001,.xx y y m==①因为A 点在单位圆上运动,所以22001x y +=②将①式代入②式即得所求曲线C 的方程为2221(0)y x m m m+=≠>,且1,(步骤1)因为(0,1)(1,),m ∈+∞所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为22(1,0),(1,0)m m ---;(步骤2)当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为22(0,1),(0,1)m m ---.(步骤3)(II )解法1:如图2、30k ∀>,设1122(,),(,),P x kx H x y 则111(,),(0,),Q x kx N kx --直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得222222211(4)40.m k x k x x k x m +++-=依题意可知此方程的两根为12,,x x -于是由韦达定理可得21122244k x x x m k -+=-+,即21222.4m x x m k=+(步骤4)因为点H 在直线QN 上,所以212122222.4km x y kx kx m k-==+于是112121(2,2),(,)PQ x kx PH x x y kx =--=--=2211222242(,)44k x km x m k m k -++.而PQ PH ⊥等价于PQ PH =2221224(2)0,4m k x m k-=+即220m-=,又m >0,得2m =,故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.(步骤5)第21题图1解法2:如图2、3,1(0,1)x ∀∈,设1122(,),(,),P x y H x y 则111(,),(0,)Q x y N y --因为P ,H 两点在椭圆C 上,所以222211222222m x y m m x y m ⎧+=⎨+=⎩,两式相减可得222221212()()0.m x x y y -+-=(步骤3)依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠,于是由③式可得212121212()()()()y y y y m x x x x -+=--+.(步骤4)又Q ,N ,H 三点共线,所以QNQHK K =,即1121122.yy y x x x +=+于是由④式可得211212*********()()1.2()()2PQPHy y y y y y y m K K x x x x x x x --+===---+(步骤5) 而PQ PH ⊥等价于PQPHK K =1-,即22m -=1-,又m >0,得m =2.故存在m =2,使得在其对应的椭圆2212y x +=上,对任意的k >0,都有PQ PH ⊥. (步骤6)图2图3(0<m <1) (m >1)第21题图 22.(本小题满分14分) (Ⅰ)已知函数()(1)(0)rf x rx xr x =-+->,其中r 为有理数,且01r <<. 求()f x 的 最小值;(Ⅱ)试用(Ⅰ)的结果证明如下命题:设12120,0,,aa b b ,为正有理数. 若121b b+=,则12121122;b b aaa b a b +(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()xx ααα-'=.【测量目标】利用导数求函数的单调区间及最值、解不等式问题,数学归纳法.【考查方式】给出函数解析式,求其导数从而求出函数的最值.给出了参数的范围,利用问题(I )的结论以及导数解决不等式的证明.在利用(II )的命题根据数学归纳法得到命题的一般形式进行推广.【难易程度】较难 【试题解析】(I )11()(1),r r f x r rx r x --'=-=-令()0f x '=,解得x =1.当0<x <1时,()0f x '<,所以f (x )在(0,1)内是减函数;当x >1时,()f x '>0,所以f (x )在(0,1)内是增函数.故函数()f x 在x =1处取得最小值(1)0.f =(步骤1) (II )由(I )知,当(0,)x ∈+∞时,有()(1)0f x f =,即(1)rx rx r +-若12,a a 中有一个不为0,则12121122b b aa ab a b ++成立(步骤2);若12,a a 均不为0,又121b b+=,可得211bb =-,于是在①中令112,,ax r b a ==可得1111122(1),b a a b b a a ⎛⎫+- ⎪⎝⎭即12121121(1)b b aaa b a b +-,亦即12121122b b aaa b a b +.(步骤3)综上,对12120,0,,aa b b 为正有理数且121b b+=,总有12121122b b a a a b a b +.②(步骤3)(III) (II )中命题的推广形式为: 设12,,,na a a …为非负实数,12,,,nb b b …为正有理数.若121,kb b b+++=…则12121122+kb b b k k kaa a ab a b a b ++…….(步骤4)③用数学归纳法证明如下: (1)当1n =时,11,b =有11,aa ③成立.(步骤5)(2)假设当n k =时③成立,即若12,,,ka a a …,非负实数,12,,,kb b b …,为正有理数.且121,kb b b+++=…则12121122kb b b k k ka a a ab a b a b ++…….当1n k =+时,已知12,,,ka a a …,1k a +非负实数,12,,,kb b b …,1k b +为正有理数且1211,kk b b b b+++++=…此时101k b+<<,即110k b+->,(步骤6)于是111212121121(...)kk kk b b b b b b b b k k k k a a a aa a a a++++= (1)2111+1+11111121()kk k k k k b b b b b b b b kk aa a a +++----+=…12111...1111k k k k b b b b b b ++++++=---,由归纳假设可得1211111112k k k k b b b b b b kaa a +++--- (1122)121211111111k k k k k k k k b a b a b a b b b a a a b b b b +++++++++=----……从而112121k k b b b b k k aa a a ++ (1)111122111k k b b k k k k a b a b a b a b ++-++⎛⎫++ ⎪-⎝⎭…(步骤7)又因1+1(1)=1k k bb +-+,由②得11111221122111111k k b b k k k kk k k k a b a b a b a b a b a b a b b b ++-++++⎛⎫++++ ⎪--⎝⎭……+(1-)1+1k k a b ++=1122k ka b a b a b ++…++11k k a b ++,从而112121kk b b b b k k a a a a ++ (11)2211k kk k a b a b a b a b +++++…+.(步骤7) 故当1n k =+时,③成立. 由(1)(2)可知,对一切正整数n ,所推广的命题成立. 说明:(III )中如果推广形式中指出③式对2n 成立,则后续证明不需要讨论1n =的情况(步骤8)。
012 2012年高考前优秀生用过的理科综合模拟试题

理科综合 第1 页 共 12 页理科综合试题 2012年4月21日第Ⅰ卷(必做,共87分)注意事项:1. 第Ⅰ卷共20小题,每小题4分,共87分。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不涂在答题卡上,只答在试卷上不得分。
以下数据可供答题时参考:相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5 Cu 64 I 127 Ba 137一、选择题(本小题包括13小题,每小题只有一个选项符合题意)1.下列有关细胞的叙述,错误..的是 A .蓝藻细胞内不形成染色体和纺锤体,故增殖方式为无丝分裂B .干细胞是能够持续分裂的细胞,衰老速度较高度分化的细胞慢C .精细胞、神经细胞、根尖分生区细胞不是都有细胞周期,但化学成分都在不断更新D .人体细胞的溶酶体含有水解酶,能分解细胞中的大分子,其产物可能被细胞再利用2.正常情况下,下列四个图若改变自变量或因变量,则曲线变化最大的是A .图①将“光照强度”改为“CO 2浓度”B .图②将“胰岛素相对含量”改为“胰高血糖素相对含量”C .图③将“有丝分裂各时期”改为“减数第二次分裂各时期”D .图④将“酶活性”改为“有氧呼吸释放CO 2量”3.图甲所示为基因表达过程,图乙为中心法则,①~⑤表示生理过程。
下列叙述正确的是A .图甲所示为染色体DNA 上的基因表达过程,需要多种酶参与B .红霉素影响核糖体在mRNA 上的移动,故影响基因的转录过程C .图甲所示过程为图乙中的①②③过程D .图乙中涉及碱基A 与U 配对的过程为②③④⑤4.下列有关人体生命活动调节的叙述,错误..的是 A .免疫系统识别并清除异物、外来病原体等,实现其维持稳态的作用B. B 细胞受到抗原刺激,在淋巴因子的作用下,被激活并进行分裂C .兴奋在两个神经元间传递过程中,不会出现膜的转移和融合D .激素起作用后即被灭活,故机体需源源不断产生,以维持其含量的动态平衡5.水稻分蘖期间,农民拔草、治虫;排水晒田。
2012年湖北省高考数学试卷(理科)附送答案

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i2.(5分)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q3.(5分)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.4.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π5.(5分)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.126.(5分)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.7.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(5分)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(5分)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.(5分)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果s=.13.(5分)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有个;)位回文数有个.(Ⅱ)2n+1(n∈N+14.(5分)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD 的垂线交⊙O于点C,则CD的最大值为.16.(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.18.(12分)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.19.(12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.20.(12分)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥90002610工期延误天数Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.21.(13分)设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.22.(14分)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•湖北)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i【分析】由方程x2+6x+13=0中,△=36﹣52=﹣16<0,知=﹣3±2i,由此能求出结果.【解答】解:∵方程x2+6x+13=0中,△=36﹣52=﹣16<0,∴=﹣3±2i,故选A.2.(5分)(2012•湖北)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q【分析】根据特称命题“∃x∈A,p(A)”的否定是“∀x∈A,非p(A)”,结合已知中命题,即可得到答案.【解答】解:∵命题“∃x0∈C R Q,∈Q”是特称命题,而特称命题的否定是全称命题,∴“∃x0∈C R Q,∈Q”的否定是∀x0∈C R Q,∉Q故选D3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.【分析】先根据函数的图象求出函数的解析式,然后利用定积分表示所求面积,最后根据定积分运算法则求出所求.【解答】解:根据函数的图象可知二次函数y=f(x)图象过点(﹣1,0),(1,0),(0,1)从而可知二次函数y=f(x)=﹣x2+1∴它与X轴所围图形的面积为=()=(﹣+1)﹣(﹣1)=故选B.4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选B.5.(5分)(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.12【分析】由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求【解答】解:∵512012+a=(52﹣1)2012+a=+…++a由于含有因数52,故能被52整除要使得能512012+a能被13整除,且a∈Z,0≤a≤13则可得a+1=13∴a=12故选D6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.【分析】根据所给条件,利用柯西不等式求解,利用等号成立的条件即可.【解答】解:由柯西不等式得,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,当且仅当时等号成立∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,∴等号成立∴∴=故选C.7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f (x)的序号为()A.①②B.③④C.①③D.②④【分析】根据新定义,结合等比数列性质,一一加以判断,即可得到结论.【解答】解:由等比数列性质知,①=f2(a n),故正确;+1),故不正确;②≠=f2(a n+1),故正确;③==f2(a n+1④f(a n)f(a n+2)=ln|a n|ln|a n+2|≠=f2(a n+1),故不正确;故选C8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB 为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.【分析】求出阴影部分的面积即可,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB的面积.【解答】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.(5分)(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7【分析】令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数【解答】解:令f(x)=0,可得x=0或cosx2=0∴x=0或x2=,k∈Z∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个故选C10.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈【分析】根据球的体积公式求出直径,然后选项中的常数为,表示出π,将四个选项逐一代入,求出最接近真实值的那一个即可.【解答】解:由V=,解得d=设选项中的常数为,则π=选项A代入得π==3.375;选项B代入得π==3;选项C代入得π==3.14;选项D代入得π==3.142857由于D的值最接近π的真实值故选D.二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.【分析】利用已知条件(a+b﹣c)(a+b+c)=ab,以及余弦定理,可联立解得cosB 的值,进一步求得角B.【解答】解:由已知条件(a+b﹣c)(a+b+c)=ab可得a2+b2﹣c2+2ab=ab即a2+b2﹣c2=﹣ab由余弦定理得:cosC==又因为0<C<π,所以C=.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.【分析】用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.【解答】解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N)位回文数有9×10n个.+【分析】(I)利用回文数的定义,四位回文数只需从10个数字中选两个可重复数字即可,但要注意最两边的数字不能为0,利用分步计数原理即可计算4位回文数的个数;(II)将(I)中求法推广到一般,利用分步计数原理即可计算2n+1(n∈N)位+回文数的个数【解答】解:(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,有10种选法;故4位回文数有9×10=90个故答案为90(II)第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、…、n、n+1个数字,共有10×10×10×…×10=10n 种选法,)位回文数有9×10n个故2n+1(n∈N+故答案为9×10n14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.【分析】(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得,由此可求双曲线的离心率;(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=,由此可得结论.(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为【解答】解:∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴(c2﹣a2)c2=(2c2﹣a2)a2∴c4﹣3a2c2+a4=0∴e4﹣3e2+1=0∵e>1∴e=(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2n,BA=2m,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.【分析】由题意可得CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值,故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半.【解答】解:由题意可得△OCD为直角三角形,故有CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值.故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半,由于AB=4,故CD的最大值为2,故答案为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).【分析】化极坐标方程为直角坐标方程,参数方程为普通方程,联立可求线段AB的中点的直角坐标.【解答】解:射线θ=的直角坐标方程为y=x(x≥0),曲线(t为参数)化为普通方程为y=(x﹣2)2,联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4∴线段AB的中点的横坐标为2.5,纵坐标为2.5∴线段AB的中点的直角坐标为(2.5,2.5)故答案为:(2.5,2.5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx ﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.【分析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.【解答】解:(1)∵f(x)=•+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx ×2cosωx+λ=﹣(cos2ωx﹣sin2ωx)+sin2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z∴ω=+,又ω∈(,1)∴k=1时,ω=∴函数f(x)的最小正周期为=(2)∵f()=0∴2sin(2××﹣)+λ=0∴λ=﹣∴f(x)=2sin(x﹣)﹣由x∈[0,]∴x﹣∈[﹣,]∴sin(x﹣)∈[﹣,1]∴2sin(x﹣)﹣=f(x)∈[﹣1﹣,2﹣]故函数f(x)在区间[0,]上的取值范围为[﹣1﹣,2﹣]18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.【分析】(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n ﹣7|=,根据等差数列的求和公式可求【解答】解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n ﹣7(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.【分析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD 的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N 点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角【解答】解:(1)设BD=x,则CD=3﹣x∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D∴AD⊥平面BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)∴V A﹣BCD设f(x)=(x3﹣6x2+9x)x∈(0,3),∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数∴当x=1时,函数f(x)取最大值∴当BD=1时,三棱锥A﹣BCD的体积最大;(2)以D为原点,建立如图直角坐标系D﹣xyz,由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E (,1,0),且=(﹣1,1,1)设N(0,λ,0),则=(﹣,λ﹣1,0)∵EN⊥BM,∴•=0即(﹣1,1,1)•(﹣,λ﹣1,0)=+λ﹣1=0,∴λ=,∴N(0,,0)∴当DN=时,EN⊥BM设平面BMN的一个法向量为=(x,y,z),由及=(﹣1,,0)得,取=(1,2,﹣1)设EN与平面BMN所成角为θ,则=(﹣,﹣,0)sinθ=|cos<,>|=||==∴θ=60°∴EN与平面BMN所成角的大小为60°20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥900工期延误天数02610Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【分析】(I)由题意,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,结合某程施工期间的降水量对工期的影响,可求相应的概率,进而可得期延误天数Y的均值与方差;(Ⅱ)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X <900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用条件概率,即可得到结论【解答】(I)由题意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X <300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1Y的分布列为Y02610P0.30.40.20.1∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8∴工期延误天数Y的均值为3,方差为9.8;(Ⅱ)P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P (X<300)=0.9﹣0.3=0.6由条件概率可得P(Y≤6|X≥300)=.21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,l是过点A与x 轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m 丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.【分析】(I)设M(x,y),A(x0,y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|=|y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(Ⅱ)∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得,从而可得可得.利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.【解答】解:(I)如图1,设M(x,y),A(x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈(0,1)∪(1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r 为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.【分析】(I)求导函数,令f′(x)=0,解得x=1;确定函数在(0,1)上是减函数;在(0,1)上是增函数,从而可求f(x)的最小值;(II)由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r),分类讨论:若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,,可得a1b1a2b2≤a1b1+a2b2成立(III)(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;用数学归纳法证明:(1)当n=1时,b1=1,a1≤a1,推广命题成立;(2)假设当n=k时,推广命题成立,证明当n=k+1时,利用a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1,结合归纳假设,即可得到结论.【解答】(I)解:求导函数可得:f′(x)=r(1﹣x r﹣1),令f′(x)=0,解得x=1;当0<x<1时,f′(x)<0,所以f(x)在(0,1)上是减函数;当x>1时,f′(x)>0,所以f(x)在(0,1)上是增函数所以f(x)在x=1处取得最小值f(1)=0;(II)解:由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r)①若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,∵b1+b2=1,∴b2=1﹣b1,∴①中令,可得a1b1a2b2≤a1b1+a2b2成立综上,对a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;②(III)解:(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;③用数学归纳法证明(1)当n=1时,b1=1,a1≤a1,③成立(2)假设当n=k时,③成立,即a1≥0,a2≥0,…,a k≥0,b1,b2,…,b k为正有理数,若b1+b2+…+b k=1,则a1b1a2b2…a k bk≤a1b1+a2b2+…a k b k.当n=k+1时,a1≥0,a2≥0,…,a k+1≥0,b1,b2,…,b k+1为正有理数,若b1+b2+…+b k+1=1,>0则1﹣b k+1于是a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1∵++…+=1∴…≤++…+=bk+1≤•(1∴a k+1﹣b k)+a k+1b k+1,+1∴a1b1a2b2…a k b ka k+1bk+1≤a1b1+a2b2+…a k b k+a k+1b k+1.∴当n=k+1时,③成立由(1)(2)可知,对一切正整数,推广的命题成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
29. (9 分) (1) (2) (3) (3 分) 33、 33、34 略 35、 【物理 选修 3-5】 (15 分) (1) 分) (5 (2) (10 分) 39、 39、略 40.(15 分)(1) (3 分)
(2) 30. (10 分)(1) (2) ① ② (3)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
Байду номын сангаас
。 ,
二、非选择题(174 分) 科目
I
II
科总分
理综总分
ⅱ(1) (2) (3) 。
22. (1) 物理 错误一:
化学 生物
错误二: 密 错误三: (2) 班 级 23 ① 封 ② ;
(4) (5) 27 (1) (2)
。 。 。 ; ; 。
姓
名
线 (3) 考 号 (4)① 24.(13 分) , 。 ② 。 。 。 。 。 。 。
一笔一画关分数
2012 届高考理科综合模拟(二)
1 2 3 4 5 6 7 8 9 10 11
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
一字一句关前程
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
25.(18 分)
12
13
14
15
16
17
18
19
20
21
26、ⅰ(1) (2)
O
l
A B
37
o
H
28 、 1 ) ( (2) (3) (4) (5)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
一笔一画关分数
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
一字一句关前程
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
(3)①
(4) ①
②
31. (12 分) . (1) (2) (3) (4) 32.(8 分) (1) (2)②
②
36、 36、37 略 ⑸ 38、ⅰ (1) ⅰ (2) ⅱ (1) (2) , 。
(3)①
②
(3) (4) , 。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效