实验 磁控溅射法制备薄膜材料

合集下载

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜材料磁控溅射法制备薄膜材料的步骤如下:1.靶材选择:选择可以溅射制备薄膜的材料作为溅射靶材。

这些材料通常是单质金属、合金或化合物,如金、银、铜、铝、氧化物等。

2.基底处理:将制备薄膜的基底进行清洗和表面处理,以保证薄膜的附着力和质量。

3.靶材安装:将靶材安装在溅射器的靶架上。

4.真空抽气:将溅射室进行抽气,以建立良好的真空环境。

这可以防止杂质、气体和水分对薄膜质量的影响。

5.溅射气体调节:调节溅射气体(通常是氩气)的流量和压力,以维持合适的工作气氛。

6.加热基底:通过加热基底,可以提高薄膜附着力和晶体质量。

7.确定溅射条件:根据需要制备的薄膜材料,调节溅射功率、工作气氛和溅射时间等参数,以保持溅射过程的稳定和合适的溅射速率。

8.溅射过程:通过加大靶架上的电流,激发高能粒子与靶材相互作用,使靶材表面的原子蒸发并沉积在基底上。

9.薄膜测量:制备完成后,进行薄膜的物理、化学性质的测试和表征,如薄膜的厚度、表面形貌、晶体结构、成分等。

磁控溅射法制备薄膜材料具有以下优点:1.良好的控制性:可以通过调节溅射参数(如功率、压力等)来控制薄膜的结构和性质。

2.高纯度材料:由于溅射过程中没有反应,制备的薄膜材料具有高度的化学纯度。

3.多种材料选择:不仅可以制备金属薄膜,还可以制备合金、氧化物、硅等其他材料的薄膜。

4.优异的附着性:磁控溅射法制备的薄膜与基底之间具有较好的附着性,可以在多种基底上制备。

5.溅射速率高:与其他制备薄膜的方法相比,磁控溅射的溅射速率较高,制备时间较短。

磁控溅射法制备薄膜材料的应用非常广泛。

例如,浮法玻璃制备中使用的氧化物和金属薄膜、电子器件制造中的金属和半导体薄膜、太阳能电池中的透明导电膜、光学镀膜中的金属和二氧化硅薄膜等。

此外,磁控溅射法还可以用于制备多层薄膜、纳米结构薄膜以及复合薄膜等特殊结构的材料。

总结起来,实验磁控溅射法制备薄膜材料是一种简便、可控性强且应用广泛的方法。

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》一、引言透明导电氧化物薄膜作为一种重要的功能材料,在光电、电磁、热学等领域具有广泛的应用。

近年来,随着科技的发展,透明导电氧化物薄膜的制备技术也在不断进步。

其中,磁控溅射法因其制备工艺简单、薄膜质量高、可重复性好等优点,成为制备透明导电氧化物薄膜的常用方法之一。

本文将详细介绍磁控溅射法制备透明导电氧化物薄膜的过程,并对其性能进行研究。

二、磁控溅射法制备透明导电氧化物薄膜2.1 实验材料与设备实验材料主要包括靶材(如氧化锡、氧化铟等)、基底(如玻璃、石英等)以及氩气等。

实验设备为磁控溅射镀膜机,该设备具有高真空度、高溅射速率、低损伤等特点。

2.2 制备过程(1)将基底清洗干净,放入磁控溅射镀膜机中;(2)将靶材安装在磁控溅射镀膜机的靶材托盘上;(3)将氩气通入磁控溅射镀膜机内,调整气压至合适范围;(4)开启磁控溅射镀膜机的电源,调节溅射功率和溅射时间;(5)当靶材表面开始发生溅射现象时,基底上的透明导电氧化物薄膜开始沉积;(6)在设定的时间结束后,关闭电源,停止溅射。

2.3 工艺参数优化在实验过程中,可以通过调整磁控溅射镀膜机的工艺参数(如溅射功率、溅射时间、工作气压等),来优化透明导电氧化物薄膜的制备过程。

在实验过程中,需要控制好各参数的配合关系,以获得最佳的薄膜质量和性能。

三、性能研究3.1 结构性能研究通过X射线衍射(XRD)技术对制备的透明导电氧化物薄膜进行结构分析。

通过XRD图谱可以确定薄膜的晶体结构、晶格常数等参数。

此外,还可以利用扫描电子显微镜(SEM)观察薄膜的表面形貌,分析薄膜的致密性和颗粒大小。

3.2 电学性能研究通过四探针法测量透明导电氧化物薄膜的电阻率、方块电阻等电学性能参数。

同时,还可以通过霍尔效应测试等方法研究薄膜的载流子浓度、迁移率等电学性质。

通过这些研究,可以评估薄膜的导电性能及其在器件中的应用潜力。

3.3 光学性能研究通过紫外-可见光分光光度计(UV-Vis)测量透明导电氧化物薄膜的光学性能参数,如透光率、反射率等。

磁控溅射法制备薄膜材料实验报告

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。

二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。

三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。

图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。

随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。

一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。

进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。

当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。

随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。

(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。

氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。

射频磁控溅射法制备ZnO薄膜

射频磁控溅射法制备ZnO薄膜

ZnO薄膜的XRD图 薄膜的XRD 图2 ZnO薄膜的XRD图
XRD图显示: 图显示: 图显示
(1)样品均出现了2θ≈34.75°的较强的(002)衍射峰,说明薄 膜具有垂直于基片平面较好的c轴择优取向 (2)2、3、 4号样品中出现了2θ≈72.5°的微弱的(004)衍射 峰,在4号样品中出现了2θ≈32.2°的微弱的(100)衍射峰,其 中(004)峰为(002)晶面的次级衍射峰。 (3)在衬底温度从RT升至250℃的过程中,(002)衍射峰相对 强度随衬底温度升高而增加,薄膜c轴择优取向变好,而当温 度超过250℃以后,(002)峰相对强度变小。
所谓磁控溅射就是在二极溅射的基础上附加一个磁场利用电子在正交电磁场中作螺旋线轨迹运动进一步提高真空溅射镀膜的效率和质量以金属靶材为阴极阳极接地也可以是正电位两极间通入工作气体在此以氩气ar为工作气体当两极间施加高压时电极间的ar发生电离电离产生的电子向阳极作加速运动而ar向阴极作加速运动撞击阴极靶材
二、ZnO薄膜的应用 ZnO薄膜的应用
光电显示领域中的透明电极 太阳能光电转换领域中的异质结 各种压电、压光、 各种压电、压光、电声与声光器件
气敏元件
三、ZnO薄膜的研究进展 薄膜的研究进展
Hang Ju Ko等人利用分子束外延(MBE)方法制备了高 质量的ZnO薄膜;Zhang等人利用分子束外延方法在Al2O3 上制备了 ZnO的发光二极管;Su等人利用等离子体协助分 子束外延(P-MBE)方法制备了ZnO/ZnMgO 单量子阱,结合 理论计算所得在导带和价带中的第一亚带能量分别是 49meV和11meV;Chang等人利用分子束外延生长n-ZnO, 而利用金属有机化学气相沉积p-GaN,发现 n-ZnO/p-GaN 异质结具有发光二极管特性;Gangil等人利用等离子增强的 MOCVD在Al2O3上制备出了N掺杂p型ZnO薄膜,载流子浓 度范围为1013 ~ 1015 cm-3,电阻率为10-1 ~

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》一、引言透明导电氧化物(TCO)薄膜作为一种具有优异光学性能和电学性能的材料,广泛应用于光电显示、太阳能电池等领域。

随着科技的发展,对TCO薄膜的性能要求日益提高,制备工艺的优化和性能研究显得尤为重要。

磁控溅射法作为一种常用的制备TCO薄膜的方法,具有制备工艺简单、薄膜质量高等优点。

本文将详细介绍磁控溅射法制备透明导电氧化物薄膜的工艺流程、实验方法及薄膜性能的研究。

二、磁控溅射法制备透明导电氧化物薄膜1. 实验材料与设备实验材料主要包括靶材(如氧化锡(SnO2)或氧化铟(In2O3)等)、基底(如玻璃或石英等)、溅射气体(如氩气等)。

实验设备主要包括磁控溅射镀膜机、真空泵等。

2. 实验方法(1)基底处理:将基底清洗干净,并进行预处理,以提高薄膜与基底的附着力。

(2)靶材制备:将靶材固定在磁控溅射镀膜机的靶位上。

(3)真空环境:将镀膜机腔体抽至高真空状态,以去除腔体内的杂质和气体。

(4)溅射镀膜:在磁控溅射镀膜机中,通过调节溅射功率、气体流量、基底温度等参数,实现TCO薄膜的制备。

三、薄膜性能研究1. 光学性能通过紫外-可见光谱仪测试TCO薄膜的透光率,分析薄膜的光学带隙、光学常数等性能。

同时,还可以通过SEM(扫描电子显微镜)观察薄膜的表面形貌,分析薄膜的光散射性能。

2. 电学性能采用四探针法或霍尔效应测试仪等设备测试TCO薄膜的电阻率、载流子浓度和迁移率等电学性能参数。

通过分析这些参数,可以评估TCO薄膜的导电性能和稳定性。

四、结果与讨论1. 实验结果通过磁控溅射法制备的TCO薄膜具有较高的透光率和较低的电阻率,满足光电显示、太阳能电池等领域的应用需求。

此外,薄膜的表面形貌良好,光散射性能较低。

在实验过程中,通过调整溅射功率、气体流量、基底温度等参数,可以实现对TCO薄膜性能的优化。

2. 结果讨论(1)溅射功率对TCO薄膜性能的影响:随着溅射功率的增加,薄膜的结晶性和致密度提高,从而提高了薄膜的透光率和导电性能。

磁控溅射法制备薄膜材料实验报告

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。

二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。

三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。

图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。

随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。

一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。

进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。

当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。

随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。

(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。

氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。

中频反应磁控溅射制备二氧化硅薄膜的方法

中频反应磁控溅射制备二氧化硅薄膜的方法

中频反应磁控溅射制备二氧化硅薄膜的方法一、引言二氧化硅薄膜具有优异的光学、电学和机械性能,因此在光伏器件、光学涂层、微电子器件等领域具有广泛的应用。

中频反应磁控溅射是一种常用的制备二氧化硅薄膜的方法,本文将对该方法的原理、设备、工艺和应用进行综述。

二、中频反应磁控溅射的原理及设备1.中频反应磁控溅射的原理中频反应磁控溅射是利用中频交变电源产生的磁场,引导电子在高真空环境下以高速撞击靶材表面,使靶材表面材料溅射并沉积在基片上,通过控制气体混合比例和反应条件,可以实现对二氧化硅薄膜的制备。

2.中频反应磁控溅射设备中频反应磁控溅射设备由真空室、靶材、基片夹持架、气体供给系统、沉积监测系统等组成。

真空室通常采用不锈钢材料制成,具有良好的气密性和耐腐蚀性;靶材可以是氧化硅或其他硅材料,通过外部电源加热或水冷方式降低溅射过程中靶材的温度,从而提高薄膜的致密性和均匀性;气体供给系统提供所需的工艺气体,如氧气和惰性气体等;沉积监测系统可以实时监测沉积速率和薄膜厚度,从而实现对沉积工艺的实时控制。

三、中频反应磁控溅射制备二氧化硅薄膜的工艺1.底层沉积在进行二氧化硅薄膜沉积之前,通常需要在基片上沉积一层辅助材料,以增强薄膜的附着力和均匀性。

通常使用氧化铝或氮化硅等材料作为底层材料,通过中频反应磁控溅射的方式进行沉积。

底层材料的选择和沉积工艺的优化对二氧化硅薄膜的性能具有重要影响,需要根据具体应用需求进行调整。

2.二氧化硅薄膜沉积二氧化硅薄膜的沉积通常采用二氧化硅靶材和氧气混合气体进行溅射,通过控制溅射功率、气体流量和沉积时间等工艺参数,可以实现对二氧化硅薄膜的沉积。

在沉积过程中,需要实时监测沉积速率和薄膜厚度,根据监测结果进行实时调整,以保证薄膜的质量和均匀性。

3.后续处理二氧化硅薄膜沉积完成后,通常需要进行后续处理以改善薄膜的性能。

常见的后续处理包括退火、氧化、掺杂等,通过这些处理可以进一步提高薄膜的光学、电学和机械性能。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述用磁控溅射制备薄膜材料的概述1.引言溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。

它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。

磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。

磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。

2.溅射技术的发展1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。

采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。

这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。

在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现实,磁控溅射更加快速地发展起来。

溅射技术先后经历了二级、三级和高频溅射。

二极溅射是最早采用,并且是目前最简单的基本溅射方法。

二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。

为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。

然而像这种传统的溅射技术都有明显的缺点:1).溅射压强高、污染严重、薄膜纯度差2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低3).灯丝寿命低,也存在灯丝对薄膜的污染问题3.磁控溅射的原理:磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 磁控溅射法制备薄膜材料
一、实验目的
1. 掌握真空的获得
2. 掌握磁控溅射法的基本原理与使用方法
3. 掌握利用磁控溅射法制备薄膜材料的方法
二、实验原理
磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。

膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。

氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。

磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。

用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。

1. 辉光放电:
辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。

不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。

如图1(a)所示为一个直流气
体放电体系,在阴阳两极之间由电
动势为的直流电源提供电压和电
流,并以电阻作为限流电阻。

在电
路中,各参数之间应满足下述关系:
V=E-IR
使真空容器中Ar气的压力保持
一定,并逐渐提高两个电极之间的
电压。

在开始时,电极之间几乎没
有电流通过,因为这时气体原子大
多仍处于中性状态,只有极少量的
电离粒子在电场的作用下做定向运
动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。

图1 直流气体放电
随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。

当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。

此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。

在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。

一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。

这些过程均产生新的离子和电子,即碰撞过程使得离子和电子的数目迅速增加。

这时,随着放电电流的迅速增加,电压的变化却不大。

这一放电阶段称为汤生放电。

在汤生放电阶段的后期,放电开始进入电晕放电阶段。

这时,在电场强度较高的电极尖端部位开始出现一些跳跃的电晕光斑。

因此,这一阶段称为电晕放电。

在汤生放电阶段之后,气体会突然发生放电击穿现象。

这时,气体开始具备了相当的导电能力,我们将这种具备了一定的导电能力的气体称为等离子体。

此时,电路中的电流大幅度增加,同时放电电压却有所下降。

这是由于这时的气体被击穿,因而气体的电阻将随着气体电离度的增加而显着下降,放电区由原来只集中于阴极边缘和不规则处变成向整个电极表面扩展。

在这一阶段,气体中导电粒子的数目大量增加,粒子碰撞过程伴随的能量转移也足够地大,因此放电气体会发出明显的辉光。

电流的继续增加将使得辉光区域扩展到整个放电长度上,同时,辉光的亮度不断提高。

当辉光区域充满了两极之间的整个空间之后,在放电电流继续增加的同时,放电电压又开始上升。

上述的两个不同的辉光放电阶段常被称为正常辉光放电和异常辉光放电阶段。

异常辉光放电是一般薄膜溅射或其他薄膜制备方法经常采用的放电形式,因为它可以提供面积较大、分布较为均匀的等离子体,有利于实现大面积的均匀溅射和薄膜沉积。

2. 磁控溅射:
平面磁控溅射靶采用静止电磁场,磁场为曲线形。

其工作原理如下图所示。

电子在电场作用下,加速飞向基片的过程中与氩原子发生碰撞。

若电子具有足够的能量(约为30eV)。

时,则电离出Ar+并产生电子。

电子飞向基片,Ar+在电场作用下加速
飞向阴极溅射靶并以高能量轰击靶表面,使靶材发生溅射。

在溅射粒子中,中性的靶原子(或分子)沉积在基片上形成薄膜。

二次电子e1在加速飞向基片时受磁场B的洛仑兹力作用,以摆线和螺旋线状的复合形式在靶表面作圆周运动。

该电子e1的运动路径不仅很长,而且被电磁场束缚在靠近靶表面的等离子体区域内。

在该区中电离出大量的Ar+用来轰击靶材,因此磁控溅射具有沉积速率高的特点。

随着碰撞次数的增加,电子e1的能量逐渐降低,同时,e1逐步远离靶面。

低能电子e1将如图中e3那样沿着磁力线来回振荡,待电子能量将耗尽时,在电场E的作用下最终沉积在基片上。

由于该电子的能量很低,传给基片的能量很小,使基片温升较低。

在磁极轴线处电场与磁场平行,电子e2将直接飞向基片。

但是,在磁控溅射装置中,磁极轴线处离子密度很低,所以e2类电子很少,对基片温升作用不大。

图2 磁控溅射工作原理图
磁控溅射的基本原理就是以磁场改变电子运动方向,束缚和延长电子的运动路径,提高电子的电离概率和有效地利用了电子的能量。

因此,在形成高密度等离子体的异常辉光放电中,正离子对靶材轰击所引起的靶材溅射更加有效,同时受正交电磁场的束缚的电子只能在其能量将要耗尽时才能沉积在基片上。

这就是磁控溅射具有“低温”、“高速”两大特点的机理。

3.真空的获得:
用来获得真空的设备称为真空泵,真空泵按其工作机理可分为排气型和吸气型两大类。

排气型真空泵是利用内部的各种压缩机构,将被抽容器中的气体压缩到排气口,而将气体排出泵体之外,如机械泵、扩散泵和分子泵等。

吸气型真空泵则是在封闭的真空系统中,利用各种表面(吸气剂)吸气的办法将被抽空间的气体分子长期吸着在吸气剂表面上,使被抽容器保持真空,如吸附泵、离子泵和低温泵等。

(1)机械泵
机械泵是运用机械方法不断地改变泵内吸气空腔的容积,使被抽容器内气体的
体积不断膨胀压缩从而获得真空的泵,机械泵的种类很多,目前常用的是旋片式机械泵。

机械泵可在大气压下启动正常工作,其极限真空度可达10-1Pa,它取决于:①定子空间中两空腔间的密封性,因为其中一空间为大气压,另一空间为极限压强,密封不好将直接影响极限压强;②排气口附近有一“死角”空间,在旋片移动时它不可能趋于无限小,因此不能有足够的压力去顶开排气阀门;③泵腔内密封油有一定的蒸汽压(室温时约为10-1Pa)。

(2)分子泵
分子泵是利用高速旋转的转子把动量传输给气体分子,使之获得定向速度,从而被压缩、被驱向排气口后为前级抽走的一种真空泵。

这种泵具体可分为:
1)牵引分子泵气体分子与高速运动的转子相碰撞而获得动量,被驱送到泵的出口。

2)涡轮分子泵靠高速旋转的动叶片和静止的定叶片相互配合来实现抽气的。

这种泵通常在分子流状态下工作。

3)复合分子泵它是由涡轮式和牵引式两种分子泵串联组合起来的一种复合型的分子真空泵。

三、实验仪器
超声波清洗器、磁控溅射镀膜机、镊子、烧杯等
四、实验步骤
1.用酒精清洗衬底玻璃基板、靶材,清洗完毕后用高压气枪吹干。

2.实验前仔细检查各开关的状态,接通电源。

电源接通后打开水循环开关,关闭真空计,打开放气阀,待放气完毕打开腔室门放置基片,注意装载过程中确保玻璃面的整洁。

置入内衬,关闭充气阀门。

3.一键抽真空。

4.待分子泵满转速时,设置好靶基距和基片加热温度,打开基片加热。

5.待抽至需要的真空,打开限流阀,到90°处,设置基片台转速,打开基片台旋。

6.设置流量计的示数,充入氩气,至工作真空度。

7.等待30s 左右,设置直流或射频电源的功率和工作时间,点击ON 按钮开始溅射(镀膜前一定要确定靶挡板是关闭的)。

待溅射一段时间后,打开挡板,开始镀膜,镀膜时间到后电源自动关闭。

8.设置流量计示数为0,关闭加热。

9.待流量计实际流量归0,关闭进气阀、限流阀,限流阀到0°。

10.镀膜结束,一键停真空。

11.待机械泵等均停机,关闭真空计、打开放气阀。

待放气完毕,打开腔室门取样品,打开真空计,关闭放气阀。

打开一键抽真空,待真空抽至10 多Pa 时点击一键停真空,待设备停机后再关闭总电源。

五、注意事项
1. 抽真空前检查:
1)样品是否放好。

相关文档
最新文档