广东省中山市2013-2014学年高一数学上学期期末统一考试试题
2013-2014中山市高一数学期末考卷

中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间100分钟。
注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.5、参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1.已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则 A .A B ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 2.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1=D .42+-=x y3.在同一坐标系中,函数y =x-2与y =log 2 x 的图象是( ).ABCD4.如左图是一个物体的三视图,则 此三视图所描述的物体是下列几何 体中的( )5.已知lg 2,lg3,a b ==则lg45的值用a ,b 表示为( ) A .21b a +-B .12b a +-C .3a b +D .2a b b ++6.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法逐次计算,得那么方程02223=--+x x x 的一个近似根(精确到0.1)为 A .1.2B .1.3C .1.4D .1.57.若213211()(),22a a +-<则实数a 的取值范围是A .(1,)+∞B .1(,)2+∞C .(,1)-∞D .1(,)2-∞8.已知直线b kx y +=经过一、二、三象限,则有( )A .k<0,b <0B .k<0,b>0C .k>0,b>0D .k>0,b<09.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③B .②④C .①④D .②③10.若()21231log log log 0a a a x x x ++==>,则123,,x x x 之间的大小关系为( ).A .3x <2x <1xB .2x <1x <3xC .1x <3x <2xD .2x <3x <1xABCD正视图 左视图俯视图第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.点(1,1) 到直线:3430l x y ++=的距离为 . 12.某同学利用TI-Nspire 图形计算器作图作出幂函数34()f x x =的图象如右图所示. 结合图象,可得到34()f x x =在区间[1,4]上的最大值为 . (结果用最简根式表示)13.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .14.过点P (3,0)的直线m ,夹在两条直线03:1=++y x l 与022:2=--y x l 之间的线段恰被点P 平分,那么直线m 的方程为三、解答题:(本大题共 6 小题,共 80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分) (I)求值:022*******log 9log 3log 3log --+;(Ⅱ)设函数f (x )是定义在R 上的偶函数,且)2()(-=x f x f ,当x ∈[0,1]时,1)(+=x x f ,求)23(f 的值.16.(本小题满分14分)(I)求两条平行直线01243=-+y x 与068=++y mx 之间的距离; (Ⅱ)求两条垂直直线022=++y x 与024=-+y nx 的交点坐标.17.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.18.(本小题满分13分)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月.(I)把月供电总费用y 表示成x 的函数,并求定义域; (Ⅱ)核电站建在距A 城多远,才能使供电费用最小.19.(本小题满分14分)已知函数2()21x f x a =-+,其中a 为常数. (I)当1a =时,讨论函数()f x 的奇偶性; (Ⅱ)讨论函数()f x 的单调性; (Ⅲ)当3a =时,求函数()f x 的值域.20.(本小题满分14分)已知函数121()log 1kxf x x -=-为奇函数.(I)求常数k 的值;(Ⅱ)若1a b >>,试比较()f a 与()f b 的大小;(Ⅲ)若函数1()()()2x g x f x m =-+,且()g x 在区间[]3,4上没有零点,求实数m 的取值范围.B 1 CB A DC 1A 1中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.B 2.A 3.A 4.D 5.B 6.C 7.B 8.C 9.C 10.D 二、填空题(本大题共4小题,每小题5分,共20分)11.2 12. 13.3- 14.248-=x y 三、解答题(本大题共5小题,共80分)15.解:(I)0; ………………………………………………………………(6分) (Ⅱ)23121)21()21()223()23(=+==-=-=f f f f . ……………………(12分)16.解: (I由平行知斜率相等,得6=m ; ……………………………………(3分)再由平行线的距离公式求得3=d ………………………………………………(7分) (Ⅱ)由垂直,得2-=n ;…………………………………………………………(10分) 交点为(-1,0) ………………………………………………………………(14分) 17.(I)证明:由题知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC=C , 所以BC ⊥平面AC C 1A 1,又DC 1⊂平面AC C 1A 1,所以DC 1⊥BC. ………………………………………………………(3分) 由题知∠A 1 DC 1=∠A DC=45o ,所以∠CDC 1=90 o ,即DC 1⊥DC , …………………(5分) 又DC∩BC=C ,所以DC 1⊥平面BDC ,又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC. ……………………………………………………………………………………(7分) (Ⅱ)解:设棱锥B —DACC 1的体积为V 1,AC=1,由题意得 V 1 =211122131=⨯⨯+⨯…………………………(10分) 又三棱柱ABC —A 1B 1C 1的体积为V=1,所以(V-V 1):V 1=1:1,故平面BDC 1分此棱柱为两部分体积的比为1:1. …………………………(13分)18.解. (I)y =5x 2+25(100—x )2=152x 2-500x +25000 (10≤x ≤90); …………(6分) (Ⅱ)由y =152x 2-500x +25000=15221003x ⎛⎫- ⎪⎝⎭+500003. ……………………(10分) 则当x =1003米时,y 最小. …………………………………………(12分) 故当核电站建在距A 城1003米时,才能使供电费用最小. …………………………(13分)19.解:(I)1a =时,2()121x f x =-+,函数的定义域为R . ……………………(1分) 22()()(1)(1)2121x x f x f x --+=-+-++ …………………………………………(2分) =2222(21)221x x x x---++ =2(21)221x x +-+=0 ……………………………………………………………(5分)∴ 1a =时,函数()f x 为奇函数. ………………………………………………(6分) (Ⅱ)设12x x <,则121222()()()()2121x x f x f x a a -=---++=12122(22)(21)(21)x x x x -++, …………(8分) 12x x < , 1212220,(21)(21)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <. ……………………………(10分) 所以不论a 为何实数()f x 总为增函数. ……………………………(11分)(Ⅲ)3a =时,211x +> ,20221x ∴<<+, 22021x ∴-<-<+,213321x∴<-<+. ∴ 3a =时,函数()f x 的值域为(1,3). ………………………………………(14分) 20. 解:(I)∵ 121()log 1kxf x x -=-为奇函数 ∴ ()()f x f x -=-, ………………………………………………………………(1分)即111222111log log log 111kx kx x x x kx +--=-=---- ………………………………………(2分) ∴1111kx x x kx+-=---,即22211k x x -=-,整理得21k =. ………………………(3分) ∴ 1k =- (1k =使()f x 无意义而舍去) …………………………………(4分) (Ⅱ)121()log 1xf x x +=-. 1112221111()()log log log 111a a ba f a fb a b b +++--=-=--- ……………………………………(5分)1122(1)(1)1log log (1)(1)1a b ab a b a b ab a b +--+-==-++-- ………………………………………(6分) 当1a b >>时,110ab a b ab a b +-->-+->, ……………………………………(7分) 所以1011ab a b ab a b -+-<<+--,从而11221log log 101ab a b ab a b -+->=+--, ………………………(8分) 即()()0f a f b ->.所以()()f a f b >. ………………………………………………(9分) (Ⅲ)由(2)知,()f x 在(1,)+∞递增, …………………………………………(10分) 所以1()()()2x g x f x m =-+在[]3,4递增. …………………………………(11分) ∵ ()g x 在区间[]3,4上没有零点, ∴ 3121119(3)log ()03128g m m +=-+=-+>- …………………………………(12分) 或4112214151(4)log ()log 0412316g m m +=-+=-+<-, ……………………(13分) ∴ 98m >或1215log 163m <-. ……………………………………………………(14分)。
广东深圳中学2023-2024学年高一上学期期末考试数学试题 答案解析

深圳中学2023-2024学年度第一学期期末考试试题评分标准年级:高一 科目:数学命题人:贺险峰 审题人:邱才颙、黎建蒙单项选择题:题号 1 2 3 4 5 6 7 8 答案 CB AB CC BA多项选择题:题号 9 10 11 12 答案 ABCACDBCAB二、填空题:13. 95 . 14. 12 . 15. 43 . 16.1[4,]2−一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”, “老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”, 所以最合理的是按年龄段分层随机抽样. 故选:C2.【详解】因为7πrad 3154=,终边落在第四象限,且与45−角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==−+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限. 故选:B.3.【详解】根据三角函数定义可知3cos 5α=, 又22sin cos 1αα+=,则225cos 31sin cos ααα−===. 故选:A4.【详解】因为21cos 212sin 3αα=−=,所以3sin 3α=±,因为()0,πα∈,所以3sin 3α=. 故选:B .5.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t −≤≤,所以11525()11525P t −≤≤+,即90()140P t ≤≤, 即此人的血压在血压计上的读数为140/90mmhg ,故①正确; 因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围, 即此人的血压不在健康范围内,故②错误,③正确; 对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ), 则此人的心跳为180T=次/分,故④正确; 故选:C6.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%−=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确. 故选:C .7.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象, 再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤−∈−⎢⎥⎣⎦,令π23x t −=,π2π,33t ⎡⎤∈−⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33−⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x −+−=,则125π6x x +=,所以()125π3tan tan 63x x +==−. 故选:B8.【详解】考虑三角函数的定义域,将选项代入验证可得最大“好整数”为1 故选:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确; 根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确. 故选:ABC.10.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=−−== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒−︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=−︒−︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502−︒−︒−︒===−︒−︒−︒,D 正确. 故选:ACD11.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值, 所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =, 所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+−⨯⨯=,解得2413m =, 所以D 错误. 故选:BC .12.【详解】因为ππ31sin ,cos ,3322⎛⎫⎛⎫−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,3cos 2α=−,所以5π2π,6k k α∈=+Z , 则()()cos sin 2sin cos 2sin 2f x x x x ααα=−=−5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=−−=− ⎪ ⎪⎝⎭⎝⎭Z ,A: 22111cos 22sin 222αα⎛⎫−==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=−== ⎪⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度, 所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+−=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫−= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈−=⇒=+Z Z , 仅0k =,1,即5π11π,1212x =符合题意, 即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分. 13.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =. 故答案为:9514.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<, 又02βπ<<,所以π3παβ<+<,且()533sin 142αβ+=<, 所以π2π3αβ<+<,则()()211cos 1sin 14αβαβ+=−−+=−,243sin 1cos 7αα=−=, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++⎡⎤⎣⎦111534311471472=−⨯+⨯=. 故答案为:12 15.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x −=−,即sin cos cos sin x x ϕωωϕ=−, 又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=; 又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=, 故答案为:43.16.【详解】cos cos sin sin cos cos 1y αβαβαβ=−+−−(cos 1)cos (sin )sin (cos 1)βαβαβ=+−−+22(cos 1)sin sin()(cos 1)ββαϕβ=+++−+22cos sin()(cos 1)βαϕβ=++−+由sin()[1,1]αϕ+∈−,得22cos (cos 1)22cos (cos 1)y ββββ−+−+≤≤+−+, 令1cos t β=+,则[0,2]t ∈,则2222t t y t t ≤≤−−−, 所以22212()422y t t t ≥−−=−++≥−,当且仅当2t =,即cos 1β=时取等号,且222112()222y t t t ≤−=−−+≤,当且仅当22t =,即1cos 2β=−时取等号, 所以y 的取值范围为1[4,]2−.故答案为:1[4,]2−四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17(本题满分10分)已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫−−− ⎪⎝⎭=⎛⎫−−− ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α−=,求()f α的值.【详解】(1)()f α=()sin cos sin cos sin sin αααααα⋅⋅−==−⋅ --------------5分(2)由诱导公式可知()1sin πsin 5αα−=−=,即1sin 5α=−--------7分又α是第三象限角,所以22126cos 1sin 155αα⎛⎫=−−=−−=− ⎪⎝⎭------------9分 所以()26cos 5f αα=−=.-----------------------10分18(本题满分12分)据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨? 【详解】(1)()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯=,1.300a ∴=--------------------2分 用水量在(]9,12的频率为0.06530.195⨯=,392000.195n ∴==(户)---------------4分 (2)()0.0150.0250.0500.0650.08530.720.8++++⨯=<,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72−∴+⨯=−(吨)-------------------------8分(3)设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>, 则()16.6316.6570w m =⨯+−⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.------------------------12分19(本题满分12分)已知函数()()223sin πcos 2cos f x x x x =−+.(1)若ππ,63x ⎡⎤∈−⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =−在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【详解】(1)由题意得()()223sin πcos 2cos f x x x x=−+π3sin2cos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,-----------------4分当ππ,63x ⎡⎤∈−⎢⎥⎣⎦,则ππ5π2[,]666x +∈−,则1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;---------------------6分(2)由题()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=−⎭=在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,--------7分当π,6x m ⎡⎤∈−⎢⎥⎣⎦时,πππ2[,2]666u x m =+∈−+,原问题转化为sin y u =在ππ[,2]66m −+有且仅有2个零点,-----------------9分故π5π11ππ22π,61212 m m ≤+<≤<解得,即5π11π,1212m ⎡⎫⎪⎢⎣⎭的取值范围是.-------------12分20(本题满分12分)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份. (参考数据:lg 20.3010,lg 30.4711≈≈).【详解】(1)函数()0,1x y ka k a =>>与()120,0y px k p k =+>>在()0,∞+上都是增函数, 随着x 的增加,函数()0,1xy ka k a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1xy ka k a =>>符合要求,------2分根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;---6分(2)当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,---------8分 由3233210323x⎛⎫⋅>⨯ ⎪⎝⎭,得3102x⎛⎫> ⎪⎝⎭,-------------9分 所以32lg1011log 10 5.93lg3lg 20.47110.3010lg 2x >==≈≈−−,----------------11分 又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.-----------12分21(本题满分12分)已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线2x π=−是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*R,N n λ∈∈,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【详解】(1)由三角函数的周期公式可得2π2πω==,()()sin 2f x x ϕ∴=+,--------2分 令()π2πZ 2x k k ϕ+=+∈,得()ππZ 422k x k ϕ=−+∈, 由于直线2x π=−为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ−=−+∈, 得()3ππZ 2k k ϕ=+∈,由于0πϕ<<,1k ∴=−,则2ϕπ=, 因此,()πsin 2cos 22f x x x ⎛⎫=+= ⎪⎝⎭;-------------------4分(2)将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin 242y x x x ⎡⎤⎛⎫⎛⎫=−=−= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,-----------------6分()()()2cos 2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=−++,令()0F x =,可得22sin sin 10x x λ−−=,令[]sin 1,1t x =∈−,得2210t t λ−−=,280λ∆=+>,则关于t 的二次方程2210t t λ−−=必有两不等实根1t 、2t ,则1212t t =−,则1t 、2t 异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()0,πN n n *∈均有偶数个根,从而方程22sin sin 10x x λ−−=在()()0,πN n n *∈也有偶数个根,不合乎题意;-----------8分(ii )当11t =−时,则2102t <<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解, 因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2024个根,不合乎题意,-------------------10分 (iii )当11t =,则2102t −<<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2023个根,合乎题意; 此时,2211110λλ⨯−⨯−=−=,得1λ=,综上所述:1λ=,1349n =.---------------------------12分22(本题满分12分)已知二次函数()f x 满足:()2132f x x x +=++.()24log 231xg x ⎛⎫=+ ⎪−⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明); (3)设()2cos cos 2h x x m x =+(,2ππ2x ⎡⎤∈−⎢⎥⎣⎦),若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值. 【详解】(1)由题意()2132f x x x +=++,令1t x =+,则1x t =−,有()22(1)3(1)2f t t t t t =−+−+=+,故()2f x x x =+ ------------2分(2)函数()24log 231x g x ⎛⎫=+ ⎪−⎝⎭,由420031x x +>⇒>−,即定义域为()0,+∞, 且4231xu =+−在()0,+∞上单调递减及2log y u =单调递增 所以()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减.---------------4分 且()g x 的值域是()1,+∞------------------6分(3)结合(2)结论知()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减且()12g =, 又()2f x x x =+在()0,+∞上单调递增且()12f =故当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<, 由()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,-----------------8分 即()22cos 2cos 11x m x +−≥在,22x ππ⎡⎤∈−⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈, 则不等式()22210mt t m +−+≥在[]0,1t ∈上恒成立,-----------9分 ①当0m =时,不等式化为210t −≥,显然不满足恒成立; ②当0m >时,将0t =代入得()10m −+≥,与0m >矛盾; ③当0m <时,只需()()10,1,12210,1,m m m m m m −+≥⎧≤−⎧⎪⇒⇒=−⎨⎨+−+≥≥−⎪⎩⎩,综上,实数m 的值为1−.---------------------12分。
2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。
2013-2014学年上学期期末高一数学试卷

2013-2014学年上学期期末高一数学试卷一、选择题(本大题共10小题,每小题5分,共50分.)1.角α的终边落在y=-x(x >0)上,则sin α的值等于( )A. ±21B. 22C.±22D. -22 2.下列四组函数中,表示同一函数的是( )A .01,y y x ==B .1,112-=+⨯-=x y x x yC .2)(|,|x y x y ==D .2()21f x x x =--,2()21g t t t =-- 3.若向量()()()1,1,2,5,3,a b c x === ,满足条件()830,a b c -⋅= 则x =( ) A. 3 B. 4 C.5 D.64.把函数y =2sin(3x -π4)的图象向左平移π4个单位,得到的函数图象的解析式是 ( ) A .y =-2sin 3x B .y =2sin 3x C .y =2cos 3x D .y =2sin(3x -π2) ()()()()()()225.,,0323294a b c a b c c a b a b a b b c a c a b c a b a b a b ⋅⋅-⋅=-<-⋅-⋅+⋅-=- 设是任意的非零向量,且相互不共线,则(1);(2); (3)不与垂直;(4)中正确的是( ) A.(1)(2) B.(2)(3) C. (3)(4) D.(2)(4)6.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是 ( )A.⎣⎡⎦⎤k π-π12,k π+5π12,k ∈ZB.⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z C.⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z 2117.3,cos sin 2tan 264465555θθθ=+=若则( ) A. - B. - C. D. 8.函数)2(log )(221+-=ax x x f 的值域是R ,求实数a 的取值范围( )A .),2()1,(+∞-∞ B.(- C .R D.(),⎡-∞-+∞⎣()()9.sin 22045243333y x x πϕϕϕππππ⎡⎤=+++⎢⎥⎣⎦使函数为奇函数,且,上是减函数的的一个值是( ) A. B. C. D. 10.在平面直角坐标系中,点A (5,0)对于某个正实数k ,存在函数()()20f x ax a =>,使得()OA OQ OP OA OQ λλ⎛⎫ ⎪=⋅+ ⎪⎝⎭为常数,这里P ,Q 的坐标分别是()()()()1,1,,P f Q k f k ,求k 取值范围( )A. ()2,+∞B. ()3,+∞C. [)4,+∞D. [)8,+∞二、 填空题(本大题共7小题,每小题4分,共28分.)11.(),120a b a b a b a a b ==-⋅= 已知向量,满足,,,则与的夹角是 .12. 已知函数()()73sin 2,517f x ax bx c x f =+++-=且, 则()5f = 13. 函数()()()sin ,0,0,f x A x k A ωϕϕπ=++>∈的图像如右图所示,则函数的解析式()f x=114.sin10。
中山市直属学校高一上学期期末单元测试题

高一数学单元形成性测试题(十二)(上学期综合3)一、选择题(共10小题,每小题4分,共40分)1.设A={(x ,y)| y=-4x+6},B={(x ,y)| y=5x -3},则A ∩B= ( )(A ){1,2}(B ){(1,2)}(C ){x=1,y=2}(D )(1,2)2.一人骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;下图中哪个图象与这件事正好吻合.(其中x 轴表示时间,y 轴表示路程) ( )3.下列函数中,既是奇函数,又在定义域内为减函数的是 ( )(A )xy ⎪⎭⎫ ⎝⎛=21 (B )2y x =-(C )y=-x 3 (D ))(log 3x y -=4.方程3log 3x x +=的解所在区间是 ( )(A )(0,1) (B ) (1,2) (C )(2,3) (D )(3,+∞) 5.倾斜角为30°,且经过点(0,1)的直线方程是 ( )(A )0x = (B )0x =(C 10y +-=(D 10y -+=6.若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是 ( ) (A )圆柱(B )三棱柱 (C )圆锥 (D )球体7.若方程220x y x y m ++++=表示圆,则实数m 的取值范围为 ( )(A )12m <(B )0m < (C )12m >(D )12m ≤8.已知a>0,且a ≠1,则下述结论一定正确的是 ( )(A )8.0log log 23<π(B )6log 7log a a >(C )27.0a a < (D )32aa>9.已知函数f(x) 满足 f( x+4 )=x 3+2,当()1f x =时,则x 的值为 ( )(A )21(B )-1 (C )31(D )3 10.在空间中,下列四个命题①两条直线都和同一平面平行,则这两条直线平行; ②两条直线没有公共点,则这直线平行;③两条直线都和第三条直线垂直,则这两条直线平行;④一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
广东省汕头市2013-2014学年高一下学期期末考试数学试题 Word版含答案

汕头市2013-2014学年高一下学期期末考试数学本卷共150分,考试时间120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号分别填写在答题卡上,用2B 铅笔将试卷类型(A)填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑。
2.单项选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答卷前必须先填好答题纸的密封线内各项内容。
答案必须写在答题纸上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡、答题纸的整洁,考试结束后,将答题卡、答题纸一并交回。
参考公式:1. 回归直线方程 y ^=b ^x +a ^,其中∑∑∑∑====--=---=ni ini ii ni ini i ix n xyx n yx x xy y x xb1221121)())((ˆ,x by a ˆ-= . 2.样本方差:])()()[(1222212x x x x x x ns n -++-+-= ,其中x -为样本平均数.一、选择题 :本大题共有10小题,每小题5分,共50分。
在每小题所列四个选项中,只有一项是符合题目要求.1. 已知全集{}3,1,0,1-=U ,{}0,1,3N =,则N C U =A .{}3B .{}0,1C . {}1-D . {}1,3- 2. 函数31xy =的定义域为 A . }{0≠x x B . }{0>x x C . }{0≥x x D . }{Rx x ∈3. 在△ABC 中,a 、b 分别为A B ∠∠、的对边,已知a =3,b =2,A =60°,则sin B =A . -223B . 223C . 33D . 634. 设⎪⎩⎪⎨⎧<>=)0(,)31()0(log )(31x x x x f x ,则))3((-f f等于A . 3B . 3-C .31D . 1- 5.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是第5题图A .45B . 50C . 55D . 60 6.下列函数中,在其定义域内既是奇函数又是减函数的是A. B. C. D.7. 函数xx x f 1log )(2-=的一个零点落在下列哪个区间A.(0,1)B.(1,2)C.(2,3)D.(3,4)8.已知4cos ,(,),52πααπ=-∈ 则=+)2cos(απA .54-B . 53C . 53- D . 549.若实数a 、b 满足1=+b a ,则的最小值是A .18B . 2C . 6D . 210. 函数|}2|,min{)(-=x x x f ,其中⎩⎨⎧>≤=ba b ba ab a ,,},min{,若动直线m y =与函数)(x f y =的图像有三个不同的交点,则实数m 的取值范围是A . ()1,0B . ()3,1C .[]1,0D . []3,1二、填空题:本大题共4小题,每小题5分,满分20分.11.在等比数列{}n a 中,若1323a a a =⋅,则4a = .12.执行如右程序框图,若p =0.8,则输出的n = .13.在2014年3月15日,某市物价部门对本市的5家商场的某sin()6y x π=-2x y =x y =3x y -=33a b+43312题图商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:是: y ^=-3.2 x +a ,则a = .14.如图平行四边形ABCD 中,E 是BC 的中点,F 是AE 的中点,若 a AB =, b AD =,则= AF .(用,b a 表示)三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)平面向量(1,2)a =,)2,4(-=b , c ma b =+(m R ∈). (1) 若⊥, 求m 的值;(2) 若c 与a 的夹角等于c 与b的夹角,求c的值.16. (本小题满分13分)已知函数()2,f x x x x R =∈.(1)求38f π⎛⎫⎪⎝⎭的值; (2) 求()f x 的最大值和最小正周期;(3)若28f απ⎛⎫-=⎪⎝⎭,α是第二象限的角,求sin 2α.17.(本小题满分13分)为了了解甲、乙两名同学的数学学习情况,对他们的数学测试成绩(满分100分)进行统计,作出如右的茎叶图,其中x 处的数字模糊不清.已知甲同学成绩的中位数是83,乙同学成绩的平均分是86分.(1)求x 的值及乙同学成绩的方差; (2)现从成绩在[90,100]之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.甲 乙6 378 7 x 2 1 8 3 3 1 2 39 0 1 6(第17题图)18. (本小题满分13分)甲、乙两校计划周末组织学生参加敬老活动,甲校每位同学往返车费是5元,每人可为3位老人服务,乙校每位同学往返车费是3元,每人可为5位老人服务.两校都有学生参加,甲校参加活动的学生比乙校至少多1人,且两校同学往返总车费不超过45元.如何安排甲、乙两校参加活动的人数,才能使受到服务的老人最多?受到服务的老人最多是多少?19. (本小题满分14分)设数列{n a }的前n 项和为n S ,且)(,32*N n n a S n n ∈-=. (1)证明数列{3+n a }为等比数列; (2)求{n S }的前n 项和n T .20.(本小题满分14分)已知奇函数()x f 的定义域为[]1,1-,当[)0,1-∈x 时,()xx f ⎪⎭⎫⎝⎛-=21.(1)求函数()x f 在[]1,0上的值域; (2) 若(]1,0∈x ,()()12412+-x f x f λ的最小值为2-,求实数λ的值.汕头市2013-2014学年高一下学期期末考试数学答案3. [解析] 由正弦定理得a sin A =b sin B 得sin B =b sin A a =33,选C .5. [解析] 由成绩的频率分布直方图可以得到低于60分的频率为0.3,而低于60分的人数为15人,所以该班的总人数为150.3=50人.9. [解析] 63233233==⨯≥++b a b a b a 10. [解析] 令,)(x x g =|2|)(-=x x h ,则)(x f 的图像是由)(x g 与)(x h 图像中位置较低的部分组成,若直线m y =与函数)(x f y =的图像有三个不同的交点,则A y m <<0.由,2x x -=解得,1=A x ,1=∴A y ()1,0∈∴m二、填空题:(每小题5分,共20分)11. 3 ; 12. 4; 13. 40; 14. 4121b a + 三、解答题(满分80分)15. 解: (1) )22,4(+-=+=m m b a m c且c a ⊥……… 1分0)22(24=++-∴m m ……… 4分 0=∴m ……………………… 6分(2) 因为c 与a 的夹角等于c 与b 的夹角, 即><>=<b c a c,cos ,cosb c b c a c a c ⋅⋅=⋅⋅∴, 即bb c a a c ⋅=⋅……… 8分由(1)知)22,4(+-=+=m m b a m c20)22(2)4(45)22(24++--=++-∴m m m m ……… 10分2=∴m ……… 11分)6,2()22,4(-=+-=+=∴m m b a m c………12分1026)2(22=+-=∴c……… 13分16.解:(1) 解法一:0222222)832cos(2)832sin(2)83(=⨯-⨯=⨯+⨯=πππf ……… 3分 解法二:)42sin(2)2cos 4sin 2sin 4(cos 2)2cos 222sin 22(2)(πππ+=+=+=x x x x x x f 0sin 2)4832sin(2)83(==+⨯=∴ππππf ……… 3分 (2))42sin(2)2cos 4sin 2sin 4(cos 2)2cos 222sin 22(2)(πππ+=+=+=x x x x x x f )(x f ∴的最大值为2,最小正周期为ππ==22T .……… 7分 (3) 由(2)知:)42sin(2)(π+=x x f,23sin 2)82(==-∴απαf 即,43sin =α……… 9分 又因为α是第二象限的角,413)43(1sin 1cos 22-=--=--=∴αα……… 11分 .839)413(432cos sin 22sin -=-⨯⨯==∴ααα……… 13分 17. 解:(1)甲同学成绩的中位数是83,8328082=++∴x4=∴x ; ……… 3分乙同学的平均分是86分,[]724871)8696()8691()8690()8681()8683()8683()8678(22222222=⨯-+-+-+-+-+-+-=∴s …6分(2)甲同学成绩在[90,100]之间的试卷有二份,分别记为1a ,2a ,乙同学成绩在[90,100]之间的试卷有三份,分别记为1b ,2b ,3b ,…… 7分 “从这五份试卷中随机抽取两份试卷”的所有可能结果为:()12,a a , ()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况,……………… 9分记“从成绩在[90,100]之间的试卷中随机抽取两份,恰抽到一份甲同学试卷”为事件M ,则事件M 包含的基本事件为:()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,共有6种情况……11分 则63()105P M ==. ……12分 答:从成绩[90,100]之间的试卷中随机抽取两份分析,恰抽到一份甲同学试卷的概率为35.…13分18. 解:设甲、乙两校参加活动的人数分别为x 、y ……1分,受到服务的老人的人数为y x z 53+=……2分,依题意,x 、y 应满足的约束条件为⎪⎩⎪⎨⎧∈≤+≥-* , 45351N y x y x y x ……5分做出可行域为图中阴影部分中的整点,画直线0 l :053=+y x ,在可行域内平移0 l 到 l :y x z 53+=,可知当 l 经过可行域的点M 时,目标函数y x z 53+=取最大值……6分解方程组⎩⎨⎧=+=-45351y x y x ……7分,得⎩⎨⎧==56y x ……8分,所以 )5 , 6(M 满足约束条件,……9分 因此,当6=x ,5=y 时,z 取最大值…10分435563max =⨯+⨯=z ……12分答:甲、乙两校参加活动的人数分别为6和5时,受到服务的老人最多,最多为43人.……13分19. 解: (1) 令1=n , 321-=a S n , 31=∴a ……1分由)1(3211+-=++n a S n n ……① n a S n n 32-=②……2分 ①-②得 32211--=++n n n a a a ,则321+=+n n a a ……4分23332331=+++=+++n n n n a a a a且631=+a ……6分{}3+∴n a 为首项是6,公比为2的等比数列.……7分(2) 由(1)知{}3+n a 为首项是6,公比为2的等比数列1263-⨯=+∴n n a , 即323-⨯=n n a ……9分 6323321--⨯=-=∴+n n a S n n n ……12分nn n n n nn S S S T n n n n n 21523)12(1262)1(321)21(236)321(3)222(32213221---⨯=-+---⨯=-++++-++⨯=++=∴+ ……14分20.解:(1) 设(]1,0∈x ,则[)0,1-∈-x 时,所以()x xx f 221-=⎪⎭⎫⎝⎛-=-- ……2分又因为()x f 为奇函数,所以有()()x f x f -=- ……3分 所以当(]1,0∈x 时,()()x x f x f 2=--=, ……4分 所以()(]2,1∈x f ,……5分 又()00=f所以,当[]1,0∈x 时函数()x f 的值域为(]}0{2,1⋃.……6分 (2)由(1)知当(]1,0∈x 时()x f (]2,1∈,所以()x f 21⎥⎦⎤⎝⎛∈1,21 ……7分 令()x f t 21=,则121≤<t , ……9分 ()=t g ()()12412+-x f x fλ12+-=t t λ41222λλ-+⎪⎭⎫⎝⎛-=t ……10分①当212≤λ,即1≤λ时,()⎪⎭⎫⎝⎛>21g t g ,无最小值, ……11分 ②当1221≤<λ,即21≤<λ时,()24122min -=-=⎪⎭⎫⎝⎛=λλg t g ,解得32±=λ舍去 ……12分 ③当12>λ,即2>λ时,()()21min -==g t g ,解得4=λ ……13分综上所述,4=λ ……14分。
2013-2014学年第一学期期末统考高一数学试题

2013-2014学年第一学期期末统考高一数学试题本卷分选择题和非选择题两部分,满分150分,考试时间120分钟注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上。
2. 选择题和非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效。
3.本次考试不允许使用计算器........。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
参考公式: 锥体的体积公式 V = 13Sh第I 卷(选择题)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.圆()()22-3++4=25C x y :的圆心坐标为( )A. (3,4)-B. (3,4)-C. (3,4)--D. (3,4) 2.无论k 为何值,直线1(2)y k x +=-总过一个定点,其中k R ∈,该定点坐标为( ).A.(1,2-)B.(1-,2)C. (2,1-)D.(2-,1-)3.已知集合{}1,0,1-=A ,则如下关系式正确的是( ).A.A ∈}0{B.0∈AC. 0AD. ∅∈A 4.已知直线b a ⊥,c b ⊥,则直线c a ,的关系是( ).A.平行B.相交C.异面D.以上都有可能5.20y -+=的倾斜角为( )A.150B.120C.60D.306. 下列命题正确的是 ( )A .三点确定一个平面B .经过一条直线和一个点确定一个平面C .四边形确定一个平面D .两条相交直线确定一个平面7.如果直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于A .-2B .13-C .23- D .1 8.函数x x x f 1log )(2-=的零点一定在下列哪个区间 ( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4) 9.面积为s 的正方形,绕其一边旋转一周,则所得旋转体的表面积为( )A. s πB. 2s πC. 3s πD. 4s π10. 已知偶函数)(x f 在区间),0[+∞上单调递增,则满足不等式)31()12(f x f <-的x 的取值范围是 ( )A .)32,31( B .)32,31[ C .)32,21( D .)32,21[第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,满分20分)11. 在平面直角坐标系xOy 中,点P (1,2)到直线5=0y -的距离为 .12. 直线2--1=0x y 与圆()22-1+=2x y 的位置关系为 13. 已知函数⎩⎨⎧≤>+=--,2,2,2,1)2(2x x x x f x 则)1(f = .14. 某工厂8年来某产品总产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是_______.三、解答题(写出必要的解答步骤,共6道大题,满分80分)15. (本小题满分12分)已知集合A=}21|{<<-x x ,集合B={|13}x x ≤<,求(1)A ∪B;(2)A ∩B ;(3)()R C B A .16.(本小题满分12分)已知某几何体的正视图、侧视图都是直角三角形,俯视图是矩形(尺寸如图所示).(1)在所给提示图中,作出该几何体的直观图;(2)求该几何体的体积V .17. (本小题满分14分)已知22()log (1)log (1)f x x x =++-.(1) 求函数()f x 的定义域;f x的奇偶性;(2) 判断函数()f的值.(3)求(218. (本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E为PC的中点.(1)证明:PA∥平面BDE;(2)证明:平面PAC⊥平面PDB.19. (本小题满分14分)已知圆22-+-=>及直线:30C x a y a:()(2)4(0)-+=.l x y2时.当直线被圆C截得的弦长为2(1)求a的值;(2)求过点)5,3(并与圆C相切的切线方程.20.(本小题满分14分)某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件),可=+的关系(图象如下图所示).近似看做一次函数y kx b=+的表达式;(1)根据图象,求一次函数y kx b(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①求S关于x的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价。
广东省中山市2021-2022学年高一上学期期末考试数学试题(解析版)

广东省中山市2021-2022学年高一上学期期末考试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x∈R,则“x2﹣3x<0”是“1<x<2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.下列结论正确的是()A.若a>b,则ac>bc B.若a>b,则C.若ac2>bc2,则a>b D.若a>b,则a2>b23.函数f(x)=e x+x﹣2的零点所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.已知定义在R上的偶函数f(x),在(﹣∞,0〗上为减函数,且f(3)=0,则不等式(x+3)f(x)<0的解集是()A.(﹣∞,﹣3)∪(3,+∞)B.(﹣∞,﹣3)∪(0,3)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(﹣3,3)5.若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.B.C.2D.36.已知函数的值域是()A.(﹣∞,2〗B.(0,2〗C.〖2,+∞)D.7.已知函数f(x)与g(x)的部分图象如图1,则图2可能是下列哪个函数的部分图象()A.y=f(g(x))B.y=f(x)g(x)C.y=g(f(x))D.y=8.设a=log23,b=log34,c=log58,则()A.b<a<c B.a<b<c C.c<b<a D.b<c<a二、选择题:本大题共4小题,每小题5分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.图中矩形表示集合U,A,B是U的两个子集,则阴影部分可以表示为()A.(∁U A)∩B B.∁B(A∩B)C.∁U(A∩(∁U B))D.∁A∪B A10.已知不等式ax2+bx+c≥0的解集是{x|﹣2≤x≤1},则()A.a<0B.a﹣b+c>0C.c>0D.a+b=011.已知函数的图象对称轴与对称中心的最小距离为,则下列结论正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点对称C.函数f(x)的图象关于直线对称D.函数f(x)在上单调递减12.若0<x1<x2<……<x n<1,则下列结论正确的有()A.log(log x2)<log(log x2)B.log(log x2)>log(log x2)C.log(log x2)+log(log x3)+…+log(log x n)+log(log x1)>0 D.log(log x2)+log(log x3)+…+log(log x n)+log(log x1)<0三、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知幂函数y=(m2﹣3m﹣3)x m在(0,+∞)上单调递减,则m=.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为π,则该勒洛三角形的面积为.15.写出一个值域为(﹣∞,1),在区间(﹣∞,+∞)上单调递增的函数f(x)=.16.若x>0,y>0,x+2y=1,则的最大值为.四、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)计算:.(2)已知tanα=2,求的值.18.(12分)对于等式a b=c(a>0,a),如果将a视为自变量x,b视为常数,c为关于a (即x)的函数,记为y,那么y=x b,是幂函数;如果将a视为常数,b视为自变量x,c 为关于b(即x)的函数,记为y,那么y=a x,是指数函数;如果将a视为常数,c视为自变量x,b为关于c(即x)的函数,记为y,那么y=log a x,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果c为常数e(e为自然对数的底数),将a视为自变量x(x>0,x≠1),则b为x的函数,记为y.(1)试将y表示成x的函数f(x);(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数f(x)的性质,不必证明.并尝试在所给坐标系中画出函数的图象.19.(12分)中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1,环境温度是θ0,则经过时间t(单位:分)后物体温度θ将满足:θ=θ0+(θ1﹣θ0)⋅e﹣kt,其中k为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(Ⅰ)请依照牛顿冷却模型写出冷却时间t(单位:分)关于冷却后水温θ(单位:℃)的函数关系,并选取一组数据求出相应的k值(精确到0.01).(Ⅱ)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(Ⅰ)的条件下,200ml水煮沸后在19℃室温下为获得最佳口感大约冷却分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.(A)5(B)7(C)10(参考数据:ln79=4.369,ln71=4.263,ln66=4.190,ln61=4.111,ln56=4.025)20.(12分)已知函数f(x)=cos2x﹣sin x+a.(1)f(x)=0有解时,求实数a的取值范围;(2)当x∈R时,总有,求实数a的取值范围.21.(12分)已知函数.(1)用函数单调性的定义证明:f(x)在(0,+∞)上单调递增;(2)若,则当x为何值时,g(x)取得最小值?并求出其最小值.22.(12分)如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数的定义域为{x|ax2+bx+a+1≥0,且x≥0}.(Ⅰ)若a=﹣2,b=3,求f(x)的定义域;(Ⅱ)当a=1时,若f(x)为“同域函数”,求实数b的值;(Ⅲ)若存在实数a<0且a≠﹣1,使得f(x)为“同域函数”,求实数b的取值范围.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C〖解析〗∵x2﹣3x<0,∴0<x<3,∵{x|1<x<2}⊊{x|0<x<3},∴x2﹣3x<0是1<x<2的必要不充分条件.故选:C.2.C〖解析〗对于A选项,若a>b,c=0时,ac=bc,故A选项错误,对于B选项,当a>0,b<0时,,故B选项错误,对于C选项,∵ac2>bc2,即(a﹣b)c2>0且c2>0,∴a﹣b>0,即a>b,故C选项正确,对于D选项,当a=1,b=﹣2时,a2<b2,故D选项错误.故选:C.3.A〖解析〗∵函数f(x)=e x+x﹣2,∴f(0)=1+0﹣2=﹣1<0,f(1)=e+1﹣2=e﹣1>0,故有f(0)f(1)<0,根据函数零点的判定定理可得函数f(x)=e x+x﹣2的零点所在区间是(0,1),故选:A.4.D〖解析〗定义在R上的偶函数f(x),在(﹣∞,0〗上为减函数,且f(3)=0,可得f(x)在〖0,+∞)上为增函数,且f(﹣3)=f(3)=0,所以f(x)<0的解集为(﹣3,3),f(x)>0的解集为(﹣∞,﹣3)∪(3,+∞),则(x+3)f(x)<0等价为或,即为或,解得﹣3<x<3或x<﹣3,即所求解集为(﹣3,3)∪(﹣∞,﹣3).故选:D.5.B〖解析〗由题意可知函数在x=时取得最大值,就是,k∈Z,所以ω=6k+;只有k=0时,ω=满足选项.故选:B.6.B〖解析〗函数,因为x2﹣2x=(x﹣1)2﹣1≥﹣1,又函数y=在R上为单调递减函数,所以,则函数的值域是(0,2〗.故选:B.7.B〖解析〗由图1知,函数f(x)为偶函数,函数g(x)为奇函数,图2中的函数为奇函数,选项A,令h(x)=f(g(x)),则h(﹣x)=f(g(﹣x))=f(﹣g(x))=f(g(x))=h(x),所以函数y=f(g(x))为偶函数,不符合题意;选项C,令F(x)=g(h(x)),则F(﹣x)=g(f(﹣x))=g(f(x))=F(x),所以函数y=g(f(x))为偶函数,不符合题意;选项D,g(x)作为分母,不能为0,与图1不符,故选:B.8.D〖解析〗∵b=log34==,c=log58==,∴b﹣c=﹣===<0,∴b<c,∵log55<log58,∴1,∵a=,∴a,∴b<c<a,故选:D.二、选择题:本大题共4小题,每小题5分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ABD〖解析〗由图知,阴影部分中的元素在集合B中但不在集合A中,所以阴影部分所表示的集合是B∩(∁U A),∁A∪B A,∁B(A∩B),故选:ABD.10.ABC〖解析〗∵不等式ax2+bx+c≥0的解集是{x|﹣2≤x≤1},∴﹣2,1是一元二次方程ax2+bx+c=0的两个实数根,且a<0,∴﹣2+1=﹣,﹣2×1=,∴a=b,c=﹣2a>0,∴a﹣b+c=﹣2a>0,a+b=2a<0,因此ABC正确,D不正确.故选:ABC.11.BC〖解析〗由题意知,函数f(x)的最小正周期T=4×=π,即选项A错误;∴=π,即ω=2,∴f(x)=3sin(2x+),∵f(﹣)=3sin〖2•(﹣)+〗=3sin0=0,∴选项B正确;∵f()=3sin(2•+)=3sin=﹣3,∴选项C正确;令2x+∈〖2kπ﹣,2kπ+〗,则x∈〖kπ﹣,kπ+〗,k∈Z,∴函数f(x)的单调递增区间为〖kπ﹣,kπ+〗,k∈Z,当k=0时,递增区间为〖﹣,〗,即选项D错误.故选:BC.12.AD〖解析〗先证明:对任意0<a<b<1,0<c<d<1有log c(log a b)<log d(log a b),证明如下:因为0<a<b<1,所以f(x)=log a x单调递减(此时是定值),故f(a)>f(b)>f(1),即0<log a b<1,记t=log a b,则0<t<1,g(x)=log t x单调递减,故g(c)>g(d)>g(1),即0<log t d<log t c,故0<log c t<log d t,代入t=log a b,即log c(log a b)<log d(log a b),取a=c=x1,b=d=x2时,可得选项A正确,B错误;应用上述证明可得++⋯⋯+<++⋯⋯+=•⋯⋯〗=log1=0,故选项D正确,选项C错误.故选:AD.三、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.-1〖解析〗∵幂函数y=(m2﹣3m﹣3)x m在(0,+∞)上单调递减,∴m2﹣3m﹣3=1,且m<0,求得m=﹣1,故答案为:﹣1.14.〖解析〗设等边三角形ABC的边长为a,则,解得a=3,所以弧AB与AC,BC围成的扇形的面积为×πa2=,所以该勒洛三角形的面积.故答案为:.15.1﹣〖解析〗f(x)=1﹣,理由如下:∵y=为R上的减函数,且>0,∴f(x)=1﹣为R上的增函数,且f(x)=1﹣<1,∴f(x)=1﹣∈(﹣∞,1),故答案为:1﹣.16.〖解析〗因为xy≠0,所以=,又x>0,y>0,x+2y=1,所以,当且仅当,即时取等号,故的最大值为.故答案为:.四、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)=×+﹣1=1+3﹣1=3.(2)∵tanα=2,∴===2.18.解:(1)若x y=e,则f(x)=ln x,(2)函数定义域(0,+∞),值域R,在(0,+∞)上单调递增,非奇非偶函数,函数图象如图所示,19.解:(Ⅰ)由,得,即,.在环境温度为θ0=19℃,选取从θ1=98℃下降到θ=90℃所用时间约为2分钟这组数据,有,即;选取从θ1=98℃下降到θ=85℃所用时间约为3.4分钟这组数据,有,即;选取从θ1=98℃下降到θ=80℃所用时间约为5分钟这组数据,有,即.故k≈0.05;(Ⅱ)200ml水煮沸后在19℃室温下大约冷却7分钟左右冲泡口感最佳,故选择B.理由如下:由(Ⅰ)得,当θ=75℃时,有t=20×(ln79﹣ln56)≈6.88.所以200ml水煮沸后在19℃室温下大约冷却7分钟冲泡“碧螺春”口感最佳.故选:B.20.解:(1)由已知得,f(x)=cos2x﹣sin x+a=0所以a=sin x﹣cos2x=sin2x+sin x﹣1=(sin x+)2﹣∈〖﹣,1〗;(2)由已知得恒成立,则,另a≤sin x﹣cos2x+=sin2x+sin x+=〖(sin x+)2+3〗min=3,所以实数a的取值范围为〖2,3〗.21.(1)证明:在区间(0,+∞)上任取x1,x2,且x1<x2,则f(x1)﹣f(x2)=(2x1﹣)﹣(2x2﹣)=2(x1﹣x2)﹣(﹣)=2(x1﹣x2)+=(x1﹣x2)(2+),因为0<x1<x2,所以x1﹣x2<0,x1x2>0,所以f(x1)﹣f(x2)<0,所以f(x)在(0,+∞)上单调递增;(2)解:因为=﹣2(log2x+),由f(x)的定义域为(0,+∞)得:﹣log2x>0,即0<x<1,令log2x=t,0<x<1,则t<0,当t<0时,y=2〖(﹣t)+〗≥4=4,当且仅当﹣t=,即t=﹣1时,等号成立,即log2x=﹣1,即x=时,函数取得最小值4.22.解:(Ⅰ)当a=﹣2,b=3时,由题意知:﹣2x2+3x﹣1≥0,解得:.∴f(x)的定义域为;(Ⅱ)当a=1时,,(1)当,即b≥0时,f(x)的定义域为〖0,+∞),值域为,∴b≥0时,f(x)不是“同域函数”.(2)当,即b<0时,当且仅当Δ=b2﹣8=0时,f(x)为“同域函数”.∴.综上所述,b的值为.(Ⅲ)设f(x)的定义域为A,值域为B.(1)当a<﹣1时,a+1<0,此时,0∉A,0∈B,从而A≠B,∴f(x)不是“同域函数”.(2)当﹣1<a<0,即a+1>0,设,则f(x)的定义域A=〖0,x0〗.①当,即b≤0时,f(x)的值域.若f(x)为“同域函数”,则,从而,,又∵﹣1<a<0,∴b的取值范围为(﹣1,0).②当,即b>0时,f(x)的值域.若f(x)为“同域函数”,则,从而,(*)此时,由,b>0可知(*)不成立.综上所述,b的取值范围为(﹣1,0).广东省中山市2021-2022学年高一上学期期末考试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x∈R,则“x2﹣3x<0”是“1<x<2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.下列结论正确的是()A.若a>b,则ac>bc B.若a>b,则C.若ac2>bc2,则a>b D.若a>b,则a2>b23.函数f(x)=e x+x﹣2的零点所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.已知定义在R上的偶函数f(x),在(﹣∞,0〗上为减函数,且f(3)=0,则不等式(x+3)f(x)<0的解集是()A.(﹣∞,﹣3)∪(3,+∞)B.(﹣∞,﹣3)∪(0,3)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(﹣3,3)5.若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A.B.C.2D.36.已知函数的值域是()A.(﹣∞,2〗B.(0,2〗C.〖2,+∞)D.7.已知函数f(x)与g(x)的部分图象如图1,则图2可能是下列哪个函数的部分图象()A.y=f(g(x))B.y=f(x)g(x)C.y=g(f(x))D.y=8.设a=log23,b=log34,c=log58,则()A.b<a<c B.a<b<c C.c<b<a D.b<c<a二、选择题:本大题共4小题,每小题5分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.图中矩形表示集合U,A,B是U的两个子集,则阴影部分可以表示为()A.(∁U A)∩B B.∁B(A∩B)C.∁U(A∩(∁U B))D.∁A∪B A10.已知不等式ax2+bx+c≥0的解集是{x|﹣2≤x≤1},则()A.a<0B.a﹣b+c>0C.c>0D.a+b=011.已知函数的图象对称轴与对称中心的最小距离为,则下列结论正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点对称C.函数f(x)的图象关于直线对称D.函数f(x)在上单调递减12.若0<x1<x2<……<x n<1,则下列结论正确的有()A.log(log x2)<log(log x2)B.log(log x2)>log(log x2)C.log(log x2)+log(log x3)+…+log(log x n)+log(log x1)>0 D.log(log x2)+log(log x3)+…+log(log x n)+log(log x1)<0三、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知幂函数y=(m2﹣3m﹣3)x m在(0,+∞)上单调递减,则m=.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为π,则该勒洛三角形的面积为.15.写出一个值域为(﹣∞,1),在区间(﹣∞,+∞)上单调递增的函数f(x)=.16.若x>0,y>0,x+2y=1,则的最大值为.四、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)计算:.(2)已知tanα=2,求的值.18.(12分)对于等式a b=c(a>0,a),如果将a视为自变量x,b视为常数,c为关于a (即x)的函数,记为y,那么y=x b,是幂函数;如果将a视为常数,b视为自变量x,c 为关于b(即x)的函数,记为y,那么y=a x,是指数函数;如果将a视为常数,c视为自变量x,b为关于c(即x)的函数,记为y,那么y=log a x,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果c为常数e(e为自然对数的底数),将a视为自变量x(x>0,x≠1),则b为x的函数,记为y.(1)试将y表示成x的函数f(x);(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数f(x)的性质,不必证明.并尝试在所给坐标系中画出函数的图象.19.(12分)中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1,环境温度是θ0,则经过时间t(单位:分)后物体温度θ将满足:θ=θ0+(θ1﹣θ0)⋅e﹣kt,其中k为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(Ⅰ)请依照牛顿冷却模型写出冷却时间t(单位:分)关于冷却后水温θ(单位:℃)的函数关系,并选取一组数据求出相应的k值(精确到0.01).(Ⅱ)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(Ⅰ)的条件下,200ml水煮沸后在19℃室温下为获得最佳口感大约冷却分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.(A)5(B)7(C)10(参考数据:ln79=4.369,ln71=4.263,ln66=4.190,ln61=4.111,ln56=4.025)20.(12分)已知函数f(x)=cos2x﹣sin x+a.(1)f(x)=0有解时,求实数a的取值范围;(2)当x∈R时,总有,求实数a的取值范围.21.(12分)已知函数.(1)用函数单调性的定义证明:f(x)在(0,+∞)上单调递增;(2)若,则当x为何值时,g(x)取得最小值?并求出其最小值.22.(12分)如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数的定义域为{x|ax2+bx+a+1≥0,且x≥0}.(Ⅰ)若a=﹣2,b=3,求f(x)的定义域;(Ⅱ)当a=1时,若f(x)为“同域函数”,求实数b的值;(Ⅲ)若存在实数a<0且a≠﹣1,使得f(x)为“同域函数”,求实数b的取值范围.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C〖解析〗∵x2﹣3x<0,∴0<x<3,∵{x|1<x<2}⊊{x|0<x<3},∴x2﹣3x<0是1<x<2的必要不充分条件.故选:C.2.C〖解析〗对于A选项,若a>b,c=0时,ac=bc,故A选项错误,对于B选项,当a>0,b<0时,,故B选项错误,对于C选项,∵ac2>bc2,即(a﹣b)c2>0且c2>0,∴a﹣b>0,即a>b,故C选项正确,对于D选项,当a=1,b=﹣2时,a2<b2,故D选项错误.故选:C.3.A〖解析〗∵函数f(x)=e x+x﹣2,∴f(0)=1+0﹣2=﹣1<0,f(1)=e+1﹣2=e﹣1>0,故有f(0)f(1)<0,根据函数零点的判定定理可得函数f(x)=e x+x﹣2的零点所在区间是(0,1),故选:A.4.D〖解析〗定义在R上的偶函数f(x),在(﹣∞,0〗上为减函数,且f(3)=0,可得f(x)在〖0,+∞)上为增函数,且f(﹣3)=f(3)=0,所以f(x)<0的解集为(﹣3,3),f(x)>0的解集为(﹣∞,﹣3)∪(3,+∞),则(x+3)f(x)<0等价为或,即为或,解得﹣3<x<3或x<﹣3,即所求解集为(﹣3,3)∪(﹣∞,﹣3).故选:D.5.B〖解析〗由题意可知函数在x=时取得最大值,就是,k∈Z,所以ω=6k+;只有k=0时,ω=满足选项.故选:B.6.B〖解析〗函数,因为x2﹣2x=(x﹣1)2﹣1≥﹣1,又函数y=在R上为单调递减函数,所以,则函数的值域是(0,2〗.故选:B.7.B〖解析〗由图1知,函数f(x)为偶函数,函数g(x)为奇函数,图2中的函数为奇函数,选项A,令h(x)=f(g(x)),则h(﹣x)=f(g(﹣x))=f(﹣g(x))=f(g(x))=h(x),所以函数y=f(g(x))为偶函数,不符合题意;选项C,令F(x)=g(h(x)),则F(﹣x)=g(f(﹣x))=g(f(x))=F(x),所以函数y=g(f(x))为偶函数,不符合题意;选项D,g(x)作为分母,不能为0,与图1不符,故选:B.8.D〖解析〗∵b=log34==,c=log58==,∴b﹣c=﹣===<0,∴b<c,∵log55<log58,∴1,∵a=,∴a,∴b<c<a,故选:D.二、选择题:本大题共4小题,每小题5分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ABD〖解析〗由图知,阴影部分中的元素在集合B中但不在集合A中,所以阴影部分所表示的集合是B∩(∁U A),∁A∪B A,∁B(A∩B),故选:ABD.10.ABC〖解析〗∵不等式ax2+bx+c≥0的解集是{x|﹣2≤x≤1},∴﹣2,1是一元二次方程ax2+bx+c=0的两个实数根,且a<0,∴﹣2+1=﹣,﹣2×1=,∴a=b,c=﹣2a>0,∴a﹣b+c=﹣2a>0,a+b=2a<0,因此ABC正确,D不正确.故选:ABC.11.BC〖解析〗由题意知,函数f(x)的最小正周期T=4×=π,即选项A错误;∴=π,即ω=2,∴f(x)=3sin(2x+),∵f(﹣)=3sin〖2•(﹣)+〗=3sin0=0,∴选项B正确;∵f()=3sin(2•+)=3sin=﹣3,∴选项C正确;令2x+∈〖2kπ﹣,2kπ+〗,则x∈〖kπ﹣,kπ+〗,k∈Z,∴函数f(x)的单调递增区间为〖kπ﹣,kπ+〗,k∈Z,当k=0时,递增区间为〖﹣,〗,即选项D错误.故选:BC.12.AD〖解析〗先证明:对任意0<a<b<1,0<c<d<1有log c(log a b)<log d(log a b),证明如下:因为0<a<b<1,所以f(x)=log a x单调递减(此时是定值),故f(a)>f(b)>f(1),即0<log a b<1,记t=log a b,则0<t<1,g(x)=log t x单调递减,故g(c)>g(d)>g(1),即0<log t d<log t c,故0<log c t<log d t,代入t=log a b,即log c(log a b)<log d(log a b),取a=c=x1,b=d=x2时,可得选项A正确,B错误;应用上述证明可得++⋯⋯+<++⋯⋯+=•⋯⋯〗=log1=0,故选项D正确,选项C错误.故选:AD.三、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.-1〖解析〗∵幂函数y=(m2﹣3m﹣3)x m在(0,+∞)上单调递减,∴m2﹣3m﹣3=1,且m<0,求得m=﹣1,故答案为:﹣1.14.〖解析〗设等边三角形ABC的边长为a,则,解得a=3,所以弧AB与AC,BC围成的扇形的面积为×πa2=,所以该勒洛三角形的面积.故答案为:.15.1﹣〖解析〗f(x)=1﹣,理由如下:∵y=为R上的减函数,且>0,∴f(x)=1﹣为R上的增函数,且f(x)=1﹣<1,∴f(x)=1﹣∈(﹣∞,1),故答案为:1﹣.16.〖解析〗因为xy≠0,所以=,又x>0,y>0,x+2y=1,所以,当且仅当,即时取等号,故的最大值为.故答案为:.四、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)=×+﹣1=1+3﹣1=3.(2)∵tanα=2,∴===2.18.解:(1)若x y=e,则f(x)=ln x,(2)函数定义域(0,+∞),值域R,在(0,+∞)上单调递增,非奇非偶函数,函数图象如图所示,19.解:(Ⅰ)由,得,即,.在环境温度为θ0=19℃,选取从θ1=98℃下降到θ=90℃所用时间约为2分钟这组数据,有,即;选取从θ1=98℃下降到θ=85℃所用时间约为3.4分钟这组数据,有,即;选取从θ1=98℃下降到θ=80℃所用时间约为5分钟这组数据,有,即.故k≈0.05;(Ⅱ)200ml水煮沸后在19℃室温下大约冷却7分钟左右冲泡口感最佳,故选择B.理由如下:由(Ⅰ)得,当θ=75℃时,有t=20×(ln79﹣ln56)≈6.88.所以200ml水煮沸后在19℃室温下大约冷却7分钟冲泡“碧螺春”口感最佳.故选:B.20.解:(1)由已知得,f(x)=cos2x﹣sin x+a=0所以a=sin x﹣cos2x=sin2x+sin x﹣1=(sin x+)2﹣∈〖﹣,1〗;(2)由已知得恒成立,则,另a≤sin x﹣cos2x+=sin2x+sin x+=〖(sin x+)2+3〗min=3,所以实数a的取值范围为〖2,3〗.21.(1)证明:在区间(0,+∞)上任取x1,x2,且x1<x2,则f(x1)﹣f(x2)=(2x1﹣)﹣(2x2﹣)=2(x1﹣x2)﹣(﹣)=2(x1﹣x2)+=(x1﹣x2)(2+),因为0<x1<x2,所以x1﹣x2<0,x1x2>0,所以f(x1)﹣f(x2)<0,所以f(x)在(0,+∞)上单调递增;(2)解:因为=﹣2(log2x+),由f(x)的定义域为(0,+∞)得:﹣log2x>0,即0<x<1,令log2x=t,0<x<1,则t<0,当t<0时,y=2〖(﹣t)+〗≥4=4,当且仅当﹣t=,即t=﹣1时,等号成立,即log2x=﹣1,即x=时,函数取得最小值4.22.解:(Ⅰ)当a=﹣2,b=3时,由题意知:﹣2x2+3x﹣1≥0,解得:.∴f(x)的定义域为;(Ⅱ)当a=1时,,(1)当,即b≥0时,f(x)的定义域为〖0,+∞),值域为,∴b≥0时,f(x)不是“同域函数”.(2)当,即b<0时,当且仅当Δ=b2﹣8=0时,f(x)为“同域函数”.∴.综上所述,b的值为.(Ⅲ)设f(x)的定义域为A,值域为B.(1)当a<﹣1时,a+1<0,此时,0∉A,0∈B,从而A≠B,∴f(x)不是“同域函数”.(2)当﹣1<a<0,即a+1>0,设,则f(x)的定义域A=〖0,x0〗.①当,即b≤0时,f(x)的值域.若f(x)为“同域函数”,则,从而,,又∵﹣1<a<0,∴b的取值范围为(﹣1,0).②当,即b>0时,f(x)的值域.若f(x)为“同域函数”,则,从而,(*)此时,由,b>0可知(*)不成立.综上所述,b的取值范围为(﹣1,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间100分钟。
注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.5、参考公式:球的体积公式34,3V R π=球,其中R 是球半径. 锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V台体1()3h S S '=+,其中,S S '分别是台体上、下底面的面积,h 是台体的高.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1.已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 2.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1=D .42+-=x y3.在同一坐标系中,函数y =x-2与y =log 2 x 的图象是( ).ABCD4.如左图是一个物体的三视图,则此三视图所描述的物体是下列几何体中的( )正视图左视图俯视图5.已知lg 2,lg3,a b ==则lg 45的值用a ,b 表示为 ( ) A .21b a +-B .12b a +-C .3a b +D .2a b b ++6.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法逐次计算,得到如下参考数据: 那么方程02223=--+x x x 的一个近似根(精确到0.1)为A .1.2B .1.3C .1.4D .1.57.若213211()(),22a a +-<则实数a 的取值范围是 A .(1,)+∞B .1(,)2+∞C .(,1)-∞D .1(,)2-∞8.已知直线b kx y +=经过一、二、三象限,则有( )A .k<0,b <0B .k<0,b>0C .k>0,b>0D .k>0,b<09.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③B .②④C .①④D .②③10.若()21231log log log 0a a a x x x ++==>,则123,,x x x 之间的大小关系为( ).A .3x <2x <1xB .2x <1x <3xC .1x <3x <2xD .2x <3x <1x第Ⅱ卷(非选择题 共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.点(1,1) 到直线:3430l x y ++=的距离为 . 12.某同学利用TI-Nspire 图形计算器作图作出幂函数34()f x x =的图象如右图所示. 结合图象,可得到34()f x x =在区间[1,4]上的最大值为 .ABCD(结果用最简根式表示)13.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .14.过点P (3,0)的直线m ,夹在两条直线03:1=++y x l 与022:2=--y x l 之间的线段恰被点P 平分,那么直线m 的方程为三、解答题:(本大题共 6 小题,共 80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分) (I)求值:222220133log 9log 3log 3log --+; (Ⅱ)设函数f (x )是定义在R 上的偶函数,且)2()(-=x f x f ,当x∈[0,1]时,1)(+=x x f ,求)23(f 的值.16.(本小题满分14分)(I)求两条平行直线01243=-+y x 与068=++y mx 之间的距离; (Ⅱ)求两条垂直直线022=++y x 与024=-+y nx 的交点坐标.17.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.18.(本小题满分13分)A 、B 两城相距100km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0=λ.若A 城供电量为20亿度/月,B 城为10亿度/月.(I)把月供电总费用y 表示成x 的函数,并求定义域;B 1 CB A DC 1A 1(Ⅱ)核电站建在距A 城多远,才能使供电费用最小.19.(本小题满分14分)已知函数2()21xf x a =-+,其中a 为常数. (I)当1a =时,讨论函数()f x 的奇偶性; (Ⅱ)讨论函数()f x 的单调性; (Ⅲ)当3a =时,求函数()f x 的值域.20.(本小题满分14分)已知函数121()log 1kxf x x -=-为奇函数. (I)求常数k 的值;(Ⅱ)若1a b >>,试比较()f a 与()f b 的大小;(Ⅲ)若函数1()()()2xg x f x m =-+,且()g x 在区间[]3,4上没有零点,求实数m 的取值范围.中山市高一级2013—2014学年度第一学期期末统一考试数学科试卷参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.B 2.A 3.A 4.D 5.B 6.C 7.B 8.C 9.C 10.D 二、填空题(本大题共4小题,每小题5分,共20分)11.2 12..3- 14.248-=x y 三、解答题(本大题共5小题,共80分)15.解:(I)0; ………………………………………………………………(6分) (Ⅱ)23121)21()21()223()23(=+==-=-=f f f f . ……………………(12分) 16.解: (I由平行知斜率相等,得6=m ; ……………………………………(3分)再由平行线的距离公式求得3=d ………………………………………………(7分) (Ⅱ)由垂直,得2-=n ;…………………………………………………………(10分) 交点为(-1,0) ………………………………………………………………(14分) 17.(I)证明:由题知BC⊥CC 1,BC⊥AC,CC 1∩AC=C,所以BC⊥平面AC C 1A 1,又DC 1⊂平面AC C 1A 1,所以DC 1⊥BC. ………………………………………………………(3分) 由题知∠A 1 DC 1=∠A DC=45o,所以∠CDC 1=90 o,即DC 1⊥DC, …………………(5分) 又DC∩BC=C ,所以DC 1⊥平面BDC ,又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC. ……………………………………………………………………………………(7分) (Ⅱ)解:设棱锥B —DACC 1的体积为V 1,AC=1,由题意得 V 1 =211122131=⨯⨯+⨯…………………………(10分)又三棱柱ABC —A 1B 1C 1的体积为V=1,所以(V-V 1):V 1=1:1,故平面BDC 1分此棱柱为两部分体积的比为1:1. …………………………(13分) 18.解. (I)y =5x 2+25(100—x )2=152x 2-500x +25000 (10≤x ≤90); …………(6分)(Ⅱ)由y =152x 2-500x +25000=15221003x ⎛⎫- ⎪⎝⎭+500003. ……………………(10分) 则当x =1003米时,y 最小. …………………………………………(12分)故当核电站建在距A 城1003米时,才能使供电费用最小. …………………………(13分) 19.解:(I)1a =时,2()121x f x =-+,函数的定义域为R . ……………………(1分)22()()(1)(1)2121x x f x f x --+=-+-++ …………………………………………(2分)=2222(21)221x x x x---++ =2(21)221x x +-+=0 ……………………………………………………………(5分)∴ 1a =时,函数()f x 为奇函数. ………………………………………………(6分) (Ⅱ)设12x x <,则121222()()()()2121x x f x f x a a -=---++=12122(22)(21)(21)x x x x -++, …………(8分) 12x x <, 1212220,(21)(21)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <. ……………………………(10分)所以不论a 为何实数()f x 总为增函数. ……………………………(11分)(Ⅲ)3a =时,211x +>,20221x ∴<<+, 22021x ∴-<-<+,213321x ∴<-<+.∴ 3a =时,函数()f x 的值域为(1,3). ………………………………………(14分) 20. 解:(I)∵ 121()log 1kxf x x -=-为奇函数∴ ()()f x f x -=-, ………………………………………………………………(1分) 即111222111log log log 111kx kx x x x kx +--=-=---- ………………………………………(2分) ∴1111kx x x kx+-=---,即22211k x x -=-,整理得21k =. ………………………(3分) ∴ 1k =- (1k =使()f x 无意义而舍去) …………………………………(4分) (Ⅱ)121()log 1xf x x +=-.1112221111()()log log log 1111aa ba f a fb b a b b +++--=-=+--- ……………………………………(5分)1122(1)(1)1log log (1)(1)1a b ab a b a b ab a b +--+-==-++-- ………………………………………(6分)当1a b >>时,110ab a b ab a b +-->-+->, ……………………………………(7分) 所以1011ab a b ab a b -+-<<+--,从而11221log log 101ab a b ab a b -+->=+--, ………………………(8分) 即()()0f a f b ->.所以()()f a f b >. ………………………………………………(9分) (Ⅲ)由(2)知,()f x 在(1,)+∞递增, …………………………………………(10分)所以1()()()2xg x f x m =-+在[]3,4递增. …………………………………(11分)∵ ()g x 在区间[]3,4上没有零点, ∴ 3121119(3)log ()03128g m m +=-+=-+>- …………………………………(12分) 或4112214151(4)log ()log 0412316g m m +=-+=-+<-, ……………………(13分) ∴ 98m >或1215log 163m <-. ……………………………………………………(14分)。