第6章 一次方程(组)和一次不等式练习题 解析版
沪教版 六年级数学下册 第六章 一元一次方程组及不等式组单元题有测试卷

沪教版六年级下册数学第五章一元一次方程组及不等式组提优测试卷第Ⅰ卷(选择题共18分)一、选择题(每题3分,共18分)在下列方程中,是二元一次方程的是()A. x²+x=2B. xy=﹣1C. 3x=1D. x-3=y2.如果a<b,那么下列不等式正确的是()A.1-a>1-b B. 2a >2b C. a+2>b-2 D a ²>b²3.下列方程中,解是-2的是()A. 3x-1=2+xB. 2-y=0C. x+3=﹣1D. =﹣14.下列方程变形正确的是()A.由8-x=11,得x=11-8 B.由﹣2x=3x-5,得﹣5x=﹣5C.由x=1,得x=D.由5x+1=3x,得5x-3x=15.长方形的周长为14厘米,长比宽的3倍少1厘米,设宽为x cm,依题意列方程,下列正确的是()A. x+(3x+1)=14B. x+(-)=14C.2x+2(3x-1)=14 D.2x+2(3x+1)=146.已知方程4x-3y=7,用含x的式子表示y正确的是()A. x=+B. x=4(7+3y)C. y=-D.y=-第Ⅱ卷(非选择题共82分)ニ、填空题(每题3分,共36分)7.列不等式:x的倒数减去1的差不小于它的2倍。
8.方程﹣2x-1=0的解是。
9.不等式﹣<1的解集是10.不等式组>﹣>的解集是1.﹣<x≤1的正整数解有个。
12.方程组+=--=的解是。
13.如果=-=是方程ax+y=-1的一个解那么a=14.二元一次方程x+3y=8的正整数解是15.如果方程5--++=0是二元一次方程,那么m+n =16.一双皮鞋售价x元,现降价四成出售,现在售价为元(列代数式)17.写出一个解集为ー1<x<2的不等式组:。
18.当x=时,代数式“-与-互为相反数。
三、解答题(第19~22题,每题6分,第23~24题每题7分,第25题8分,共46分)19.解方程:2--=20.解不等式:2(1-x)<﹣(2x+1)-x,并将解集在数轴上表示出来。
2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理

1.(2015·高考陕西卷)某企业生产甲、乙两种产品均需用A,
B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4
万元,则该企业每天可获得最大利润为( )
A.12万元
A(吨) B(吨)
甲 乙 原料限额
32
12
12
8
B.16万元
C.17万元
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第3课时 二元一次不等式(组)与简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
1.(2015·高考湖南卷)若变量x,y满足约束条件
x2+x-y≥y≤-11,, 则z=3x-y的最小值为(
)
y≤1.
A.-7 C.1
B.-1 D.2
解析:画出可行域,如图中阴影部分所示.目标函数z=3x-
y可化为y=3x-z,其斜率为3,纵截距为-z,平移直线y=3x知
当直线y=3x-z经过点A时,其纵截距最大,z取得最小值.由
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有的点组成的平面区域 (半平面) 不含 边界直线,不等式Ax+By+C≥0所表示的平 面区域(半平面)含有边界直线.
(2)对于直线Ax+By+C=0同一侧的所有的点(x,y),使得Ax
解析 当m≥0时,若平面区域存在,则平面区域内的点在第 二象限,平面区域内不可能存在点P(x0,y0)满足x0-2y0=2,因此 m<0.
初中数学方程与不等式的应用题(附答案)

初中数学方程与不等式的应用题(附答案)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组) ;③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义例题精选应用题1.小明周末守护爷爷输液,输液袋上标有药液共250毫升,15滴/毫升.输液开始时,细心的小明发现药液流速为每分钟75滴.爷爷感觉身体不适,输液10分钟时调整了药液流速直至结束.输液20分钟时,输液袋中的药液余量为160毫升.(1)求输液10分钟时输液袋中的药液余量是多少毫升?(2)求10到20分钟期间药液流速是每分钟多少滴?(3)求从开始输液到结束输液共用了多少分钟?2.列方程解应用题:某运输公司有A、B两种货车,每辆A货车比每辆B货车一次可以多运货5吨,5辆A货车与4辆B货车一次可以运货160吨.求每辆A货车和每辆B货车一次可以分别运货多少吨.3.列方程解应用题:已知A地与B地相距150千米,小华自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费是驾驶新购买的纯电动车所需电费的4倍,如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.4.2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.5.卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有144人成为新冠肺炎病毒的携带者.(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;(1)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?6.为鼓励居民节约用电,某地实行居民生活用电按阶梯标准收费:①若每户每月不超过60度的用电量,则按m元/度收费;②若每户每月超过60度,但不超过100度,则超过60度的部分每度加价0.2元,未超过的部分按①的标准收费;③若每户每月超过100度,则超过100度的部分按每度在m元的基础上加价0.3元收费,未超过100度的部分按②的标准收费.(1)用含m的式子表示用电90度时所需缴纳的电费.(2)小辉家今年9月份用电150度,缴纳电费203元,求m的值.7.现甲、乙两地分别需要蔬菜120吨和180吨,已知丙地、丁地分别有蔬菜160吨和140吨,现要把这些蔬菜全部运往甲、乙两地.若丙地每吨蔬菜运到甲地的费用为30元,运往乙地的费用为35元;丁地每吨蔬菜运到甲地的费用为20元,运往乙地的费用为28元,设丙地运往甲地的蔬菜为x吨.(1)请根据题意将下表补充完整:(2)用含x的式子表示总运输费.(3)总运输费能是9010元吗?若能,请求出x的值;若不能,请说明理由.8.对于一线的医护工作者来说,与新冠肺炎战斗,最大的风险就是被感染.为此,放舱每名医护人员在进入放舱前,从清洁区到达病人所在的病区,中间要穿过三个区,过四道门,工作人员利用体育馆门口一段20米的墙,搭建一个消毒区域,三个区的总面积为96平方米,共用去建筑材料36米.四扇门,每扇门宽1米,且不需要建筑材料,求AB、BC的长各为多少米?9.列方程组解应用题:某车间10月份计划加工甲、乙两种零件共200个,由于采用新技术,实际产量为216个,其中甲零件超产10%,乙零件超产5%求,该车间10月份计划加工甲、乙零件各多少个?10.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,你知道增加了多少行或多少列吗?11.某商场计划购进A,B两种商品共80件,A商品每件的进价比B商品少40元,用1600元购进A商品和用2400元购进B商品的数量相同.(1)求A,B两种商品的进价分别是多少元?(2)已知A商品的销售单价m(元/件)与A商品的进货量n(件)之间的函数关系如图所示.①求m关于n的函数关系式.②因原材料价格上涨,A,B两种商品的进价均提高了10%,为保证总利润不变,商场决定将这两种商品的销售单价均提高a元,且a不超过A商品原销售单价的9%,求a的最大值.12.2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,当地加强了防控措施,对外出进行限制,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?13.为了节能减排,我市某校准备购买某种品牌的节能灯,已知1只B型节能灯比1只A 型节能灯贵2元,且购买2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯、1只B型节能灯的单价各是多少元?(2)若学校准备购买3只A型节能灯和5只B型节能灯,则共需多少元?14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?15.在一次数学知识竞赛中,共有20道题,规定:答错或不答一道题扣分相同,当答题结束时,A同学答对14道题,得分为58分;B同学答对11道题,得分为37分.请问答对一道题得几分,答错或不答一道题扣几分.【参考答案】应用题1.(1)200毫升(2)60滴(3)60分钟【解析】【分析】(1)先求出药液流速为5毫升/分钟,再求出输液10分钟的毫升数,用250减去输液10分钟的毫升数即为所求;(2)用20分钟时剩余药液量减去10分钟时剩余药液量,再乘以每毫升滴数求出总的滴数,最后除以时间即可得出答案;(3)可设从输液开始到结束所需的时间为t 分钟,根据输液20分钟时,瓶中的药液余量为160毫升,列出方程计算即可求解.(1)解:25075151025050200-÷⨯=-=(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)解:10到20分钟期间药液流速是每分钟()200160156010-⨯=(滴);(3)解:设从输液开始到结束所需的时间为t 分钟,依题意有()200160201602010t --=-, 解得60t =.故从输液开始到结束所需的时间为60分钟.【点睛】本题考查了一元一次方程的应用,本题关键是求出输液前10分钟药液流速和输液10分钟后药液流速.2.1辆A 货车一次可以运货20吨,1辆B 货车一次可以运货15吨.【解析】【分析】设1辆B 货车一次可以运货x 吨,1辆A 货车一次可以运货(x +5)吨,根据5辆A 货车与4辆B 货车一次可以运货160吨列出方程解答即可.【详解】解:设1辆B 货车一次可以运货x 吨,1辆A 货车一次可以运货(x +5)吨,根据题意得:5(x +5)+4x =160,解得:x =15,x +5=20,答:1辆A 货车一次可以运货20吨,1辆B 货车一次可以运货15吨.【点睛】本题主要考查一元一次方程的应用,理解题意找出题目蕴含的等量关系是解题的关键. 3.新购买的纯电动汽车每行驶1千米需要电费0.18元.【解析】【分析】设每行驶1千米,新购买的纯电动车需要电费x 元,根据如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元列方程即可.【详解】解:设每行驶1千米,新购买的纯电动车需要电费x 元, 根据题意列方程,得 ()41501500.54x x ⨯=+.解得:0.18x =答:新购买的纯电动汽车每行驶1千米需要电费0.18元.【点睛】本题考查了一元一次方程的应用,解题关键是准确理解题意,找准等量关系列出方程. 4.该地这两年中欧班列开行量的年平均增长率为60%.【解析】【分析】根据题意,2019年该地中欧班列的开行量为500列,2021年达到1280列,设该地这两年中欧班列开行量的年平均增长率为x ,列出一元二次方程求解即可得.【详解】解:设该地这两年中欧班列开行量的年平均增长率为x ,根据题意可得:()250011280x +=, 解得:0.6x =或 2.6x =-(舍去),∴该地这两年中欧班列开行量的年平均增长率为60%.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.5.(1)最初的这名病毒携带者是“超级传播者”,见解析;(2)若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者【解析】【分析】1()最初的这名病毒携带者是“超级传播者”,设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人,根据经过两轮传染后共有144人成为新冠肺炎病毒的携带者,即可得出关于x 的一元二次方程,解之将其正值与10比较后即可得出结论;2()利用经过3轮传染后成为新冠肺炎病毒的携带者的人数=经过两轮传染后成为新冠肺炎病毒的携带者的人数+经过两轮传染后成为新冠肺炎病毒的携带者的人数⨯每人每轮传染的人数,即可求出结论.【详解】解:1()最初的这名病毒携带者是“超级传播者”,理由如下:设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人, 依题意得:11144x x x +++=(),解得:121113x x ==-,(不合题意,舍去).1110>,∴最初的这名病毒携带者是“超级传播者”.2144144111728+⨯=()(人). 答:若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 6.(1)906m +,(2) 1.2m =【解析】【分析】(1)按照②的标准计算即可;(2)按照③的标准列出方程,解方程即可.【详解】解:(1)用电90度,超过60度,但不超过100度,按照②的标准计算,所需缴纳的电费为:60(9060)(0.2)906m m m +-+=+,(2)小辉家今年9月份用电150度,缴纳电费203元,按照③的标准计算可列方程为,60(10060)(0.2)(150100)(0.3)203m m m +-++-+=, 解得, 1.2m =,答:m 的值为1.2.【点睛】此题考查了列代数式和一元一次方程应用,明确不同度数电费的算法,准确列出方程是解决本题的关键.7.(1)见解析,(2)3x +8560;(3)不能,理由见解析【解析】【分析】(1)根据丙地有蔬菜160吨,可得丙地运往乙地的数量,根据甲地的需求量,可得丁地运往甲地的数量,根据乙地的需求量,可得丁地运往乙地的数量;(2)根据运费和吨数求得各地的运费,再相加即可;(3)根据题意列出方程求解即可.【详解】解:(1)设丙地运往甲地的蔬菜为x 吨,根据题意填表得,化简得,3x +8560;(3)根据总运输费是9010元,列方程得,3x +8560=9010,解得,x =150,∵甲地需要蔬菜120吨,小于150吨,总运输费不能是9010元.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中数量关系,列出代数式和方程.8.AB 为6米,BC 为16米【解析】【分析】设AB 的长为x 米,BC 为(3644)-+x 米,根据三个区的总面积为96平方米列出方程求解即可.【详解】解:设AB 的长为x 米,BC 为(3644)-+x 米,由题意得(3644)96-+=x x ,解得14x =,26x =经检验14x =,26x =都是方程的解,当14x =时,3644364442420x >-+=-⨯+=,不符合题意,应舍去,所以6AB =,3646416BC =-⨯+=.【点睛】此题考查了一元二次方程的应用题,解题的关键是根据题意设出未知数列出方程求解. 9.该车间10月份计划加工甲、乙零件各120个,80个.【解析】【分析】根据等量关系,甲加工的数量加上乙加工的数量等于总量列出方程组即可;【详解】解:设该车间10月份计划加工甲、乙零件各x 个,y 个,由题意得:()()2001101%%5216x y x y +=⎧⎪⎨+++=⎪⎩解得12080x y =⎧⎨=⎩答: 该车间10月份计划加工甲、乙零件各120个,80个【点睛】本题考查了二元一次方程组的应用,根据等量关系列出方程组是解题的关键.10.增加了3行3列【解析】【分析】设队伍增加的行数为x ,则增加的列数也为x ,根据游行队伍人数的等量关系列出方程即可.【详解】解:设增加了x 行x 列,根据题意得:()()81212869x x ++=⨯+,整理得:220690x x +-=,解得:123,23x x ==-(不合题意,舍去).答:增加了3行3列.【点睛】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.(1)A 种商品的进价是80元/件、B 种商品的进价为120元/件(2)①0.5130m n =-+;②9【解析】【分析】(1)设A 种商品的进价是x 元/件、则B 种商品的进价为(40)x +元/件,根据1600元购进A 商品和用2400元购进B 商品的数量相同,即可列出相应的分式方程,求解即可,注意求出结果后要检验;(2)①根据函数图象中的数据,利用待定系数法求m 关于n 的函数关系式;②根据题意可以得到n 与a 的关系,然后根据a 不超过A 商品原销售单价的9%,即可求得a 的最大值.(1)解:设A 种商品的进价是x 元/件、则B 种商品的进价为(40)x +元/件, 由题意可得,1600240040x x =+, 解得80x =,经检验:80x =是原分式方程的解,40120x ∴+=,答:A 种商品的进价是80元/件、B 种商品的进价为120元/件;(2)(2)①设m 与n 的函数关系式为m kn b =+,401108090k b k b +=⎧⎨+=⎩, 解得0.5130k b =-⎧⎨=⎩, 即m 与n 的函数关系式为0.5130m n =-+;②设B 种商品的销售单价为t 元,则A 种商品的进价为80(110%)88⨯+=(元/件),B 种商品的进价为:120(110%)132⨯+=(元/件),根据提价前后总利润不变得,(0.513080)(120)(80)(0.513088)(132)(80)n n t n n a n t a n -+-+--=-++-++--,化简,得:20240n a =-+,又a 不超过A 商品原销售单价的9%,9%9%(0.5130)a m n ∴=-+,9%[0.5(20240)130]a a ∴--++,解得9a ,a ∴的最大值是9.【点睛】本题考查了分式方程的应用、一次函数的应用、一元一次不等式的应用等,解题关键是明确题意,找出等量关系,列出相应方程或写出相应的函数关系式、不等式.12.小伟原计划每天做2页数学寒假作业.【解析】【分析】设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据“做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业”,列出方程,即可求解.【详解】解:设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据题意得:34345562x x x -⎛⎫-+= ⎪⎝⎭, 解得:2x =,经检验:2x =是原方程的解,且符合题意,答:小伟原计划每天做2页数学寒假作业.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键. 13.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)购买3只A 型节能灯和5只B 型节能灯共需要50元.【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据(1)中所求结果,列式计算即可解答本题.(1)解:设1只A 型节能灯的售价是x 元,则1只B 型节能灯的售价是(x +2)元, 根据题意得,2x +3(x +2)=31,解得:x =5,答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)解:购买3只A 型节能灯和5只B 型节能灯需要:3×5+5×7=50(元),答:购买3只A 型节能灯和5只B 型节能灯需要50元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系. 14.共有7人.【解析】【分析】设共有x 人,根据该物品的价格不变,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设共有x 人,根据题意得:8374x x -=+,解得:7x =.答:共有7人.【点睛】本题主要考查一元一次方程的应用,理解题意,找准等量关系,列出方程是解决本题的关键.15.答对一道题得5分,答错或不答一道题扣2分.【解析】【分析】设答对一道题得x 分,答错或不答一道题扣y 分.根据A 同学答对14道题,得分为58分;B 同学答对11道题,得分为37分.列出方程组即可求解.【详解】解:设答对一道题得x 分,答错或不答一道题扣y 分.据题意得:14(2014)=5811(2011)37x y x y --⎧⎨--=⎩ 解这个方程组得52x y =⎧⎨=⎩答:答对一道题得5分,答错或不答一道题扣2分.【点睛】本题考查了二元一次方程组的应用,解题关键是准确把握题目中的等量关系,列出二元一次方程组.。
中考数学压轴题方程和不等式综合问题解答题解析版

26.如图1,数轴上,O点与C点对应的数分别是0,单位:单位长度,将一根质地均匀的直尺AB放在数轴上在B的左边,若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.请直接写出直尺的长为______个单位长度;如图2,直尺AB在数轴上移动,有,求此时A点所对应的数;如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处看不到直尺的任何部分,A在B的左边,将直尺AB沿数轴以4个单位长度秒的速度分别向左、右移动,直到完全看到直尺,所经历的时间分别为、,若秒,求直尺放入篷内时,A点所对应的数为多少?【答案】(1)20;(2)或10;(3)A点在蓬内所对应的数为38.当直尺AB在数轴上移动时,符合的情况如下所示:设BO为x:,所对应的数为设OA为x:,所对应的数为10综上所述,A在数轴上所对应的数分别为或10.设,如下图,根据题意,解得所以A点在蓬内所对应的数为38【关键点拨】本题通过直尺两端相对固定的两个点在数轴上移动时和数轴上固定的点之间长度关系的变化来确定移动点的位置,根据已知条件来分析移动点的可能性是解题的关键.月使用费主叫限定时间(分钟) 主叫超时费(元/分钟) 被叫方式一65 160 0.20 免费方式二100 380 0.25 免费被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____ 元;李华某月按方式二计费需107元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间(分钟),按方式一和方式二的计费相等?若存在,请求出的值;若不存在,请说明理由。
(3)直接写出当月主叫通话时间(分钟)满足什么条件时,选择方式一省钱。
【答案】(1)73,100,408;(2)存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)当每月通话时间大于560分钟时,选择方式一省钱.(2)①当t≤160时,不存在;②当160<t≤380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100,解得t=335,符合题意;③当t>380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100+0.25(t-380),解得t=560,符合题意.故存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)由(2)可得,当每月通话时间大于560分钟时,选择方式一省钱.【关键点拨】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.同学们,今天我们来学习一个新知识,形如的式子叫做二阶行列式,它的运算法则用公式表示为:利用此法则解决以下问题:(1)仿照上面的解释,计算出的结果;(2)依此法则化简的结果;(3)如果那么的值为多少?【答案】(1)11;(2)5a−b−ab;(3).(3)∴5x-3(x+1)=4∴5x−3x−3=4∴2x=7∴x=【关键点拨】[来源:]此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键. 29.阅读探索知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_____________.【答案】(1)(2)解得:,故答案为:【关键点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 30.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足,B两点对应的数分别为______,______;若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;若点A、B分别以4个单位秒和3个单位秒的速度相向而行,则几秒后A、B两点相距1个单位长度?若点A、B以中的速度同时向右运动,点P从原点O以7个单位秒的速度向右运动,是否存在常数m,使得为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.【答案】(1)-10;5; (2)-5;(3)2或秒;(4)存在,当m=3时,4AP+3OB-mOP为定值55.(2)∵|AB|=5-(-10)=15,=7.5,∴点A、点B距离折叠点都是7.5个单位所以折叠点上的数为-2.5.所以与点O重合的点表示的数为:-2.5×2=-5.即原点O与数-5表示的点重合.故答案为:-5.(3)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15-1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=答:2或秒后A、B相距1个单位长度;【关键点拨】本题考查一元一次方程的应用,非负数的性质及数轴上两点间的距离.题目综合性较强,难度较大.解决(1)需利用非负数的性质,解决(3)注意分类思想的运用,解决(4)利用数轴上两点间的距离公式.31.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.(问题情境)在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,、两点相遇,且动点、运动的速度之比是(速度单位:单位长度/秒).备用图(综合运用)(1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;(2)当时,求运动时间;(3)若点、在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点、的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从、相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.【答案】(1)动点P运动的速度为4.5单位长度/秒,动点Q运动的速度为3单位长度/秒;(2)运动时间为或秒;(3)点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为,理由见解析(2)设运动时间为t秒.由题意知:点P表示的数为-20+4.5t,点Q表示的数为10-3t,根据题意得:|(-20+4.5t)-(10-3t)|=×|(-20)-10|整理得:|7.5t-30|=107.5t-30=10或7.5t-30=-10解得:t=或t=.答:运动时间为或秒.(3)P、Q相遇点表示的数为-20+4×4.5=-2(注:当P、Q两点重合时,线段PQ的中点M也与P、Q两点重合)设从P、Q相遇起经过的运动时间为t秒时,点M与原点重合.①点P、Q均沿数轴正方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷=(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:解得:t=-(舍去).此时点M不能与原点重合;④点P沿数轴负方向运动,点Q沿数轴负方向运动,则:解得:t=-(舍去).此时点M不能与原点重合.综上所述:点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为.【关键点拨】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.32.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标时段8:00~9:00 10:00~11:00 12:00~13:0014:00~15:0016:00~17:00客流量(人)-21 +33 -12 +21 +54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?【答案】(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【关键点拨】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位.33.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.【答案】(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【关键点拨】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.34.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【关键点拨】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金35.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA和CDA 均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.【答案】(1)①4,800;②24,3;(2)情况一所用时间比较少,理由详见解析;(3)①D到A的路程为800 米;②丙应该选择乘坐1 号车所需时间最少.412分钟,第三次相遇时间为1220分钟,第四次相遇时间为2028分钟,∴这一段时间内1号车与2号车相遇了3次.故答案为:24,3;(2)情况一所用时间比较少,设CK=x米,由题意知,情况一需要时间为:16,情况二需要的时间为:16,∴情况一所用时间比较少;(3)①设P到A的路程为a米,则2号车从C→B→A→P的时间为分钟,∴D到P的路程为50,由题意知,,解得:a=320,∴D到P的路程为50=480米,∴D到A的路程为320+480=800米;②若丙选择乘坐1号车,所需时间为13分钟,若丙选择乘坐2号车,所需时间为21分钟,若丙选择步行到出口A,所需时间为32分钟,所以丙应该选择乘坐1号车所需时间最少.【关键点拨】本题考查了一元一次方程的应用,理解题意仔细剖析每种情形下路程的变化是解题的关键.36.已知一个四位自然数M的千、百、十、个位上的数字分别是、、、,若,且,则称自然数M是“关联数”,且规定.例如5326,因为,所以5326是“关联数”,且现已知式子(、、都是整数,,,)的值表示四位自然数,且是“关联数”,的各位数字之和是8的倍数.(1)当时,求;(2)当时,求的和.【答案】(1)3544,(2)-72.∴,,.∴.(2)当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3562.[来源]∴,.当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3984.∴,.∴.∴的和是-72.【关键点拨】此题主要考察不等式的应用,正确理解题意,再列出相应的式子,但是要注意分开来求解. 37.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.(2)解:设小亮准备购买A甲内存卡a个,则购买乙内存卡(10﹣a)个,则解得5≤a≤6,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低[来源:(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【关键点拨】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.38.三亚市某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生(2)如果该工厂生产一件A产品可获利80元,生产一件B产品可获利120元,那么该工厂应该怎样安排生产可获得最大利润?【答案】(1)见解析;(2)见解析.(2)方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大【关键点拨】本题主要考查一元一次不等式组的应用.39.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x[来源]=-0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【关键点拨】本题考查了用一元二次方程组的实际应用,一次函数的实际应用问题,建立函数模型是解题关键.40.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.【答案】(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=OF•AE=(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=OH•DH﹣(BG+DH)•GH﹣OG•BG,【关键点拨】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
第6章 一次方程(组)和一次不等式练习题 含解析

第6章 一次方程(组)和一次不等式(组)一.选择题(共11小题) 1.不等式23x ->的解集是( ) A .23x >-B .23x <-C .32x >-D .32x <-2.如果m n >,那么下列结论错误的是( ) A .22m n +>+B .22m n ->-C .22m n >D .22m n ->-3.如果a b >,0m <,那么下列不等式中成立的是( ) A .am bm >B .a b m m> C .a m b m +>+ D .a m b m -+>-+.4.不等式240x +„的解集在数轴上表示正确的是( ) A . B .C .D .5.不等式260x +>的解集在数轴上表示正确的是( ) A .B .C .D .6.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为( )A .丙甲乙B .丙乙甲C .乙甲丙D .乙丙甲7.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x 元,则列式( ) A .303015%85%x +⨯„ B .303015%85%x +⨯… C .303015%85%x -⨯„D .303015%85%x -⨯…8.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( )A .2m …B .2m >C .2m <D .2m „9.关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( )A .1a …B .1a -…C .1a -„D .0a …10.不等式732122x x --+<的负整数解有( ) A . 1 个B . 2 个C . 3 个D . 4 个11.如果关于x 的不等式(1)1a x a +>+的解集为1x <,则a 的取值范围是( ) A .0a <B .1a <-C .1a >D .1a >-二.填空题(共17小题)12.用不等式表示:y 减去1的差不小于y 的一半 . 13.不等式2(1)34x x ->-的自然数解为 . 14.解不等式:29x x --„的非负整数解有 个. 15.不等式2132x x +>-的非负整数解是 . 16.不等式215x -„的非负整数解是 . 17.不等式1123x x --<的非负整数解是 . 18.不等式12123x x -->的非负整数解为 . 19.不等式3256x x -+„的最大负整数解为 . 20.不等式123x x -+>的正整数解为 . 21.不等式3618x ---…的正整数解为 .22.试写出一个不等式 使它的正整数解只有1,2,3. 23.满足 2.1x <-的最大整数是 . 24.不等式1208x-…的最大整数解为 . 25.不等式250x -…的最小整数解为 . 26.适合不等式3(2)2x x ->的最小正整数是 . 27.不等式214x ->的最小整数解是 .28.对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如[1.2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是 . 三.解答题(共12小题)29.解不等式3(2)2x x +>,并把解在数轴上表示出来.30.解不等式121132x x+++…,并把它的解集在数轴上表示出来.31.解不等式并把解集表示在数轴上: (1)2(1)142x x +-+…, (2)7223x x---…32.若关于x 的不等式14x x m +>+的解集为1x <,求m 的值.33.若不等式3(2)54(1)6x x -+<-+的最小整数解为方程23x ax -=的解,求a 的值.34.已知3x =是方程212x a x --=-的解,求不等式1(2)53a x ->的解集.35.若关于x 的一元一次方程538m x +=的解是非负数,求m 的取值范围.36.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?37.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?38.字母m 、n 分别表示一个有理数,且m n ≠.现规定{min m ,}n 表示m 、n 中较小的数,例如:{3min ,1}1-=-,{1min -,0}1=-.据此解决下列问题: (1)1{2min -,1}3-= . (2)若21{3x min -,2)1=-,求x 的值; (3)若{25min x -,3}2x +=-,求x 的值.39.某县为了更好保障居民饮用水安全,环保局决定购10台污水处理设备,现有A、B两种型号的设备,价格与每台日处理污水的能力见表.(1)若县环保局购买污水处理设备的资金不超过105万元,你认为有哪几种方案.(2)在(1)的条件下,每日要求处理污水量不低于2040吨,为了节约资金,请设计“一个最省钱”的购买方案.40.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?参考答案一.选择题(共11小题) 1.不等式23x ->的解集是( ) A .23x >-B .23x <-C .32x >-D .32x <-【解答】解:不等式的两边同时除以2-得,32x <-.故选:D .2.如果m n >,那么下列结论错误的是( ) A .22m n +>+ B .22m n ->- C .22m n > D .22m n ->-【解答】解:m n >Q , 22m n ∴-<-,故选:D .3.如果a b >,0m <,那么下列不等式中成立的是( ) A .am bm >B .a b m m> C .a m b m +>+ D .a m b m -+>-+.【解答】解:A 、am bm <,故原题错误; B 、a bm m<,故原题错误; C 、a m b m +>+,故原题正确;D 、a m b m -+<-+,故原题错误;故选:C .4.不等式240x +„的解集在数轴上表示正确的是( ) A . B .C .D .【解答】解:移项得,24x -„, 系数化为1得,2x -„. 在数轴上表示为:.故选:C .5.不等式260x +>的解集在数轴上表示正确的是( ) A .B .C .D .【解答】解:260x +>, 26x >-, 3x >-,在数轴上表示为:,故选:C .6.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为( )A .丙甲乙B .丙乙甲C .乙甲丙D .乙丙甲【解答】解:由图一可得:丙+丙>丙+乙,所以丙>乙; 由图二可得:甲+甲+甲=甲+乙,所以乙=甲+甲>甲. 则丙>乙>甲. 故选:B .7.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x 元,则列式( ) A .303015%85%x +⨯„ B .303015%85%x +⨯… C .303015%85%x -⨯„D .303015%85%x -⨯…【解答】解:由题意:303015%85%x +⨯„. 故选:A .8.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( )A .2m …B .2m >C .2m <D .2m „【解答】解:Q 方程20x m -+=的解是负数, 20x m ∴=-<,解得:2m <, 故选:C .9.关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( )A .1a …B .1a -…C .1a -„D .0a …【解答】解:移项,得5642x x a a +=++, 合并同类项,得666x a =+, 系数化成1得1x a =+,根据题意得:10a +…, 解得:1a -…. 故选:B . 10.不等式732122x x --+<的负整数解有( ) A . 1 个B . 2 个C . 3 个D . 4 个【解答】解: 去分母, 得:7232x x -+<-, 移项, 得:3722x x -<-- 合并同类项, 得:23x -<, 则32x >-. 则负整数解是:1-. 故选:A .11.如果关于x 的不等式(1)1a x a +>+的解集为1x <,则a 的取值范围是( ) A .0a <B .1a <-C .1a >D .1a >-【解答】解:由题意,得 10a +<,解得1a <-, 故选:B .二.填空题(共17小题)12.用不等式表示:y 减去1的差不小于y 的一半 112y y -… .【解答】解:依题意,得:112y y -….故答案为:112y y -….13.不等式2(1)34x x ->-的自然数解为 1和0 . 【解答】解:2(1)34x x ->-, 2234x x ->-, 2342x x ->-+, 2x ->-, 2x <,则该不等式的自然数解为1和0, 故答案为:1和0.14.解不等式:29x x --„的非负整数解有 4 个. 【解答】解:29x x --„,29x x +„, 39x „, 3x „,所以不等式:29x x --„的非负整数解有0,1,2,3四个, 故答案为4.15.不等式2132x x +>-的非负整数解是 0,1,2 . 【解答】解:移项得,2321x x ->--, 合并同类项得,3x ->-, 系数化为1得,3x <. 故其非负整数解为:0,1,2.16.不等式215x -„的非负整数解是 0、1、2、3 . 【解答】解:215x -„, 移项得:26x „,不等式的两边都除以2得:3x „, 即不等式的非负整数解释:0、1、2、3, 故答案为:0、1、2、3. 17.不等式1123x x --<的非负整数解是 0,1,2,3 . 【解答】解:1123x x --<, 32(1)6x x --<,3226x x -+<, 3262x x -<-, 4x <,所以不等式1123x x --<的非负整数解是0,1,2,3, 故答案为:0,1,2,3. 18.不等式12123x x -->的非负整数解为 0 . 【解答】解:12123x x -->3(1)2(21)x x ->-,则3342x x ->-, 故75x ->-, 解得:57x <, 故不等式12123x x -->的非负整数解为0. 故答案为:0.19.不等式3256x x -+„的最大负整数解为 1x =- . 【解答】解:3256x x -+Q „,3562x x ∴-+„, 28x -„,则4x -…,∴不等式的最大负整数解为1x =-,故答案为:1x =-. 20.不等式123x x -+>的正整数解为 1,2 . 【解答】解:123x x -+>, 去分母,得:163x x -+>, 移项,得:316x x ->-, 合并同类项,得:25x ->-, 系数化成1得: 2.5x <. 则正整数解是:1,2.故答案是:1,2.21.不等式3618x ---…的正整数解为 1、2、3、4 .【解答】解:3618x ---…,移项得:3186x --+…合并同类项得:312x --…,把x 的系数化为1得:4x „,∴不等式3618x ---…的正整数解为1、2、3、4.故答案为1、2、3、4.22.试写出一个不等式 3x „(答案不唯一) 使它的正整数解只有1,2,3.【解答】解:不等式3x „(答案不唯一)的正整数解只有1,2,3,故答案为:3x „(答案不唯一)23.满足 2.1x <-的最大整数是 3- .【解答】解:满足 2.1x <-的最大整数是3-,故答案为:3-.24.不等式1208x -…的最大整数解为 0 . 【解答】解:不等式去分母得:120x -…, 解得:12x „, 则不等式的最大整数解为0,故答案为:0.25.不等式250x -…的最小整数解为 3 . 【解答】解:不等式250x -…, 移项得:25x …, 解得:52x …, 则不等式的最小整数解为3,故答案为:326.适合不等式3(2)2x x ->的最小正整数是 7 .【解答】解:3(2)2x x ->,362x x ->,326x x ->,6x >,所以不等式3(2)2x x ->的最小正整数是7,故答案为:7.27.不等式214x ->的最小整数解是 3 . 【解答】解:214x ->,25x >,2.5x >,所以不等式214x ->的最小整数解是3,故答案为:3.28.对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如[1.2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是 17-,16-,15- . 【解答】解:[]m Q 表示不大于m 的最大整数,2543x +∴-<-„, 解得:1714x -<-„,∴整数x 为17-,16-,15-,故答案为17-,16-,15-.三.解答题(共12小题)29.解不等式3(2)2x x +>,并把解在数轴上表示出来.【解答】解:去括号,得:632x x +>,移项,得:326x x ->-,合并同类项,得:6x >-,将解集表示在数轴上如下:30.解不等式121132x x +++…,并把它的解集在数轴上表示出来. 【解答】解:去分母,得2(12)63(1)x x +++…去括号得,24633x x +++…, 再移项、合并同类项得,5x -….在数轴上表示为:.31.解不等式并把解集表示在数轴上:(1)2(1)142x x +-+…,(2)7223x x ---… 【解答】解:(1)22142x x +-+…, 24221x x --+…,21x -…, 12x -„,(2)3122(7)x x ---…,312152x x --+…,321512x x --+…,3x -…,32.若关于x 的不等式14x x m +>+的解集为1x <,求m 的值.【解答】解:41x x m ->-,31x m ->-,13m x -<, Q 不等式的解集为1x <,∴113m -=, 解得2m =-.33.若不等式3(2)54(1)6x x -+<-+的最小整数解为方程23x ax -=的解,求a 的值.【解答】解:解不等式3(2)54(1)6x x -+<-+,去括号,得:365446x x -+<-+,移项,得344665x x -<-++-,合并同类项,得3x -<,系数化成1得:3x >-.则最小的整数解是2-.把2x =-代入23x ax -=得:423a -+=, 解得:72a =. 34.已知3x =是方程212x a x --=-的解,求不等式1(2)53a x ->的解集. 【解答】解:由于3x =是方程212x a x --=-的解, 所以32312a --=- 解得5a =-把5a =-代入不等式,得1(21)3x +> 解得,19x > 所以不等式的解集为19x >. 35.若关于x 的一元一次方程538m x +=的解是非负数,求m 的取值范围.【解答】解:解方程538m x +=得853m x -=, 根据题意知8503m -…, 解得85m „. 36.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【解答】解:设需要购买菊花x 盆,则需要购买绿萝(30)x -盆,依题意,得:168(30)400x x +-„,解得:20x „.答:最多可以购买菊花20盆.37.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?【解答】解:安排x 人种茄子,依题意得:30.52(10)0.815.6x x +-g g …,解得:4x „.所以最多只能安排4人种茄子.38.字母m 、n 分别表示一个有理数,且m n ≠.现规定{min m ,}n 表示m 、n 中较小的数,例如:{3min ,1}1-=-,{1min -,0}1=-.据此解决下列问题:(1)1{2min -,1}3-= 2. (2)若21{3x min -,2)1=-,求x 的值; (3)若{25min x -,3}2x +=-,求x 的值.【解答】解:(1)根据题中的新定义得:1{2min -,11}32-=-; 故答案为:12-; (2)由21>-,得到2113x -=-, 解得:1x =-; (3)若252x -=-,解得: 1.5x =,此时3 4.52x +=>-,满足题意;若32x +=-,解得:5x =-,此时25152x -=-<-,不符合题意,综上, 1.5x =.39.某县为了更好保障居民饮用水安全,环保局决定购10台污水处理设备,现有A 、B 两种型号的设备,价格与每台日处理污水的能力见表.(1)若县环保局购买污水处理设备的资金不超过105万元,你认为有哪几种方案.(2)在(1)的条件下,每日要求处理污水量不低于2040吨,为了节约资金,请设计“一个最省钱”的购买方案.【解答】解:(1)设购买A 型设备x 台,则B 型设备(10)x -台,依题意得,1210(10)105x x +-„,解得, 2.5x „;又x 取自然数(或说非负整数),故2x =,1,0,所以,符合要求的购买方案有以下3种:①购买10台B 型;②购买1台A 型和9台B 型;③购买2台A 型和8台B 型.(2)设购买A 型设备x 台,则B 型设备(10)x -台,由题意得:240200(10)2040x x +⨯-…,解得,1x …, 由生活实际可知价格便宜的购置数量越多越省钱,故购买1台A 型和9台B 型符合要求,40.甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用8天,且甲队单独植树7天和乙队单独植树5天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树5天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的2倍.那么甲队至少再单独施工多少天?【解答】解:(1)设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(8)x +天, 依题意,得:857x x +=, 解得:20x =,828x ∴+=.答:甲队单独完成此项任务需28天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y 天, 依题意,得:55212028y ++…, 解得:8y ….答:甲队至少再单独施工8天.。
2021年山东省中考数学真题分类汇编:方程与不等式(附答案解析)

2021年山东省中考数学真题分类汇编:方程与不等式一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5 2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4 3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2 5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022 6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.29.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2 11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣812.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠0 14.(2021•济宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n 的值为.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.21.(2021•东营)不等式组的解集为.三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.18 1.39 1.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?26.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?2021年山东省中考数学真题分类汇编:方程与不等式参考答案与试题解析一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【考点】一元一次方程的解;不等式的性质.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】把a看做已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质逐个判断即可.【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求解不等式①和②,即可求出不等式组的解集,再在数轴上表示出不等式组的解集即可得出答案.【解答】解:解不等式①,得x>﹣3;解不等式②,得x≤﹣1.∴不等式组的解集为:﹣3<x≤﹣1.∴不等式组的解集在数轴上表示为:.故选:A.【点评】本题主要考查了在数轴上表示不等式的解集,熟练应用求不等式组的解集的方法及在数轴上表示的方法进行求解是解决本题的关键.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴△=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.2【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】实数与数轴;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解第一个不等式,求出解集,再根据不等式组的解集,利用“同大取大”的口诀可得答案.【解答】解:解不等式x+5<4x﹣1,得:x>2,∵不等式组的解集为x>2,∴m≤2,故选:A.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及不等式组解集的确定.11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【分析】利用因式分解法求解即可。
沪教版(上海)六年级数学第二学期第六章一次方程(组)和一次不等式(组)章节练习试题(含解析)

第六章一次方程(组)和一次不等式(组)章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x 的方程32kx x -=的解是整数,则整数k 的可能值有( )A .1个B .2个C .3个D .4个2、方程50x -=的解是( )A .0B .5C .-5D .15- 3、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b4、若方程852x a x +=+的解为1x =,则a 的值是( )A .1-B .1C .5D .5-5、已知关于x 的不等式组3x x a ≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .36、若(m -1)x |m |=7是关于x 的一元一次方程,则m =( )A .1B .-1C .±1D .07、已知1x =-是关于x 的方程237x a +=的解,则a 的值为( )A .-5B .-3C .3D .58、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4- B .4 C .2- D .29、下列方程变形中正确的是( )A .由163x =,得2x =B .由3254y y -=-,得2543y y --=--C .由231x x =-,得1x -=D .由234x x =-,得432,2x x x =-=- 10、下列是一元一次方程的是( )A .2230x x --=B .10x +=C .32x -D .25x y +=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.2、单项式2a b -的系数是关于x 的方程21x m -+=的解,则m 的值为_________.3、在“双减”政策下,我校开展了丰富多彩的兴趣小组和社团活动.活动中小民邀请小刚玩“你想我猜”的游戏,游戏规则是:第一步:请小刚在心中想一个喜欢的数字,并记住这个数字;第二步:把喜欢的数字乘以2再加上6,得到一个新的数;第三步:把新得到的数除以2,写在纸条上交给小民.小民打开纸条看到数字6,马上就猜出了小刚喜欢的数,这个数是________.4、方程2x +5=3(x ﹣1)的解为_____.5、为了大力弘扬航天精神,科学普及航天知识,某校特意举行了“扬帆起航,逐梦九天”的知识竞赛.假设共16道题,评分标准如下:答对1题加3分,答错1题扣1分,不答记0分.已知小明不答的题比答错的题多2道,他的总分为28分,则小明答对了______道题.三、解答题(5小题,每小题10分,共计50分)1、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值.(2)6月份小王家用水32吨,应交水费多少元.(3)若林芳家7月份缴水费303元,她家用水多少吨?2、解方程:(1)6134x x -=+(2)3257146x x ---= 3、2021年12月22日国家发展改革委印发了《成渝地区双城经济圈多层次轨道交通规划》,目标实现重庆、成都“双核”间1小时通达.在一条双轨铁路上迎面驶来一快一慢两列火车,快车长40AB =,慢车长30CD =.正在行驶途中的某一时刻,以两车之间的某点O 为原点,取水平向右为正方向画数轴,如图,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是c .若快车AB 以22个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以18个单位长度/秒的速度向左匀速继续行驶,且60a +与2(70)c -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少个单位长度?(2)从此时刻开始算起,再行驶多少秒钟两列火车恰好满足2AD BC =?(3)此时在行驶过程中,快车的车尾B 上有一位学生P ,慢车的车尾D 上也有一位学生Q .两位学生同时起身以1个单位长度/秒的速度向各自车头跑去,请问几秒之后两位学生的距离为4个单位长度?4、解方程组:22263x y x y -=⎧⎨-=⎩ 5、解方程和脱式计算,能简算的要简算.(1)250%3003x x +=(2)60%35%125x x -=(3)4.1-30%x =2(4)45.680% 4.45⨯+⨯(5)2227927⎛⎫-⨯ ⎪⎝⎭ (6)85375958÷+⨯-参考答案-一、单选题1、D【分析】先求出方程的解,再根据解是整数得到整数k 的取值.【详解】解:解关于x 的方程32kx x -=得32x k =- ∵方程的解是整数∴k -2等于±3或±1故k 的值为5或-1或3或1故选D .【点睛】此题主要考查解一元一次方程,解题的关键是根据方程的解得情况得到k 的关系式.2、A【分析】方程两边除以-5后,即可求解.【详解】解:方程两边除以-5,得x =0,故选:A【点睛】此题考查了等式的基本性质,掌握等式的基本性质是解答此题的关键.3、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.4、A【分析】根据方程的解为x=1,将x=1代入方程即可求出a的值.【详解】解:将x=1代入方程得:8+a=5+2,解得:a=-1.故选:A.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.6、B【分析】根据一元一次方程的定义得出m -1≠0且|m |=1,再求出答案即可.【详解】解:∵方程(m -1)x |m |=7是关于x 的一元一次方程,∴m -1≠0且|m |=1,解得:m =-1,故选:B .【点睛】本题考查了绝对值和一元一次方程的定义,能根据题意得出m -1≠0和|m |=1是解此题的关键.7、C【分析】将1x =-代入方程可得一个关于a 的一元一次方程,解方程即可得.【详解】解:将1x =代入方程237x a +=得:237a -+=,解得3a =,故选:C .【点睛】本题考查了一元一次方程的解,掌握理解方程的解的定义是解题关键.8、A【分析】求出方程组的解得到a 与b 的值,即可确定出-a -b 的值.【详解】解:51234a b a b +=⎧⎨-=⎩①②, ①+②×5得:16a =32,即a =2,把a =2代入①得:b =2,则-a -b =-4,故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9、B【分析】根据一元一次方程的解法,对选项依次判断即可.【详解】解:A 、163x =,18x =,选项错误;B 、3254y y -=-,移项可得:2543y y --=--,选项正确;C 、231x x =-,移项可得:231x x -=-,合并同类项可得:1x -=-,选项错误;D 、234x x =-, 去分母得:4324x x =-,选项错误;故选:B .【点睛】题目主要考查解一元一次方程的方法,熟练掌握解一元一次方程的方法是解题关键.10、B【分析】根据一元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】2230x x --=,是一元二次方程,故选项A 不符合题意;10x +=是一元一次方程,故选项B 正确;32x -是代数式,不是方程,故选项A 不符合题;25x y +=是二元一次方程,故选项D 不符合题意;故选:B .【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的定义,从而完成求解.二、填空题1、三个 次数 1【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程. 故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.2、1-【分析】单项式的系数为1-,代入方程求出m 的值即可.【详解】 解:单项式的系数为1-是方程21x m -+=的解∴将1x =-代入21x m -+=有2(1)1m -⨯-+=解得1m =-故答案为:1-.【点睛】本题考察了单项式的系数,一次方程.解题的关键在于确定单项式的系数.3、3【分析】设小刚心里想的数字是x ,根据题意列出等式,整理即可求出所求.【详解】设小刚心里想的数字是x ,第二步结果:26x +第三步结果:(26)23x x +÷=+∴36x +=,解得3x =故答案为:3.【点睛】本题主要考查一元一次方程的应用,按题目要求进行运算得出方程是解题的关键.4、8x =【分析】根据题意先去括号,然后移项合并,最后化系数为1即可求解.【详解】解:2x +5=3(x ﹣1)去括号:2533x x +=-移项合并:8x -=-化系数为1:8x =.故答案为:8x =.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.5、10【分析】根据总分=答对题数×3-答错题数×1+不答题数×0,设答对的题数为x 道,答错的题数为y 道,可列出方程组,求出解.【详解】解:设答对题数为x道,答错的题数为y道,则不答的题数为(y+2)道.由题意得:216 328x y yx y+++=⎧⎨-=⎩,解得:102xy=⎧⎨=⎩,∴答对了10道题,故答案为:10.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.三、解答题1、(1)2.24.2 ab=⎧⎨=⎩(2)129.6元(3)57.5吨【分析】(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.(1)解:(1)由题意得:()()1720170.82066 1725170.82591a ba b⎧+-+⨯=⎪⎨+-+⨯=⎪⎩,解得2.24.2ab=⎧⎨=⎩;(2)(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8=129.6(元).答:当月交水费129.6元;(3)(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,设林芳家七月份用水x吨,则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),6.8x=391,解得:x=57.5,即七月份林芳家用水57.5吨.【点睛】本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.2、(1)53 x=(2)4x=-【解析】(1)解:移项,得6341x x -=+,合并同类项,得35x =,系数化为1,得53x =, ∴原方程的解为53x =;(2)解:去分母,得3(32)122(57)x x --=-,去括号,得96121014x x --=-,移项,得91014612x x -=-++,合并同类项,得4x -=,系数化为1,得4x =-,∴原方程的解为4x =-.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.3、(1)130(2)92t =或256 (3)347t =或143 【分析】(1)60a +与2(70)c -互为相反数得到260(70)0a c ++-=,求出a 、c 的值,利用两点间的距离公式求出答案;(2)设行驶时间为t 秒,写出各点表示的数,得到AD 、BC 的长,根据2AD BC =列方程求解;(3)分别写出点P 、Q 表示的数,求出PQ 的长,根据PQ =4列方程解答(1) 解:由题意得260(70)0a c ++-=,∴a +60=0,c -70=0,60a ∴=-,70c =,130AC ∴=;(2)解:设行驶时间为t 秒,则各点表示的数分别为:A :6022t -+,B :10022t -+,C :7018t -,D :10018t -, ∴60221001840160AD t t t =-+-+=-,10022701840170BC t t t =-+-+=-,2AD BC =,40160240170t t ∴-=-, 解得92t =或256; (3)解:点P 表示的数为:1002210023t t t -++=-+,点Q 表示的数为:1001810019t t t --=-, ∴100231001942200PQ t t t =-+-+=-,4PQ =,422004t ∴-=,347t =或143. 【点睛】此题考查了数轴上的动点问题,数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,解一元一次方程,熟记数轴上两点间的距离公式是解题的关键.4、91015x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】根据加减消元法解二元一次方程组即可【详解】解:22263x y x y -=⎧⎨-=⎩①② ①-②得:623y y -+=- 解得15y =- 将15y =-代入①1225x =- 解得910x = ∴原方程组的解为:91015x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.(1)18007x = (2)x =500(3)x=7(4)8(5)4(6)60【解析】(1) 解:250%3003x x +=73006x = 18007x = (2)解:60%35%125x x -=25%125x =x =500(3)解:4.1-30%x =230%x =4.1-230%x =2.1x=7解:4 5.680% 4.45⨯+⨯=4 (5.6 4.4)5+⨯=4 105⨯=8 (5)解:2227 927⎛⎫-⨯ ⎪⎝⎭=222727 927⨯-⨯=62-=4 (6)解:85 375958÷+⨯=55 375988⨯+⨯=5 (3759)8+⨯=5 968⨯=60【点睛】本题考查了解方程和简便运算,解题关键是熟练运用解简易方程的方法解方程,熟练运用乘法运算律进行简便运算.。
第六章《一次函数》专练(选择、填空题)(含解析)

第六章《一次函数》专练(选择、填空题)一.选择题1.(2018•呼和浩特)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1 2.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1 3.(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6 4.(2018•青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.(2018•镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35B.10:40C.10:45D.10:50 6.(2018•葫芦岛)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4 7.(2018•赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.8.(2018•宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.9.(2018•广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:5510.(2018•巴彦淖尔)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.12.(2018•湖北)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个13.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃14.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.15.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个16.(2018•邵阳)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠17.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.18.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小20.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱21.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7 22.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.23.(2017•巴彦淖尔)为积极响应市委、市政府提出的“绿色发展,赛过江南”的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.25平方米B.50平方米C.75平方米D.100平方米24.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是()A.B.C.D.25.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是()①方式一每月主叫时间为300分钟时,月使用费为88元②每月主叫时间为350分钟和600分钟时,两种方式收费相同③每月主叫时间超过600分钟,选择方式一更省钱A.①②B.①③C.②③D.①②③26.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,慢车先出发一段时间,这辆列车之间的距离y(km)与慢车行驶的时间x(h)之间的函数关系如图所示,则慢车出发8h时,两列车相距()A.525km B.575.5km C.600km D.660km二.填空题27.(2018•济南)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.28.(2018•巴中)函数y=+中自变量x的取值范围是.29.(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y 满足的关系式是.31.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x (kx+b)<0的解集为.32.(2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.33.(2018•杭州)某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.34.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.35.(2018•重庆)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.36.(2018•重庆)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.37.(2018•衢州)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.38.(2016•黄冈校级自主招生)如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.39.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.40.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B 地后,快递车再行驶h到达A地.答案与解析一.选择题1.【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.2.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.3.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.4.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.5.【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.【点评】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.6.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故选:A.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.8.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.9.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.【分析】A、利用图象①即可解决问题;B、利用图象②求出函数解析式即可判断;C、求出销售量以及每件产品的利润即可解决问题;D、求出第15天与第30天的日销售量比较即可;【解答】解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.【点评】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.12.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.13.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.14.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.15.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x 之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.18.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.【点评】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.19.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.21.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.22.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.23.【分析】根据休息后2小时的绿化面积100平方米,即可判断;【解答】解:休息后园林队每小时绿化面积为==50平方米.故选:B.【点评】本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.24.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.25.【分析】①根据待定系数法求出方式一,当x≥200时的一次函数解析式,再求出y=88时x的值即可求解;②得出两交点坐标即可求解;③观察函数图形即可求解.【解答】解:①当x≥200时,设方式一的一次函数解析式为y=kx+b,依题意有,解得.则当x≥200时,方式一的一次函数解析式为y=0.2x+18,当y=88时,0.2x+18=88,解得x=350.故方式一每月主叫时间为350分钟时,月使用费为88元.题干原来的说法是错误的;②观察图形可知两交点坐标分别是(350,88),(600,138),故每月主叫时间为350分钟和600分钟时,两种方式收费相同.题干原来的说法是正确的;③观察图形可知每月主叫时间超过600分钟,选择方式一更省钱.题干原来的说法是正确的.故选:C.【点评】考查了一次函数的应用,渗透了函数与方程的思想,关键是求出x≥200时的一次函数解析式.26.【分析】根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地.那么慢车8h时,两车的距离就是慢车8h的路程.【解答】解:根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地,所以慢车出发8h时,两车相距75×8=600km.故选:C.【点评】本题是一道典型的识图题,考查学生结合实际情况从图中挖掘信息的能力,知道图象中每个数据表示的意义是解题关键二.填空题27.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.28.【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.29.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 一次方程(组)和一次不等式(组)一.选择题(共10小题)1.若a b <,则下列各式中不一定成立的是( ) A .11a b -<-B .33a b <C .a b ->-D .ac bc <2.不等式313x x ->+的解集在数轴上表示正确的是( ) A . B . C .D .3.不等式3101x +„的解集在数轴上表示正确的是( ) A . B .C .D .4.不等式2133x x --…的正整数解的个数是( ) A .1个 B .2个C .3个D .4个5.不等式331123x x ---<的负整数解的个数有( )个. A .1个 B .2个 C .3个 D .4个6.不等式2(2)1x x --„的非负整数解的个数为( ) A .1个B .2个C .3个D .4个7.关于x 的方程42158x m x -+=-的解是负数,则m 的取值范围是( ) A .92m >B .0m <C .92m <D .0m >8.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式7(8)11x x +>,则横线的信息可以是( ) A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本9.某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x 元/千克,根据题意所列不等式正确的是( )A .100(15%)1140x -…B .100(15%)1140x ->C .100(15%)1140x -<D .100(15%)1140x -„10.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,例如131423224=⨯-⨯=-,如果2301xx->,则x 的解集是( ) A .1x > B .1x <- C .3x > D .3x <-二.填空题(共10小题)11.x 的13与x 的2倍的和是非正数,用不等式表示为 .12.请写出适合不等式1x <-的一个整数解 . 13.满足不等式2(9)3(1)x x +-…的负整数解 . 14.不等式28x -<的负整数解的和是 . 15.不等式5335x x -<+的非负整数解是 . 16.不等式12123x x +->的非负整数解是 . 17.不等式3(1)5(2)5x x --+…的正整数解是 . 18.不等式314x ->-的最小整数解是 . 19.不等式365x -„的最大整数解是 .20.已知不等式5(2)86(1)7x x -+<-+的最小整数解正好是方程24x a -=的解,则a 的值为 .三.解答题(共6小题)21.解不等式:5132(2)x x --…,并在数轴上表示其解集.22.解不等式2151132x x -+-„,并写出它的负整数解.23.解方程:3415252x x +--=.24.解方程: (1)714(10)3x x --=-; (2)21101211364x x x -++-=-25.解方程:(1)2(4)3(1)x x x --=-; (2)0.10.2130.020.5x x -+-=.26.已知a ,b ,c ,d 都是有理数,现规定一种新的运算:||a bad bc c d=-,例如:12||1423234=⨯-⨯=- (1)计算23||55-; (2)若3||612x x -=-,求x 的值.参考答案一.选择题(共10小题)1.若a b <,则下列各式中不一定成立的是( ) A .11a b -<-B .33a b <C .a b ->-D .ac bc <【解答】解:A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以1-,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c „时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .2.不等式313x x ->+的解集在数轴上表示正确的是( ) A . B . C .D .【解答】解:解不等式313x x ->+得,2x >, 在数轴上表示为:.故选:D .3.不等式3101x +„的解集在数轴上表示正确的是( ) A . B .C .D .【解答】解:由3101x +„,解得3x -„, 故选:C .4.不等式2133x x --…的正整数解的个数是( ) A .1个B .2个C .3个D .4个【解答】解:移项,得:2331x x --+…, 合并同类项,得:2x --…,则2x „.则正整数解是:1,2. 故选:B . 5.不等式331123x x ---<的负整数解的个数有( )个. A .1个 B .2个 C .3个 D .4个【解答】解:去分母得3(3)62(31)x x --<-, 去括号得39662x x --<-, 解得133x >-, 不等式331123x x ---<的负整数解是4-,3-,2-,1-共4个. 故选:D .6.不等式2(2)1x x --„的非负整数解的个数为( ) A .1个B .2个C .3个D .4个【解答】解:241x x --„3x „x Q 是非负整数,0x ∴=,1,2,3故选:D .7.关于x 的方程42158x m x -+=-的解是负数,则m 的取值范围是( ) A .92m >B .0m <C .92m <D .0m >【解答】解:42158x m x -+=-Q , 92x m ∴=-.Q 关于x 的方程42158x m x -+=-的解是负数, 920m ∴-<,解得92m >. 故选:A .8.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式7(8)11x x +>,则横线的信息可以是( ) A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本【解答】解:由不等式7(8)11x x +>,可得:把一些书分给几名同学,若每人分7本,则可多分8个人;若每人分11本,则有剩余; 故选:B .9.某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x 元/千克,根据题意所列不等式正确的是( )A .100(15%)1140x -…B .100(15%)1140x ->C .100(15%)1140x -<D .100(15%)1140x -„【解答】解:设售价为x 元/千克, 根据题意得:100(15%)1140x -…. 故选:A .10.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,例如131423224=⨯-⨯=-,如果2301xx->,则x 的解集是( ) A .1x > B .1x <- C .3x > D .3x <-【解答】解:由题意可得2(3)0x x -->,解得1x >. 故选:A .二.填空题(共10小题)11.x 的13与x 的2倍的和是非正数,用不等式表示为 203x +„ .【解答】解:由题意得:1203x x +„,故答案为:1203x x +„.12.请写出适合不等式1x <-的一个整数解 2- .【解答】解:适合不等式1x <-的一个整数解为2-(答案不唯一), 故答案为:2-.13.满足不等式2(9)3(1)x x +-…的负整数解 3-,2-,1- .【解答】解: 不等式2(9)3(1)x x +-…的解集为3x -…; 负整数解为:3-,2-,1-.14.不等式28x -<的负整数解的和是 6- . 【解答】解: 不等式28x -<的解集是4x >-, 则负整数解为1-,2-,3-, 所以其和为(1)(2)(3)6-+-+-=-.15.不等式5335x x -<+的非负整数解是 0,1,2,3 . 【解答】解:5335x x -<+, 移项得,5353x x -<+, 合并同类项得,28x <, 系数化为1得,4x <所以不等式的非负整数解为0,1,2,3; 故答案为0,1,2,3. 16.不等式12123x x +->的非负整数解是 0,1,2,3,4 . 【解答】解:去分母得3(1)2(21)x x +>- 去括号得3342x x +>- 移项合并同类项得5x < 非负整数解是0,1,2,3,4.17.不等式3(1)5(2)5x x --+…的正整数解是 1 .【解答】解:去括号得:335105x x --+…, 移项合并得:22x --…, 解得:1x „,则不等式的正整数解为1, 故答案为:118.不等式314x ->-的最小整数解是 0 . 【解答】解:314x ->-, 33x >-, 1x >-,所以不等式313x ->-的最小整数解是0,故答案为:0.19.不等式365x -„的最大整数解是 3 . 【解答】解:365x -Q „,356x ∴+„,113x „, 则不等式的最大整数解为3, 故答案为:320.已知不等式5(2)86(1)7x x -+<-+的最小整数解正好是方程24x a -=的解,则a 的值为 8- .【解答】解:解不等式,得3x >-, ∴最小整数解为2-,将2x =-代入方程24x a -=, 44a --=, 8a =-,故答案为8-.三.解答题(共6小题)21.解不等式:5132(2)x x --…,并在数轴上表示其解集.【解答】解:5132(2)x x --…,去括号,得51324x x --…, 移项,得52413x x --+…,合并同类项,得39x …, 未知数系数化为1,得3x …, 解集在数轴上表示:.22.解不等式2151132x x -+-„,并写出它的负整数解. 【解答】解:去分母得:2(21)3(51)6x x --+„, 去括号得:421536x x ---„,移项合并得:1111x -„, 解得:1x -…, 则负整数解为1-. 23.解方程:3415252x x +--=. 【解答】解:去分母得:5(3)2(41)25x x +--=, 去括号得:5158225x x +-+=, 移项合并得:38x -=, 解得:83x =-.24.解方程: (1)714(10)3x x --=-; (2)21101211364x x x -++-=- 【解答】解:(1)去分母得:3(7)12(10)x x --=-, 去括号得:3712120x x -+=-, 移项合并得:13130x =, 解得:10x =;(2)去分母得:4(21)2(101)3(21)12x x x --+=+-, 去括号得:842026312x x x ---=+-, 移项合并得:183x -=-, 解得:16x =. 25.解方程:(1)2(4)3(1)x x x --=-; (2)0.10.2130.020.5x x -+-=.【解答】解:(1)去括号得:2833x x x -+=-, 移项合并得:25x =-, 解得: 2.5x =-;(2)方程整理得:510223x x ---=, 移项合并得:315x =, 解得:5x =.26.已知a ,b ,c ,d 都是有理数,现规定一种新的运算:||a bad bc c d=-,例如:12||1423234=⨯-⨯=- (1)计算23||55-; (2)若3||612x x -=-,求x 的值.【解答】解:(1)根据题中的新定义得: 原式2535=-⨯-⨯ 1015=--25=-;(2)由题中的新定义化简得: 2(3)(1)6x x --⨯-=,去括号得:2336x x +-=, 移项合并得:3x -=, 解得:3x =-.。