北师大版初二(上)数学:全等三角形(学生版)

合集下载

北师版数学八年级上册精品课件2 一定是直角三角形吗

北师版数学八年级上册精品课件2  一定是直角三角形吗

A
即AB2+BC2=AC2∴△ABC是Rt△
答:船转弯后,是沿正西方向航行的。
2.如图,哪些是直角三角形,哪些不是,说说你的理由?
①②

④ ⑥

答案: ④⑤是直角三角形 ①②③⑥不是直角三角形
小结: 1、如果三角形的三边长a,b,c满足 a2 +b2=c2,那么这个三角形是直角三角形。 2. 勾股数:满足a2 +b2=c2的三个正整数,
几个直角三角形,你是如何判断的?与你的同伴交流。 易知:△ABE,△DEF,△FCB
A 2 E 2 D 均为直角三角形
1
F
由勾股定理知
4
BE2=22+42=20,EF2=22+12=5,
3 BF2=32+42=25
B
4
C ∴BE2+EF2=BF2 ∴ △BEF是直角三角形
2.一艘在海上朝正北方向航行的轮船,在航行240海里时方位
称为勾股数.
实验结果: ① 5,12,13满足a2+b2=c2,可以构成直角三角形; ② 7,24,25满足a2+b2=c2,可以构成直角三角形; ③ 8,15,17满足a2+b2=c2 ,可以构成直角三角形.
90
120
60
150
12 13
30
180
0
5
90 120
150
24
60
25
30
提问1 同学们还能找出哪些勾股数呢? 提问2 今天的结论与前面学习的勾股定理
有哪些异同呢? 提问3 到今天为止,你能用哪些方法判断一个
三角形是直角三角形呢?
例.一个零件的形状如图(a)所示,按规定这个零件中∠A和

第1章 考点01 等腰三角形与直角三角形(学生版) 新版初中北师大版数学常考考点各个击破讲义

第1章 考点01 等腰三角形与直角三角形(学生版) 新版初中北师大版数学常考考点各个击破讲义

考点1、等腰三角形与直角三角形知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩︒︒3045等腰三角形的判定及性质等边三角形的判定及性质直角三角形的判定及性质全等三角形的判定和性质等腰三角形的性质等腰三角形的判定等边三角形的性质与判定等腰三角形的分类讨论(边、角、高)直角三角形的性质与判定应用直角三角形全等的判定直角三角形中的特殊角()的应用三角形中的动态问题基础知识点重难点题型, 基础知识点知识点1.1等腰三角形的判定及性质1)等腰三角形的有关概念有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

2)等腰三角形的性质①等腰三角形的两个底角相等。

(简写成“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)3)等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简写成“等角对等边”)等腰三角形是以底边的垂直平分线为对称轴的轴对称图形1.(2020·宁波市海曙区储能学校初二期末)若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒2.(2020·哈尔滨市第三十九中学初二月考)在ABC 中,AD 是BAC ∠的平分线,且AB AC CD =+,若81BAC ∠=︒,则ABC ∠的大小为______.第2题 第3题3.(2020·内蒙古凉城·初二期末)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .4.(2020·湖南永定·期中)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE ,点D ,E 可在槽中滑动,若∠BDE=78°,则∠AOB 等于__________度.5.(2020·河北初三其他)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一点,以AD 为一边作等腰三角形,且AD AE =,连接DE ,BAC DAE ∠=∠,2CD =,3BC =.(1)如图1,当点D 在线段BC 上时,线段CE 的长为______________.(2)如图2,当点D 在BC 延长线上时,若140∠=︒,则2∠=__________.6.(2020·广东揭阳·初一期末)如图,ABC 中,AB AC =,D 是BC 中点,下列结论中不正确的是( ). A .B C ∠=∠ B .AD BC ⊥C .AD 平分BAC ∠ D .2AB BD =7.(2020·江阴市长寿中学初二月考)如图,△ABC中,AB=8,AC=6,∠ABC和∠ACB的平分线交于点O,过O点作MN∥BC,分别交AB、AC于M、N点,则△AMN的周长为___________.知识点1.2等边三角形的判定及性质1)等边三角形的有关概念等腰三角形中,有一种特殊的等腰三角形:三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

北师大版八年级数学上册知识点梳理

北师大版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。

命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。

正确的命题叫真命题,不正确的命题叫假命题。

基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。

定理:用逻辑的方法判断为正确并作为推理的根据的真命题。

注意:基本事实和定理一定是真命题。

[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。

[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形三内角和等于180°。

三角形的一个外角等于与它不相邻的的两个内角之和。

[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。

思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。

还有其它推出来的性质:全等三角形的周长相等、面积相等。

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。

北师大版八年级上册初二数学全册课件(精心整理汇编)

北师大版八年级上册初二数学全册课件(精心整理汇编)

知1-讲
导引:可以以边长为c的正方形为基础,一在形外补拼(不 重叠)成新的正方形;二在形内叠合成新的正方形.
即S:A两+S条B直=S角C边上
的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现? 知1-导
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
知1-讲
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和等于 斜边的平方.
弦c 股b
知1-讲
议一议 观察下图,判断图中三角形的三边长是否满足a2+b2=c2.
知1-讲
例1 如图是用硬纸板做成的四个两直角边长分别是a, b,斜边长为c的全等的直角三角形和一个边长为 c的正方形,请你将它们拼成一个能说明勾股定 理正确性的图形. (1)画出拼成的这个图形的示意图; (2)说明勾股定理的正确性.
新北师大版八年级上册数学
全册课件
交网本 流络课 使只件 用供来
免源 费于
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
1 课堂讲解 勾股定理
勾股定理与图形的面积
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
2

2π,
所以c2=25,a2=16.
根据勾股定理,得
b2=c2-a2=9.
所以
S3

1 2

八年级数学上册 第十一章 全等三角形测试题一(无答案)北师大版

八年级数学上册 第十一章 全等三角形测试题一(无答案)北师大版

第十一章全等三角形测试题(A )一、选择题(每小题4分,共40分)1、下列说法正确的是()A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为()F A A :2 B :3 C :5 D :2.5(第2题)BE3、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=D C A ∠C ,③BD=CD ,④AD ⊥BC 。

其中正确的个数有() A :1个 B :2个 C :3个 D :4个A E C (第4题) 4、如图:AB=AD ,AE 平分∠BAD ,则图中有()对全等三角形。

B A B C D (第3题)A :2B :3C :4D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=() A :7° B :8° C :9° D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,B ③BD=CD ,④AD ⊥BC 。

其中正确的个数有() A :1个 B :2个 C :3个 D :4个A B(第5题)D E C A F D (第6题)E ECCB(第7题)F D 7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要() A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC 8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,a B AM QN(第8题)C ③△BMP ≌△QNP ,其中正确的是()A :①②③B :①②C :②③D :①b(第9题)c 9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A :1个B :2个C :3个D :4个10、如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6C ㎝,则△DEB的周长是()DA:6㎝ B:4㎝ C:10㎝ D:以上都不对A 二、填空题(每小题4分,共40分)11、如图:AB=AC,BD=CD,若∠B=28°则∠C=;12、如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,(第10题)EABDB(第11题)CO③点P在∠AOB的平分线上。

北师大版数学《全等三角形》说课稿

北师大版数学《全等三角形》说课稿

《全等三角形》说课稿尊敬的各位评委、老师,大家好!我说课的内容是《全等三角形》。

下面我主要从教材分析、教法与学法和教学过程三个方面,与大家进行交流。

(一)教材分析。

针对教材,我对以下几方面进行了分析:一、教材的地位和作用《全等三角形》是新课标北师大版七年级数学(下)册第五章的内容,本节内容是在学生学习了线段、角、相交线、平行线以及三角形的有关概念之后引入的,它先介绍了一般图形的全等,再从一般到特殊介绍全等三角形的概念。

全等是用于证明线段相等、角相等的重要方法,是今后证明几何问题的重要工具,而且在学习过程中,通过学生动手操作,渗透全等变换的思想。

本节内容也是后面探究三角形全等条件的基础,它对知识的联系起到承上启下的作用。

二、教学目标1、在知识与技能方面:(1)了解全等三角形的相关概念,掌握寻找全等三角形对应元素的基本方法。

(2)掌握全等三角形的性质,会运用这些性质进行简单计算并能解决简单的实际问题。

2、在过程与方法方面:(1)让学生联系实际生活,通过观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应边与对应角的方法。

(2)在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。

3、在情感、态度与价值观方面:学生通过观察、发现生活中的全等图形,感受生活中的数学美,增强审美意识;在探究和运用全等三角形性质的过程中敢于阐述自己的观点,增强自信,感受成功的乐趣。

三、教学重点与难点(1)本节课的教学重点是:[探究全等三角形的性质]][掌握两个全等三角形的对应边、对应角的相规律,并且能准确地指出两个全等三角形的对应元素]对于全等三角形呈现出的各种不同的位置关系,还不能准确熟练地找出对应顶点、对应边、对应角,所以探究全等三角形对应元素的寻找方法,是一个难点。

]我采用合作探究式的教学方法,以多媒体为教学平察讨论、动手操作,引导学生发现寻找全等三角形对应元素的方法,掌握全等三角形的性质,给学生创设自主探索、合作交流、独立获取知识的时间和空间,让他们经历知识形成过程,让不同的学生在数学上得到不同的发展,使他们都能获得学习数学的兴趣和热情。

北师大版八年级数学上学期压轴题攻略专题02 勾股定理与全等三角形综合的三种考法全梳理(原卷版)

北师大版八年级数学上学期压轴题攻略专题02 勾股定理与全等三角形综合的三种考法全梳理(原卷版)

专题02勾股定理与全等三角形综合的三种考法全梳理目录【方法归纳】 (1)【考法一、勾股定理与倍长中线全等模型】 (2)【考法二、勾股定理与手拉手全等模型】 (5)【考法三、勾股定理与一线三直角全等模型】 (7)【课后练习】 (10)【方法归纳】模型1.倍长中线模型模型2.手拉手模型,如下图:模型3.三垂直全等模型,如图:【考法一、勾股定理与倍长中线全等模型】例.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若12AB =,8AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使AD DE =,连接BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB V V ≌,依据是___________.A .SSSB .ASAC .AASD .SAS(2)由“三角形的三边关系”可求得AD 的取值范围是___________.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【初步运用】(3)如图2,AD 是ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE EF =.若3EF =,2EC AE =,求线段BF 的长.【灵活运用】(4)如图3,在ABC 中,90A ∠=︒,D 为BC 中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,试猜想线段BE ,CF ,EF 三者之间的等量关系,并证明你的结论.变式1.【证明体验】(1)如图1,在ABC 中,AD 为BC 边上的中线,延长AD 至E ,使DE AD =,连接BE .求证:ACD EBD △≌△.【迁移应用】(2)如图2,在ABC 中,5AC =,13BC =,D 为AB 的中点,DC AC ⊥.求ABC 面积.【拓展延伸】(3)如图3,在ABC 中,90ABC ∠=︒,D 是BC 延长线上一点,BC CD =,F 是AB 上一点,连接FD 交AC 于点E ,若2AF EF ==,6BD =,求ED 的长.变式2.[方法储备]如图1,在ABC 中,CM 为ABC 的中线,若2AC =,4BC =,求CM 的取值范围.中线倍长法:如图2,延长CM 至点D ,使得MD CM =,连结BD ,可证明,由全等得到2BD AC ==,从而在BCD △中,根据三角形三边关系可以确定CD 的范围,进一步即可求得CM 的范围.在上述过程中,证明ACM BDM △≌△的依据是______,CM 的范围为______;[思考探究]如图3,在ABC 中,90ACB ∠=︒,M 为AB 中点,D 、E 分别为AC 、BC 上的点,连结MD 、ME 、DE ,90DME ∠=︒,若1BE =,2AD =,求DE 的长;[拓展延伸]如图4,C 为线段AB 上一点,AC BC >,分别以AC 、BC 为斜边向上作等腰Rt ACD △和等腰Rt CBE △,M 为AB 中点,连结DM ,EM ,DE .①求证:DME 为等腰直角三角形;②若将图4中的等腰Rt CBE △绕点C 转至图5的位置(A ,B ,C 不在同一条直线上),连结AB ,M 为AB 中点,且D ,E 在AB 同侧,连结DM ,EM .若5AD =,3EB =,求DAM △和EBM △的面积之差.变式3.【问题背景】(1)如图1,点P 是线段AB ,CD 的中点,求证:AC BD ∥;【变式迁移】(2)如图2,在等腰ABC 中,,AB BC BD =是底边AC 上的高线,点E 为ABD △内一点,连接ED ,延长ED 到点F ,使ED FD =,连接AF ,若BE AF ⊥,请判断AF 、BE 、BC 三边数量关系并说明理由;【拓展应用】(3)如图3,在等腰ABC 中,90,ACB AC BC ∠=︒=,点D 为AB 中点,点E 在线段BD 上(点E 不与点B ,点D 重合),连接CE ,过点A 作AF CE ⊥,连接FD ,若10,4AF CF ==,求FD 的长.【考法二、勾股定理与手拉手全等模型】例.如图,在ABC 中,以AC 为边向外作等边ACD ,以AB 为边向外作等边ABE ,连接CE 、BD .求证:BAD EAC ≌.【知识应用】如图,四边形ABCD 中,AC 、BD 是对角线,ACB △是等腰直角三角形,=45°ADC ∠,2AD =,4CD =,求BD 的长.【拓展提升】如图,四边形ABCD 中,AB AC =,90ABC ADC ∠+∠=︒,BD =,则BAC BDC ∠-∠=________.变式1.在Rt ABC 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD -=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.变式2.如图1,在Rt ABC 中,90AC BC ACB =∠=︒,,E 为AC 上一点,D 为BC 延长线上一点,且CE CD =,连接AD BE ,,并延长BE 交AD 于F .(1)求证:BF AD ⊥.(2)若点N 与C 关于直线AD 对称,连接CN ,连接AN .①如图2,作ACB ∠的角平分线CM 交BE 于点M ,连接AM .判断DAN ∠与DAM ∠的数量关系,并证明你的结论.②如图3,若14AF CN ==,,求AB 的长.变式3.如图所示,等腰直角ABC 中,90ACB ∠=︒.(1)如图1,若D 是ABC 内一点,将线段CD 绕点C 顺时针旋转90︒得到CE ,连,AD BE ,求证:AD BE =;(2)若D 是ABC 外一点,将线段CD 绕点C 顺时针旋转90︒得到CE ,且AE AB =,连结BD ,猜想:线段CD 和BD 满足什么数量关系?请在图2中画出符合要求的图形(一种即可),并在你所画图形的基础上完成证明;(3)如图,若O 是斜边AB 的中点,M 为BC 下方一点,且2OM =,7CM =,45BMC ∠=︒,则BM =___________.变式4.【探索研究】已知:ABC 和CDE 都是等边三角形.(1)如图1,若点A 、C 、E 在一条直线上时,我们可以得到结论:线段AD 与BE 的数量关系为:,线段AD 与BE 所成的锐角度数为︒;(2)如图2,当点A 、C 、E 不在一条直线上时,()1中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;【灵活运用】(3)如图3,某广场是一个四边形区域ABCD ,现测得:45m AB =,60m BC =,且30ABC ∠=︒,60DAC DCA ∠=∠=︒,试求圆形水池两旁B 、D 两点之间的距离.【考法三、勾股定理与一线三直角全等模型】例.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC =__________,BC AE =.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)如图,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;【深入探究】(3)如图,已知四边形ABCD 和DEGF 为正方形,AFD ∆的面积为1S ,DCE ∆的面积为2S ,则有1S __________2S (填“>、=、<”)(4)如图,点A 、B 、C 、D 、E 都在同一条直线上,四边形ABAH 、KCMG 、DENM 都是正方形,若该图形总面积是16,正方形KCMG 的面积是4,则HKG D 的面积是__________.变式1.(1)在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .当直线MN 绕点C 旋转到图1的位置时,请直接写出AD 、DE 、BE 之间的数量关系:______.(2)在(1)的条件下,当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.(3)类比以上解题思路,完成下面的题:如图3,已知ABC 中,90ABC ∠=︒,AB BC =,三角形的顶点在相互平行的三条直线1l ,2l ,3l 上,且1l ,2l 之间的距离为1,2l ,3l 之间的距离为3,求AC 的长.变式2.如图,用一副三角板摆放三种不同图形.在ABC 中,90ABC ∠=︒,AB CB =;DEF中,90DEF ∠=︒,30EDF ∠=︒.(1)如图1,当顶点B 摆放在线段DF 上时,过点A 作AM DF ⊥,垂足为点M ,过点C 作CN DF ⊥,垂足为点N ,请在图1中找出一对全等三角形,并说明理由;(2)如图2,当顶点B 在线段DE 上且顶点A 在线段EF 上时,过点C 作CP DE ⊥,垂足为点P ,猜想线段AE 、PE 、CP 的数量关系,并说明理由;(3)如图3,当顶点A 在线段DE 上且顶点B 在线段EF 上时,若5AE =,1BE =,连接CE ,则AEC △的面积为.【课后练习】1.阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图①,ABC 和ADE V 都是等边三角形,点D 在BC 上.求证:以DE 、CD 、BD 为边的三角形是钝角三角形.【探究发现】小明通过探究发现:连接CE ,根据已知条件,可以证明BD CE =,120DCE ︒∠=,从而得出DCE △为钝角三角形,故以DE 、CD 、BD 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.【拓展迁移】如图②,四边形ABCD 和四边形AEGF 都是正方形,点E 在BD 上.①猜想:以DE 、EF 、BE 为边的三角形的形状是________;②当2223BE ED +=时,直接写出正方形AEGF 的面积.2.如图,ABC 中,120BAC ∠=︒,AB AC =,点D 是BC 中点,MDN ∠的两边DM ,DN 分别与直线AB ,AC 交于点E ,F ,且DE DF =,连接EF(1)如图1,当点E ,F 分别在AB ,AC 上时,猜想DEF 形状是______三角形;线段AE 、AF 、AB 的数量关系是______(2)如图2,当点E ,F 分别在AB ,CA 延长线上时,上述两个结论成立吗?若成立,请完成证明;若不成立,请说明理由.(3)在(2)的条件下,6AB =①连接AD ,直接写出AED AFD S S -=△△______②当EB BD =时,求AF 的长3.已知:在Rt ABC △中,90ACB ∠=︒,BC AC =.(1)如图1,若点D 在线段AB 上,连接CD ,在CD 的右侧作CE CD ⊥,CD CE =.①线段BE 和线段AD 存在何种数量关系?请说明理由.②请直接写出线段AD 、BD 、DE 之间满足的数量关系_________.(2)如图2,若点D 在线段AB 延长线上,连接CD ,在CD 的右侧作CE CD ⊥,CD CE =,则线段AD 、BD 、CD 之间满足的数量关系是_________.(3)如图3,若点D 在直线AB 上,连接CD ,在CD 的左侧作CE CD ⊥,当3AD =,9AB =时,CDE 的面积为_________.4.在ABC 中,AB BC =,90ABC ∠︒,点E 是直线AB 上一点,作BF CE ⊥于点F ,AH BF ⊥于点H .(1)如图1,点E 在线段AB 上,BH 交AC 于点M ,若F 为MB 的中点,1BE =,则AB =______;(2)如图2,取AC 中点D ,连接DH .①若点E 在线段AB 上,求证:HF =②若点E 在直线AB 上,60CEB ∠=︒,2DH =,求AB 的长.5.【证明体验】如图1,向ABC 外作等边三角形ABD △和等边三角形ACE △,连接BE DC ,,求证:BE DC =;【思考探究】如图2,已知ABC ,以BC 为边作等边BCD △,连接AD .若60CAD ∠=︒,4=AD ,3AC =,求AB 的长;【拓展延伸】如图3,在ABC 中,8BC =,以AB 为边作等腰ABD △,AB AD =,连接CD .若10CD =,2DAB ACB ∠=∠,直接写出ABC 的面积.6.如图1,在四边形ABCD 中,,120,90AB AD BAD B ADC =∠=︒∠=∠=︒,E F 、分别是,BC CD 上的点,且60EAF ∠=︒,探究图中线段,,BE EF FD 之间的数量关系.(1)提示:探究此问题的方法是延长FD 到点G ,使DG BE =,连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌.请根据提示按照提示的方法完成探究求解过程.(2)探索延伸:如图2,若在四边形ABCD 中,,180AB AD B D =∠+∠=︒,E ,F 分别是,BC CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.(3)能力提高:如图,等腰直角三角形ABC 中,90,BAC AB AC ∠=︒=,点M ,N 在边BC 上,45MAN ∠=︒,若10,26BM MN ==,则CN 的长为.6【问题呈现】“一直线三等角”,是几何证明的常见模型.(1)如图1,ABC 和ADE V 均为等边三角形,点D 为BC 边上一个动点,4BC =,点O 为AC 边中点,连接CE ,写出图中全等的三角形______.线段OE 的最小值______.【问题探索】(2)ACB △是等腰直角三角形,90ACB CA CB ∠=︒=,,点E 是AB 上一点,45CED ∠=︒,交BC 于D .①如图①试探究AE BE EC 、、的数量关系,并给予证明;②如图②,若26AE BE ==,,点F 是BE 的中点,求CF 的长.【灵活运用】(3)如图3,四边形ABCD 中,对角线AC BD 、相交于点E ,AB AD =,150308BAD ACD ACB AC ∠+∠=︒∠=︒=,,,求四边形ABCD 的面积.7.问题探究:如图1,小明遇到这样一个问题:如图,在ABC 中,8,6,AB AC AD ==是中线,求AD 的取值范围.他的做法是:延长AD 到E ,使DE AD =,连接BE ,证明BDE CDA △≌△,经过推理和计算使问题得到解决.请回答:(1)小明证明BDE CDA △≌△的判定理由是______;(填写“ASA ”或“SAS ”)(2)AD 的取值范围是______;方法运用:(3)如图2,AD 是ABC 的中线,在AD 上取一点E ,连接BE ,使得BE AC =,延长BE 交AC 于点F .求证:AF EF =;(4)如图3,在ABC 中,90,BAC D ∠=︒为BC 的中点,90EDF ∠=︒.求证:222BE CF EF +=.8.(1)问题发现:如图1,ABC 和DCE 均为等边三角形,当DCA 应转至点A ,D ,E 在同一直线上,连接BE ,易证BCE ACD ≌,则①BEC ∠=;②线段AD ,BE 之间的数量关系;(2)拓展研究:如图2,ACB 和DCE 均为等腰三角形,且90ACB DCE ∠∠==︒,点A ,D ,E 在同一直线上,若12AE =,7DE =,求AB 的长度;(3)如图3,P 为等边三角形ABC 内一点,且150APC ∠=︒,30APD ∠=︒,4AP =,3CP =,7DP =,求BD 的长.。

北师大版8年级上册数学知识点归纳

北师大版8年级上册数学知识点归纳

北师大版八年级上册数学知识点归纳一、实数1.实数的分类:有理数和无理数。

其中,无理数包括无限不循环小数,如π和e等。

2.实数的性质:实数与数轴上的点一一对应;实数可以进行加、减、乘、除等运算,且满足结合律、交换律和分配律。

3.平方根:如果一个数的平方等于另一个数,那么这个数就是另一个数的平方根。

正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4.立方根:如果一个数的立方等于另一个数,那么这个数就是另一个数的立方根。

任何实数都有且只有一个立方根。

5.估算:通过估算比较大小,判断结果的合理性。

二、一次函数1.函数及其相关概念:在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2.函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3.函数的三种表示法及其优缺点:解析法、列表法、图像法。

— 1 —4.一次函数:形如y=kx+b(k≠0)的函数叫做一次函数。

其中k是比例系数,b是常数项。

5.一次函数的图象是一条直线,这条直线叫做一次函数的图象。

其中k表示斜率,b表示截距。

6.一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

7.一次函数的应用:解决实际问题时,首先要审题弄清题意,然后建立数学模型(一次函数关系式),最后利用一次函数的性质解决问题。

三、全等三角形1.全等三角形的定义:两个三角形如果它们的三边分别相等,那么这两个三角形全等;两个三角形如果它们的两边及其夹角分别相等,那么这两个三角形全等;两个三角形如果它们的两角及其夹边分别相等,那么这两个三角形全等。

2.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3.全等三角形的判定方法:SSS、SAS、ASA、AAS、HL。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形概念和性质1.全等形(1)定义:能够________的两个图形叫做全等形。

理解要点:图形的全等与他们的位置无关,只要满足能够完全重合即可;而完全重合包含两层意思:图形的________、________;全等形的周长、面积分别相等,但周长或面积相等的两个图形不一定全等。

(2)几种常用全等变换的方式:平移、翻折、旋转。

2. 全等三角形及相关的概念(1)全等三角形的定义:能够________的两个三角形叫做全等三角形。

(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角。

(3)全等三角形的表示方法:两个三角形全等用符号“≌”来表示,如图所示△ABC≌△DEF。

符号“≌”的含义:“∽”表示_______,“=”表示________,合起来就是形状相同,大小也相等,这就是全等。

(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB≌FDE,则AB与__、AC与__、BC与__是对应边,∠A和∠D、∠B和∠E、∠C和∠F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;③图形大小确定法:两个全等三角形的最大的边(角)是________,最小的边(角)是对应边(角)。

(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的________。

对边是与对角相对的边,对角是与边相对的角。

易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写。

3.全等三角形的性质性质:全等三角形的对应边相等,对应角相等。

还具备:全等三角形的对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的_________、_________。

易错提示:周长相等的两个三角形不一定全等,面积相等的两个三角形也不一定全等。

1.全等三角形对应角相等,对应角相等【例1】如图是“人”字形屋梁,AB=AC.现在要在水平横梁BC上立一根垂直的支柱支撑屋梁,工人师傅取BC的中点D,然后在A,D之间竖支柱AD.那么这根AD符合“垂直”的要求吗?为什么?练1.如图所示,已知:A,C,F,D四点在同一直线上,AB=DE,BC=EF,AF=DC,求证:AB∥DE.练2.已知:如图所示,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A.练3.如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A+∠D=180°.【例2】如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°练4. 如图,若△ABC≌△AEF,则对于结论:(1)AC=AF;(2)∠FAB=∠EAB;(3)EF=BC;(4)∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【例3】.如果△ABC≌△ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=______,DC=________.练5.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC=____cm.练6.(2014秋•涞水县期末)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50° B.30° C.80° D.100°【例4】如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数。

练7.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【例5】(2015凉山州一中月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A、55B、45C、30D、25 练8.(2015鹰潭一中月考)如图,△ABC≌△ADE,且∠EAB=120°,∠B=30°,∠CAD=10°,∠CFD=______°【例6】(2014湖北新县大王镇中学期中)如图,△ABD≌△CBD,若∠A=80°,∠ABC=30°,则∠ADC的度数为()160° B.110° C.140° D.120°练9.如图:△ABC≌△DEF,请根据图中提供的信息,写出x=___________.练10.(2015镇江枫叶国际学校月考)如图,已知△ABC≌△DEF,∠A=55°,∠E=50°,BC=10,CE=7,则∠D= ;∠2= ;CF= .1.(2014-2015北京七中第一学期期中)如图,已知△ABC的六个元素,则甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.(2014-2015北京市第三十一中第一学期期中考试)如图所示,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()a丙50°72°a乙50°c甲50°a c72°58°50°B3.(2014-2015北京市第四十四中学第一学期期中)如图,△ABC≌△CDA,∠BAC=85°,∠B=65°, 则∠CAD 度数为( )A. 30°B. 65°C. 40°D. 85° 4.如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是_______,图中相等的线段有___________.5.如图,在平面直角坐标系中,△OAB 的顶点坐标分别是A (-3,0),B (0,2),△OA ′B ′≌△OAB ,A ′在x 轴上,则点B ′的坐标是__________.6.已知△ABC ≌△DEF ,BC=EF=6cm ,△ABC 的面积为18cm2,则EF 边上的高的长是____cm .7.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和ACB 全等,写出所有满足条件的E 点的坐标___________.8.如图,△ABC ≌△DCB ,AC 与BD 相交于点E ,若∠A=∠D=80°,∠ABC=60°,则∠BEC 等于___________.______________________________________________________________________________________________________________________________________________________________D CA B一、选择题1.(2015太原一中月考)如图1,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°2.(2014铜仁地区五中期末)如图2,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5B.4C.3D.23.(2014•黑龙江齐齐哈尔一中)如图3,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°图1 图2 图34.(2014-2015北京市第四十一中学第一学期期中)已知:如图,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD图4 图55.已知:如图,ΔABD ≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD 二、填空题6.(2014-2015北京市第四十一中学第一学期期中)如图6,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°图67.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.8.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图99.如图9所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1010.如图10,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.11.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形12.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.113.如图13,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定图13 图14 图1514.如图14,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC 15.如图15,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°二、填空题16.如图16,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.17.已知:如图17所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图17 图16 图1818.已知:如图18,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.课程顾问签字: 教学主管签字:。

相关文档
最新文档