工程弹塑性力学-第一章

合集下载

弹性与塑性力学基础 第1章 应力分析

弹性与塑性力学基础 第1章 应力分析


1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院

弹塑性力学 第01-0章绪论

弹塑性力学    第01-0章绪论

静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。

塑性力学(一)

塑性力学(一)

(四)学习塑性力学的基本方法 塑性力学是连续介质力学的一个分支,故研 究时仍采用连续介质力学中的假设和基本方法。 (1) 受力分析及静力平衡条件(力的分析) 对一点单元体的受力进行分析。若物体受力作用 ,处于平衡状态,则应当满足的条件是什么?(静力 平衡条件)
(2) 变形分析及几何相容条件(几何分析) 材料是连续的,物体在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠”。则 材料变形时,对一点单元体的变形进行分析,应满 足的条件是什么?(几何相容条件) (3)力与变形间的本构关系 (物理分析) 固体材料受力作用必然产生相应的变形。不同的 材料,不同的变形,就有相应不同的物理关系。则对 一点单元体的受力与变形间的关系进行分析,应满足 的条件是什么?(物理条件,也即本构方程。)
(一)σ-ε曲线的简化 (二)σ-ε的关系式(分为三个不同的状态)
鉴于学习塑性力学问题的复杂性,通常在塑性理 论中要采用简化措施。为此得到基本上能反映材料的 力学性质,又便于数学计算的简化模型。 (一)σ-ε曲线的简化 理想弹塑性模型(软钢) 分段模型 大致分为两类: 连续模型 线性强化弹塑性模型 幂次强化模型 R-O模型
(6)包氏效应
卸载后,如果进行反向加载 (拉伸改为压缩)首先出现压缩 的弹性变形,后产生塑性变形, 但这时新的屈服极限将有所降 低,即压缩应力应变曲线比通常 的压缩试验曲线屈服得更早了。 这种由于拉伸时的强化影响到压 缩时的弱化现象称为包辛格 (Bauschinger)效应 (一般塑性理 论中都忽略它的影响) 。
小结: 由两个实验我们得到了四个结论: 1)应力-应变关系不再一一对应,且一般是非线性 的。 2)应力-应变的多值性。(出现卸载时) 3)在静水压力作用下,体积的改变都是弹性变形, 没有塑性变形。 4)在静水压力作用下,材料的塑性行为不受影响。

弹塑性力学第01章

弹塑性力学第01章

学习目的
弹性力学的研究方法决定了它是一门基础理论课程,而 且理论直接用于分析工程问题具有很大的困难。原因主要是 它的基本方程-偏微分方程边值问题数学上求解的困难。由 于经典的解析方法很难用于工程构件分析,因此探讨近似解 法是弹性力学发展中的特色。近似求解方法,如差分法和变 分法等,特别是随着计算机的广泛应用而发展的有限元方法, 为弹性力学的发展和解决工程实际问题开辟了广阔的前景。 弹性力学课程的主要学习目的是使学生掌握分析弹性体 应力和变形的基本方法,为今后进一步的研究实际工程构件 和结构的强度、刚度、可靠性、断裂和疲劳等固体力学问题 建立必要的理论基础。

钱学森,著名科学家。我国 近代力学事业的奠基人之一。 在空气动力学、航空工程、 喷气推进、工程控制论、物 理力学等技术科学领域做出 许多开创性贡献。为我国火 箭、导弹和航天事业的创建 与发展做出了卓越贡献,是 我国系统工程理论与应用研 究的倡导人。1991年10月 16日,国务院、中央军委 授予钱学森"国家杰出贡献 科学家"荣誉称号和一级英 雄模范奖章。
粘弹性?
§1-2 弹塑性力学的研究内容
弹塑性力学是固体力学的一个重要分支, 是研究弹性和弹塑性物体变形规律的一门学 科,它推理严谨,计算结果准确,是分析和 解决许多工程技术问题的基础和依据。
目录
CH1 绪论 CH2 弹性力学基本理论 CH3 弹性力学平面问题 CH4 弹性力学空间问题 CH5 薄板的小挠度弯曲 CH6 弹性力学问题的变 分解法 CH7 简单应力状态下的弹 塑性问题 CH8 应力应变分析和屈服 条件 CH9 塑性本构关系 CH10 简单弹塑性问题 CH11 理想刚塑性体的平 面应变问题 CH12 结构的塑性极限分 析

弹塑性力学第一章弹塑性力学绪论资料

弹塑性力学第一章弹塑性力学绪论资料
弹塑性力学的主要内容包括以下两部分。
1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。

《弹塑性力学》第一章 绪论.ppt

《弹塑性力学》第一章 绪论.ppt

2021/3/11
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
2021/3/11
假设4:应力与应变关系为线性。此假设适 用于线弹性理论。
2021/3/11
13
§1-2 基本假设和基本规律
2.2 基本规律
完成弹塑性力学任务所要遵循的三个基 本规律(或应满足的三方面的条件):
1. 平衡规律:固体受到外力与自身的内力要 满足平衡方程,在弹性理论中它们为微分方 程(3个)。
2021/3/11
矢量的符号记法。 矢量也可以用它的标量表示:
x3 r
3
r r1e1 r2e2 r3e3 ri ei
e3 x2
i 1
x1 e1 e2
2021/3/11
20
§1-5 笛卡尔坐标系下的矢量、张
量基本知识
其中 e1、e2、e3为坐标的基方向(单位向量),
r1、r2、r3为r在坐标轴的投影(分量),都有
14
§1-2 基本假设和基本规律
2. 几何连续性规律:要求变形前连续的物 体,变形后仍为连续物体,由这个规律建立 几何方程(6个)或变形协调方程,均为微 分方程。
2021/3/11
15
§1-2 基本假设和基本规律
3. 物理(本构)关系:应力(内力) 与应变(变形)之间的关系,据材料的 不同性质 来建立,最常见的为各向 同性材料。
2021/3/11
3

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

,而应变
,试证明当体积不变
证毕!
5.3 对于线性弹塑性随动强化模型,若 (1)、已知给定应力路径为 (2)、已知给定应变路径为
,试求 ,求对应的应变值。 ,求对应的应力值。
(1)解:①、 , ;②、

③、 ,
;④、

⑤、 ,
(2)解:①、 , ;②、

③、 ,

④、

⑤、 ,
5.4 在拉伸试验中,伸长率为
Mises 屈服条件:
故有
6.5 试用 Lode 应力参数 表达 Mises 屈服条件。 解:由定义:
即 Mises 屈服条件为 将上式代入,得:
即:
6.6 物体中某点的应力状态为
,该物体在单向拉伸

,试用 Mises 和 Tresca 屈服条件分别判断该点是处于弹性
状态还是塑性状态,如主应力方向均作相反的改变(即同值异号),则对被 研究点所处状态的判断有无变化? 解:(1)Mises 屈服条件判断
6.8证明下列等式: (1)、 证明:(1)、右边
(2)、
=左边
证毕!
(2)、
证毕!
6.9 设 、 、 为应力偏量,试证明用应力偏量表示 Mises 屈服条件时,其形式为
,提示:
证明:Mises 屈服条件:


又 又
证毕!
第七章 塑性本构关系
7.1 塑性全量理论的成立条件: 解:(1)应力主方向与应变主方向是重合的,即应力 Mohr 圆与应变 Mohr 圆相 似,应力 Load 参数 和应变 Load 参数 相等,而且在整个加载过程中主方向
力为多大,并求此时塑性应变增量的比。
解:设扭转剪应力 入 Mises 屈服条件,得

塑性力学-第一章

塑性力学-第一章

σdσ≥0 σdσ<0
dσ=Etdε dσ=Edε
弹性变形有以下特点: (1)弹性变形是可逆的。物体在变形过程中,外力所做的功以 能力(应变能)的形式储存在物体内,当卸载时,弹性应变 能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线 弹性变形阶段,应力和应变成线性比例关系; (3)对材料加载或卸载,其应力应变曲线路径相同。因此,应 力与应变是一一对应的关系。
塑性变形有以下特点:
(1)塑性变形不可恢复,所以外力功不可逆,塑性变形的产生必定 要耗散能量(称耗散能或形变功); (2)在塑性变形阶段,其应力应变关系是非线性的。由于本构方程 的非线性,所以不能使用叠加原理。又因为加载与卸载的规律不 同,应力与应变之间不再存在一一对应的关系,即应力与相应的应 变不能唯一地确定,而应当考虑加载路径(或加载历史); (3)在载荷作用下,变形体有的部分仍处于弹性状态称弹性区,有的 部分已进入了塑性状态称塑性区。在弹性区,加载与卸载都服从广 义胡克定律。但在塑性区,加载过程服从塑性规律,而在卸载过程 中则服从弹性的胡克定律,并且随着载荷的变化,两区域的分界面 也会发生变化; (4)依据屈服条件,判断材料是否处于塑性变形状态。
①结构的塑性极限分析和安定分析,对梁、桁架、刚架、拱、排架、圆 板、矩形极、柱壳、球壳、锥壳、组合壳等都已获得完全解。 ②构件的塑性极限分析和安定分析,已求出各种带有缺口、槽、孔的受 拉、受弯、受扭轴和构件的塑性极限载荷。 ③金属板料成形,包括深冲、翻边、扩口、缩口等工艺。 ④金属块体成形,包括镦粗、拉拔、挤压、锻造等工艺。 ⑤金属轧制,金属材料在两个反向旋转的轧辊间通过,并产生塑性变形。 ⑥塑性动力响应和塑性波,在防护工程、地震工程、穿甲和侵彻,高速成 形,超高速撞击、爆炸工程等方面都有重要应用。 ⑦自紧技术,通过使结构产生有益的残余应力,以增强厚壁圆筒弹性强度 和延长疲劳寿命。 ⑧在岩土力学中,用以研究地基承载能力、边坡稳定性、挡土墙的作用和 煤柱的承载能力。 ⑨用以研究估算和消除残余应力的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采用张量下标记号
( ij dij )l j 0 (1.9)
Kroneker delta记号
1.1 应力张量
dij记号:Kroneker-delta记号
d ij
1, 0,
i i
j j
采用张量表示
方向余弦满足条件:
1 0 0
dij 0 1 0 (1.10)
0 0 1
l12 l22 l32 1 (1.11)
l2
11 1
l2
22 2
l2
33 3
212l1l2
2 23l2l3
2 31l3l1
(1.5)
斜截面OABC上的剪应力:
N
SN2 1
SN2 2
S
2 N
3
2 N
(1.6)
1.1 应力张量
3).主应力及其不变量
主平面:剪应力等于零的截面 主应力--λ:主平面上的正应力
SSNN21
l1 l2
(1.7)
0.3 几个基本概念
下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区
别该张量的所有分量。这种表示张量的方法,就称为下标记号法。
(x, y, z) (x1, x2, x3) xi (i 1, 2,3)
xx , xy , xz , yx , yy , yz , zx , zy , zz , ij (i, j x, y, z)
xy x xy xz
zx
y yx
B
A
z
y
用张量下标记号法
O
一点的应力状态
11 12 13
x
ij 21
22
23
(1.2)
数学上,在坐标变换时,服从一
31 32 33
下标即1、x、2、y、3表z方示向坐标x1、x2、x3
定坐标变换式的九个数所定义的
量叫做二阶张量。
1.1 应力张量
2).一点斜面上的应力(不计体力)
自由标号: 不重复出现的下标符号,在其变程N(关于三维空间N=3)
内分别取数1,2,3,…,N
哑标号:
重复出现的下标符号称为哑标号,取其变程N内所有分量, 然后再求和,也即先罗列所有各分量,然后再求和。
0.3 几个基本概念
求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程
N中所有的值然后求和,这就叫做求和约定。
2 、杨桂通
《弹塑性力学》
3 、徐秉业
《应用弹塑性力学》
第一章 弹塑性力学基础
1.1 应力张量 1.2 偏量应力张量 1.3 应变张量 1.4 应变速率张量 1.5 应力、应变 Lode参数
1.1 应力张量
1).一点的应力状态
n
lim
A0
pn A
正应力
n
lim
A0
ps A
剪应力
过C点可以做无 穷多个平面K
j 1
S
N
2
21l1
22l2
23l3
3
2 jlj
(1.3)
j 1
3
S
N
3
31l1 32l2 33l3
3 jlj
j 1
SNi ijl j (1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
N SN1l1 SN 2l2 SN 3l3
P
P
研究方法: 研究任务: 学习目的:
材料力学、结构力学:简化的数学模型
弹塑性力学:较精确的数学模型
建立并给出用材料力学、结构力学方 法无法求解的问题的理论和方法。
给出初等理论可靠性与精确度的度量。
确定一般工程结构的弹塑性变形与内 力的分布规律。 确定一般工程结构的承载能力。 为研究一般工程结构的强度、振动、 稳定性打下理论基础。
斜截面外法线n的方向余弦:
cos(n, cos(n,
x1 x2
) )
l1 l2
令斜截面ABC 的面积为1
SOBC SOAC
1 cos(n, x1) 1 cos(n, x2 )
l1 l2
cos(n, x3) l3
SOAB 1 cos(n, x3 ) l3
3
SN1 11l1 12l2 13l3 1 jl j
3 )l22
1 2
(
2
3 )]
0
1.1 应力张量
最大最小剪应力:
l1 ( 1
3
)[(1
3
)l12
(
2
3
)l22
1 2
(1
3
)]
0
l2
(
2
3
)[(1
3
)l12
(
2
3 )l22
1 2
(
2
3
)]
0
它们分别作用在 与相应主方向成 45º的斜截面上
l1
0
及l2
0
第一组解:l1
2 2
; l2 0 ; l3
八个面组成的图形,称为八面体。
1
• 八面体的法线方向余弦:
l1 l2 l3 l12 l22 l32 1
l1 l2 l3 1 / 3 (1.19)
或 arccos(l1) arccos(l2) arccos(l3) 5444'
• 八面体平面上应力在三个坐标轴上的投影分别为:
P1 1l1 1 / 3, P2 2l2 2 / 3, P3 3l3 3 / 3 (1.20)
1 3
(12
2 2
2 3
)
(1.22)
• 八面体面上的剪应力为:
8
F8
2
2 8
1 3
(12
2 2
2 3
)
1 9
(1
2
3 )2
1 3
(1 2 )2 ( 2 3 )2 ( 3 1)2
2 3
J12 3J2
(1.23)
1.1 应力张量
例题: 已知一点的应力状态由以下一组应力分量所确定, 即x=3, y=0, z=0,
J1 11 22 33 kk
是关于λ的三次方程,它的三个根,即为三个主 应力,其相应的三组方向余弦对应于三组主平面。
式中:
J2
11 21
12 22
22 32
23 33
33 13
31 11
1 2
(ii kk
ik ki
)
(1.15)
11 12 13 J3 21 22 23 ij
31 32 33
代入式(1.14)后得:
3 3 2 6 8 0 ( 4)( 1)( 2) 0
解得主应力为: 1 4; 2 1; 3 2;
1.2 应力偏量张量
1).应力张量分解
物体的变形
体积改变 形状改变
球应力状态/静水压力
由各向相等的应力状态引起的
弹性性质
材料晶格间的移动引起的
~力学的语言 z
O
x
不同的面上的应 力是不同的
n
C
A n
y
到底如何描绘一 点处的应力状态?
1.1 应力张量
C
z
一点的应力状态可由过该点的微小
正平行六面体上的应力分量来确定。
应力张量
ij yxx
xy y
xz yz
(1.1)
zx zy z
z
zx
zy yz
y
yx xz x
yz P zy
3 、张量函数的求导
aijbkl Cijkl
张量导数就是把张量的每个分量都对坐标参数求导数。
ui,i
ui xi
u1 x1
u2 x2
u3 x3
ui, jk
2ui x j xk
2ux x jxk
, 2uy x jxk
, 2uz x jxk
0.4 主要参考书目
1 、Y.C.Fung(冯元桢)
《Foundations of Solid Mechanics》 《固体力学导论》 《A first course in continuum mechanics 》《连续介质力学导论》
1.1 应力张量
3
八面体(每个坐标象限1个面)
4).八面体上的应力
• 八面体面上的正应力为:
2
8 P1l1 P2l2 P3l3 1l12 2l22 3l32
1 3
(1
2
3
)
1 3
J1
(1.21) 平均正应力
1
• 八面体面上的应力矢量为:
F8 2 P12 P22 P32 (1l1)2 ( 2l2 )2 (3l3 )2
lili 1
(1.12)
联合求解 l1,l2,l3:
(11 )l1 12l2 13l3 0
21l1 31l1
( 22 )l2 23l3 32l2 (33 )l3
0 0
l12 l22 l32 1
l1,l2,l3不全等于0
11 21 31
12 22
32
塑性性质
ij
d ij
Sij
(1.32)
球形应力张量
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
代入
SSNN21
相关文档
最新文档