椭圆第二定义

合集下载

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

高二数学椭圆的第二定义

高二数学椭圆的第二定义
y
l2
M d
H
左准线
xa c
2
F1左焦点
o
F2
x
右焦点
右准线 2
x
a
c
例1.点P与定点A(2,0)的距离 和它到定直线x=5的距离的比是1:2, 求点P的轨迹;
注意:1、定点必须在直线外。 2、比值必须小于1。 3、符合椭圆第二定义的动点轨迹肯定 是椭圆,但它不一定具有标准方程形式。 4、椭圆离心率的两种表示方法:
动画演示
四、椭圆的离心率
c 离心率:椭圆的焦距与长轴长的比:e a 叫做椭圆的离心率。 y
1、离心率的取值范围: 因为 a > c > 0,所以1 >e >0 2、离心率对椭圆形状的影响:
o x
1)e 越接近 1,c 就越接近 a,从而 b就越小(?),椭圆 就越扁(?)
2)e 越接近 0,c 就越接近 0,从而 b就越大(?),椭 圆就越圆(?) 3)特例:e =0,则 a = b,则 c=0,两个焦点重合,椭 圆方程变为(?) 动画演示
复习回顾
y
o
x
一、椭圆的范围
x y x 2 1 2 由 2 a a b
即 x a和 y b 说明:椭圆位于直 线X=±a和y=±b所 围成的矩形之中。
2 2
2
y 1 和 b
y
2
2
1
o
x
二、椭圆的对称性
方程:
x2 a2
y
b2 1(a b 0)
o xy23、对来自性:c 椭圆上任意一点P至焦点F的距离 e a P至与F 对应的准线的距离
准线方程为:
a x
2
椭圆焦点在x轴

高二数学椭圆的第二定义

高二数学椭圆的第二定义

3 MF 1 2 MA 的最小值是11
B 1. 过椭圆左焦点F 倾斜角为60O的直线交椭圆于A ,
两点, FA 2 FB ,求椭圆的离心率。
, ,,
x2 2 y 1 过左焦点 F 作倾斜角为 2 .已知椭圆 9 B ,求弦AB 的长。 30O的直线交椭圆于 A ,
解: a 3, b 1, c 2 2 F (2 2,0)
MA MF2
3 MF1 2 MA
解:椭圆的方程为
() 1 MF1 MF2 6 MF2 6 MF 1 MA MF2 6 MA MF 1
p p 2 l2 : x e F1 (2,0) F2 (2, 0) l1 : x 2 2 3
x y 1 9 5
复习
椭圆的第二定义 平面内到定点F的距离与到定直线 之比是一个常数e的点的轨迹 MF c M e d M l 当
l
的距离
0 e 1
时,是以F为一个焦点的椭圆,
常数e是它的离心率,定直线
l
是相应于焦点F的准线。
椭圆
x2 y2 2 1 2 a b
3 直线AB : y ( x 2 2) 3 3 y ( x 2 2) 3 4 x 2 12 2 x 15 0 2 x y2 1 9
,
48 0
设A( x1 , y1 ) B( x2 , y2 ) x1 x2 3 2 15 x1 x2 4
1 AB 1 x1 x2 3 2
小结
x2 y 2 椭圆 2 2 1 上一点 P( x0 , y0 ) 焦点 F1 (c,0) F2 (c, 0) a b

高二数学椭圆的第二定义

高二数学椭圆的第二定义

椭圆的第二定义
例1:设M(x,y)与定点F(c,0)的距离和它到直线
c a2 l: x 的距离的比是常数 ,求点M的轨迹。 a c
y
l
M d
H
o
F
x
椭圆的第二定义:点M与一个定点距离和它到 一条定直线距离的比是一个小于1的正常数, 这个点的轨迹是椭圆。定点是椭圆的焦点。 定直线叫椭圆的准线,常数e是椭圆的离心率。 l1
y
l2
M d
H
左准线
xa c
2
F1左焦点
o
F2
x
右焦点
右准线 2
x
a
c
例1.点P与定点A(2,0)的距离 和它到定直线x=5的距离的比是1:2, 求点P的轨迹;
注意:1、定点必须在直线外。 2、比值必须小于1。 3、符合椭圆第二定义的动点轨迹肯定 是椭圆,但它不一定具有标准方程形式。 4、椭圆离心率的两种表示方法:
复习回顾
y
o
x
一、椭圆的范围
x y x 2 1 2 由 2 a a b
即 x a和 y b 说明:椭圆位于直 线X=±a和y=±b所 围成的矩形之中。
2 2
2
y 1 和 b
y
2
2
1
o
x
二、椭圆的对称性
方程:
x2 a2
y
b2 1(a b 0)
o x
y2
3、对称性:
c 椭圆上任意一点P至焦点F的距离 e a P至与F 对应的准线的距离
准线方程为:
a x
2
椭圆焦点在x轴
c
椭圆焦点在y轴
ya c
2
例2.设AB是过椭圆右焦点的弦,那么以 AB为直径的圆必与椭圆的右准线( ) A.相切 B.相离 C.相交 D.相交或相切

椭圆性质第二定义及焦半径

椭圆性质第二定义及焦半径
椭圆性质第二定义及焦半 径
• 椭圆性质第二定义 • 焦半径 • 椭圆的焦点性质 • 椭圆与焦半径的关系 • 椭圆的实际应用
01
椭圆性质第二定义
椭圆的第二定义
椭圆上任一点P到两个焦点F1和F2的 距离之和等于常数,即PF1+PF2=2a。
椭圆上任一点P到两个焦点F1和F2的 乘积最小值为0,即PF1*PF2=0。
焦半径的几何意义
01
连接椭圆上任意一点与两个焦点形成的线段即为焦半径。
02
焦半径是确定椭圆形状和大小的重要参数,通过焦半径可 以计算出椭圆的离心率、偏心率等参数。
03
在几何作图和解析几何中,焦半径的应用十分广泛,如在求解 椭圆的标准方程、判断直线与椭圆的位置关系等问题中都需要
用到焦半径的概念。
03
详细描述
在桥梁设计中,桥梁的承重结构常常采用椭圆形截面,这是因为椭圆具有较高的承载能力和稳定性。在建筑结构 分析中,椭圆的性质可用于分析结构的受力情况和稳定性,从而提高建筑的安全性和可靠性。
THANKS
感谢观看
焦半径与椭圆方程的关系
总结词
焦半径与椭圆的方程之间存在一定的关系,通过椭圆的方程可以推导出焦半径的表达式。
详细描述
椭圆的方程通常表示为x²/a²+y²/b²=1,其中a和b分别表示长半轴和短半轴的长度。通 过椭圆的方程,我们可以推导出焦半径的表达式。对于椭圆上的任意一点P(x0,y0),其 到两个焦点的距离PF1和PF2可以通过椭圆的方程计算得出。具体来说,PF1=a+ex0, PF2=a-ex0,其中e为离心率。因此,通过椭圆的方程可以方便地计算出焦半径的值。
VS
椭圆上任一点P到两个焦点的乘积最 小值为0,即PF1*PF2=0。这意味着 在椭圆上任意一点与两焦点形成的角 都是直角,即椭圆上任意一点与两焦 点构成的线段互相垂直。

高二数学椭圆的第二定义

高二数学椭圆的第二定义
3x 4 y 8 表示什么曲线? 25
x2 y2 1 上一点M 到左焦点的距离是3, 3 . 椭圆 25 16
求它到右准线的距离。

x2 y 2 c 1 M ( x , y ) e 例1. 设 上的一点, 0 0 是椭圆 2 2 a a b
F1 (c,0) F2 (c, 0) 记r1 MF1 r2 MF2
MA MF2
M
A
3 MF1 2 MA
F1
O
F2
X
解:椭圆的方程为
() 1 MF1 MF2 6 MF2 6 MF 1 MA MF2 6 MA MF 1
p p 2 l2 : x e F1 (2,0) F2 (2, 0) l1 : x 2 2 3
1 AB 1 x1 x2 2 3
小结
x2 y 2 椭圆 2 2 1 上一点 P( x0 , y0 ) 焦点 F1 (c,0) F2 (c, 0) a b

c 离心率 e a
d P l1
a2 a2 a2 x0 x0 d P l x0 2 c c c
3 直线AB : y ( x 2 2) 3 3 y ( x 2 2) 3 4 x 2 12 2 x 15 0 2 x y2 1 9
,
48 0
设A( x1 , y1 ) B( x2 , y2 ) x1 x2 3 2 15 x1 x2 4
r2 PF2
2 a2 a 准线l1 : x l2 : x c c
两焦半径r 1 PF 1
() 1 r1 r2 2a
r1 r2
F1 F2 c e a r1 r2

8.2椭圆的第二定义

8.2椭圆的第二定义
| PF 1 | max a c
说明:|PF1|, |PF2|称为椭圆的焦半径,此公式称为焦半径公式
例3 椭圆 x 2 4 y 2 4 上点 P 到右焦点的距离为
左准线的距离 .
1,求点 P 到
l '
x y2 1 4
a b
2 2
y
d'
P d F2
l
解: 原方程化为
2
a 2 , 1, b c
3
F1O
2
.
.
x
2
设 P 到左、右准线距离分别
为 d ' 、 d,
由椭圆的第二定义得: 则
d | PF 2 | e
| PF 2 | e d
x a c
x a c
1 2 3 3 2
两准线间的距离

a ( a ) 2 4 8 c c 3 3
2
2
d' 6 2 3 . 3
椭圆的第二定义
小桥中学
邓力山
根据的
x a
2 2

y b
2 2
1(a b 0) 性质说出
2 2
y a
2 2

x b
2 2
1(a b o) 的性质 y a
2 2
方程 图 形
范围 对称性 顶点 离心率
x a

y b
2 2
1(a b 0)

x b
2 2
1(a b o)
定点是椭圆的焦点,定 常数 e 是椭圆的离心率 . 直线叫做椭圆的准线,
(0 e 1),则这个点的轨迹是椭圆 .
椭圆的离心率就是椭圆上的一点 到焦点的距离 与到相应准线 的距离的比, 这就是离心率的几何意义。

高二数学椭圆的第二定义

高二数学椭圆的第二定义
r2 PF2
2 a2 a 准线l1 : x l2 : x c c
两焦半径r 1 PF 1
() 1 r1 r2 2a
r1 r2
F1 F2 c e a r1 r2
y
N1 K1 P
B2
O F2
(2) e d P l1 d P l2
r1 ed P l1 a ex0 r ed a ex 2 P l 0 2
MA MF2
M
A
3 MF1 2 MA
F1
O
F2
X
解:椭圆的方程为
() 1 MF1 MF2 6 MF2 6 MF 1 MA MF2 6 MA MF 1
p p 2 l2 : x e F1 (2,0) F2 (2, 0) l1 : x 2 2 3
1 2
4. P103 习题8.2
9 ,10







;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (2) 椭圆的长轴 椭圆的长轴100等分,过每个分点作长轴 1A2 等分, 等分 过每个分点作长轴A • 的垂线交椭圆的上半部于 1、B2、…B99,求 的垂线交椭圆的上半部于B • |A1P|+|B1P|+|B2P|+…+|B99P|+|A2P| y • y
A o B P x BB2 1
A1 o
N
M F1 o x
y=a2/c
F2 •
y
M
Байду номын сангаас•P
o x
F1 •
• 径|F2P|=a -ey,|F1P|=a+ey ,
y=-a2/c
N


x2 + y2 =1, 点 P(1,0)。 4 例题 已知椭圆 — , , 。 2 (1)求过点 ,倾角为 o的直线被椭圆截得的弦长。 求过点P,倾角为45 的直线被椭圆截得的弦长。 求过点
• 过焦点的直线交椭圆于 • M(x1,y1),N (x2,y2) , • 线段 线段MN称焦点弦。 称焦点弦。 称焦点弦 • |MN|=2a-e(x1+x2)。 。 • 问题 证明椭圆 x2 + — =1 上任意三点 y2 • — a2 b2 • 的横坐标 成等差数,则 成等差数,
y M L
o
F2
• 椭圆第二定义 圆锥曲线统一定义 椭圆第二定义(圆锥曲线统一定义 圆锥曲线统一定义)
• 一个动点M与定点 , 的距离和它与直线 一个动点 与定点F(c,0)的距离和它与直线 与定点 a2 的距离的比是常数 c (a>c>0)。求点 的轨迹。 • x= — — 的轨迹。 。求点M的轨迹 a c a2 • 分析解答: 分析解答: x= — • 在已知直角坐标系中,设 在已知直角坐标系中, • M(x,y)为轨迹上任意一点。 , 为轨迹上任意一点。 为轨迹上任意一点 √(x-c)2+y2= — ⇒ • ———— c a a2 - x| |— c • (a2-c2)x2+a2 y2=a2(a2-c2) x2 y2 • 设b2=a2-c2代入,两边同除 2b2得标准方程 — + — =1 代入,两边同除a a2 b2
y

N
x
P1
P2 P 3
x1 o x2 F2 x3 x • 它们的焦半径也成等差 • 数列。 数列。 • x1+x3=2x2 |P1F2|+|P3F2|=2a-e(x1+x3)=2(a-ex2)=2|P2F2|
y
a2 • 3 F1(-c,0)是左焦点,x=- — 是左焦点, , 是左焦点 c • 是左准线,M(x,y)是椭圆上 是左准线, , 是椭圆上 c a2 )|= • 一点,|MF1|= —|x- (- — 一点, a c • a+ex。 。 • 如右图,焦点在y轴上的 如右图,焦点在y轴上的 y2 x2 a2 • 椭圆 — + — = 1,准线 ± — ,准线y=± 2 2 c a b • P(x,y), 是椭圆上的点,焦半 , , 是椭圆上的点,
• 焦半径的长是定义在 ,a]上的一次减函数,当x=-a 焦半径的长是定义在[-a, 上的一次减函数 上的一次减函数, • 时,即点M在左顶点,焦半径最大,长为 在左顶点, 即点 在左顶点 焦半径最大,长为a+c 当x=a
• 时,点M在右顶点,焦半径最小,长为 。 在右顶点, 在右顶点 焦半径最小,长为a-c。
B99
• P
A2 x

• • • • • • •
分析: 先判断点 是否焦点,因为a , 先判断点P是否焦点 分析:(1)先判断点 是否焦点,因为 2=2,b2=1, , 所以c=1,点P是右焦点,所求的弦是焦点弦 。 是右焦点, 所以 , 是右焦点 所求的弦是焦点弦AB。 x2+2y2=2与y=x-1联立消去 ,得3x2- 4x=0 , 联立消去y, 与 联立消去 |AB|=2a-e(x1+x2)=2 √2 -(4/3)• √2/2 =4√2/3 √ (2) “等分长轴”,分点的横坐标依次组成一个等 等分长轴” 等分长轴 差 数列,它对应的焦半径|A , 数列,它对应的焦半径 1P|,|B1P|,|B2P|,…, , , , |B99P|,|A2P|也组成一个等差数列, 首项是 也组成一个等差数列, , 也组成一个等差数列 首项是a+c, , 最后一项是a-c 最后一项是 ( a-c) (a+c)+
2 • S101= —————— •101=101a=101√2 √ • 注意:求焦点弦长有多种方法, 注意:求焦点弦长有多种方法,但是对于不是焦 • 点弦不能用第二定义。 点弦不能用第二定义。
y c M

o
N
F

x
• 结论与应用: 结论与应用:
• • • • • • • • 1. “轨迹”的方程是椭圆的标准方程,于是“到 轨迹”的方程是椭圆的标准方程,于是“ 轨迹 一 个定点与到一条定直线的距离的比等于e 个定点与到一条定直线的距离的比等于 (0<e<1)的 的 动点的轨迹”也可以作为椭圆的定义,即第二定义。 动点的轨迹”也可以作为椭圆的定义,即第二定义。 y L 这个定点是焦点,定直线叫做准线。 这个定点是焦点,定直线叫做准线。 M • 2. F2(c,0)是右焦点, 是右焦点, , 是右焦点 M(x,y)是椭圆上任意一点, 是椭圆上任意一点, , 是椭圆上任意一点 • o F2 x 线段MF2称焦半径 c 线段 a2 c a |MF2 |=| — - x| — =a-ex
相关文档
最新文档