2019-2020年九年级上学期第四次限时训练数学试题.docx

合集下载

2019-2020年九年级第四次模拟考试数学试题(I)

2019-2020年九年级第四次模拟考试数学试题(I)

2019-2020年九年级第四次模拟考试数学试题(I)考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满分为150分,考试时间为120分钟.2.请将班级、姓名、学号分别填写在答题卷的规定位置上.3.将试题卷II的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷II 各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.抛物线的顶点坐标为.试题卷Ⅰ一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.的绝对值为( ▲ )A. B. C. D.2.计算:的结果是( ▲ )A B C D3.如图所示的几何体的俯视图是( ▲ )(A)(B) (C) (D)A B C D正面4.当<1时,化简的结果为(▲ )A. -1B. --1C. 1-D. +15.直线与半径为的圆O相交,且点O到直线的距离为5,则的取值范围是(▲ )A. B. C. D.6.若,则关于的一元二次方程的根的情况是(▲ )A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.无法判断7.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有(▲ )个.A. 100个 B.90个 C.80个 D.70个8.把多项式1-x2+2xy-y2分解因式的结果是 ( ▲ )A. B.C. D.9.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ▲ )A. cmB. 9 cmC. cmD.cm10.已知圆的半径为10cm ,如果一条直线上的个一点P 和圆心O 的距离为12cm ,那么这条直线和这个圆的位置关系是( ▲ )A .相离B 相交和相切C 相交D 都可能11.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形 ( ▲ )A .AE=CFB .DE= BFC .∠ADE=∠CBFD .∠AED=∠CFB12.两块非等腰的三角板(△ABC 和△DEC ),摆在同一个平面内,其中∠ACB 和∠ECD 是直角,且∠CAB 和∠CDE 为30度,点F ,G ,H 分别为边BD 、AB 、AE 上的m 等分点,即BF :BD=BG :AB=EH :AE=1:m ,连结FG 、HG ,则FG :HG=( ▲ )A .B .C .D . 试 题 卷 Ⅱ 二、填空题(每小题4分,共24分) 13.已知,化简的结果是 ▲ .14.如右图,AB 是⊙O 直径,CD 是弦.若AB =85,CD =75,那么A 、B 两点到直线CD 的距离之和为 ▲ .15.中国xx 年的GDP 有568845亿元,取三位有效数字是 ▲ 元(用科学计数法表示).16.已知方程组的解满足,则m 的取值范围是 ▲ .17.若M 、N 、P 三点都在函数(k<0)的图象上,则将的从大到小排列为 ▲ .18.如果两个多边形的每个对应角相等,每条对应边成比例,那么我们就称这两个多边形相似,相似的两个矩形中心重合, 如图放置在第一象限,他们的长(较长边)与宽(较短边)之比为,且他们的长与宽分别与x 轴和y 轴平行,直线分别交两个矩形的边于点P ,Q ,M ,N ,则线段PQ 与MN 之比为▲ .(用表示)三、解答题(本大题有8小题,共78分) 19.(本题6分)解分式方程:20.(本题10分)某校为了解“课程选修”的情况,对最有代表性的初二年级报名情况A xCAEBD F O 第11题图第11题 第9题进行调查,下面是参加 “ 艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(本校学生每人限报一门且必须选报一门)根据收集的数据绘制的不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)请你估计该校(初一到初三)共有 ▲ 名学生,扇形统计图中“艺术鉴赏”部分的圆心角是 ▲ 度.(2)请把这个条形统计图补充完整. (3)若参加艺术鉴赏、科技制作、数学思维、阅读写作分别需要人均经费每学期40元,50元,20元,和10元,请你估计该校要为这些选修课人均准备多少元的预算?21.(本题10分)如图:两个圆形的转盘A 和B ,分别被平分成五等分和四等分,各自中间的指针随机地旋转,(1)画树状图或者列表说明,两个转盘指针所对应的数字之和为5的倍数的概率.(2)设A 转盘所得数字为,B 转盘所得数字为,求:使得方程有实数解的概率(直接写出答案).22.(本题8分)如图:在△ABC 中,∠C=90°,点D 在BC 上,cos∠BAC= cos∠ADC=.若BD=7,求:(1)DC 的长;(2)sin∠BAD 的值.23. (本题6分)如图:⊙O 的内接正方形ABCD ,E 为边CD 上一点,且DE=CE ,延长BE 交⊙O 于F ,连结FC ,若正方形边长为1,求弦FC 的长.24.(本题12分)某服装厂现有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产M 、N 两种型号的时装80套. 已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料0.9m ,可获利45元,做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4m ,可获利50元. 若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y 与x 的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?25. (本题12分)如图,的角平分线AD 交BC 于点D ,BA DCA B803050(1)若AB=10,AC=6,求:,并说明理由.(2)若AB=,AC=,,求证:,并用,和角的三角函数表示角平分线AD的长.(注:不能使用课本未出现的结论)26. (本题14分)反比例函数与直线交于A、B两点,(A在第一象限,B在第三象限)且AB=,(1)求反比例函数的解析式.(2)若抛物线上存在点C,平面内存在点D,使得四边形ACBD是矩形(AB为对角线),求D点的坐标.(3)若抛物线上存在两点E、F,使得四边形AEBF为菱形(EF为对角线),①当时,求的值.②要使(3)中满足条件的点E、F存在,求的范围.初三数学第四次模拟考参考答案二.填空题13. ;14.20;15. ;16. ;17. ;18. ; 三.解答题 19.212(1)2(1)420(2)(1)02,1x x x x x x x x x +--=∴--=∴-+=∴==-解:去分母得经检验:是原方程的增根 ∴原方程的解为20.(1)800人;144°(2)补画图形数学思维40人(3)(4080305040201050)318000⨯+⨯+⨯+⨯⨯=元 21.(1)树状图略;(2) 22.(1)3cos 5=3,5=43cos 5=3=9ADC DC a AD a Rt ADC AC aBAC a DC ∠==∆∠=∴∴令在中,(2)11==sin 227sin =25ABD S BD AC AB AD BADBD AC BAD AB AD ∆⨯⨯⨯⨯⨯∠⨯∴∠=⨯23.24.(1)45(80)5036005y x x x =-+=+ (2)解得,∵y 随x 的增大而增大 ∴当x=44时,y 最大为3820 25.(1)(2) 26.(1)((22222A B y x --∴=(2)(3)① ②。

2019-2020年九年级中考第四次模拟数学试题

2019-2020年九年级中考第四次模拟数学试题

2019-2020年九年级中考第四次模拟数学试题说明:本试题满分150分,考试时间120分钟。

参考公式:二次函数的顶点坐标为(,)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的倒数是A.-2 B.2 C.D.2.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么图中x 的值是A.8 B.3 C.2 D.-33.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数是A.6.75103吨B.67.5×103吨C.6.75 104吨 D.67.5×105吨4.如下图,在等腰直角ABC中,∠B=90°,将ABC绕顶点A逆时针方向旋转60°后得到AB’C’,则∠BAC’等于A.60°B.105°C.120°D.135°5.将点A(3,2)向左平移4个单位长度得到点,则点关于轴对称的点的坐标是A.(-3,2)B.(-3,2)C.(1,2)D.(1,-2)6.如下图,当宽为3 cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为A.B.C.5 D.47.如下图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是A.B.C.D.18.在学校组织的实践活动中,小王同学用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积是A.B.C.D.9.如下图,在△ABC中,D,E分别是边AB,AC的中点,∠B=30°。

现将△ADE沿DE 折叠,点A落在三角形所在平面内的点为,则∠BD的度数为A.100°B.120°C.130°D.140°10.如下图,方程的根可看作是函数的图像与函数的图像交点的横坐标。

湖南省衡阳市2019-2020学年中考第四次质量检测数学试题含解析

湖南省衡阳市2019-2020学年中考第四次质量检测数学试题含解析

湖南省衡阳市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°2.cos30°的值为()A.1 B.12C.33D.323.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份4.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心5.下列计算正确的是()A.8)2=±8 B38322 C.(﹣12)0=0 D.(x﹣2y)﹣3=63xy6.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°7.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x-+231xx--A.只有小明的正确B.只有小红的正确C.小明、小红都正确D.小明、小红都不正确8.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE 的度数是()A.135°B.120°C.60°D.45°10.如图钓鱼竿AC长6m,露在水面上的鱼线BC长2m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A .3mB .33 mC .23 mD .4m11.如图,左、右并排的两棵树AB 和CD ,小树的高AB=6m ,大树的高CD=9m ,小明估计自己眼睛距地面EF=1.5m ,当他站在F 点时恰好看到大树顶端C 点.已知此时他与小树的距离BF=2m ,则两棵树之间的距离BD 是( )A .1mB .43m C .3m D .103m 12.a 的倒数是3,则a 的值是( ) A .13B .﹣13C .3D .﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的方程(m ﹣5)x 2﹣3x ﹣1=0有两个实数根,则m 满足_____. 14.分解因式: 22a b ab b -+=_________.15.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.16.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.17.如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=35°,则∠PFE 的度数是_____.18.若圆锥的地面半径为5cm ,侧面积为265cm π,则圆锥的母线是__________cm . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?20.(6分)化简:(x+7)(x-6)-(x-2)(x+1)21.(6分)计算:|2|﹣8﹣(2﹣π)0+2cos45°.解方程:33xx-=1﹣13x-22.(8分)解不等式组:()3x12xx1x1 32⎧-<⎪⎨+-<⎪⎩23.(8分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?24.(10分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年级人数0 0 1 11 7 1九年级人数 1 0 0 7 10 2(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示: 年级 平均数 中位数 众数 方差 八年级 78.3 77.5 75 33.6 九年级7880.5a52.1(1)表格中a 的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性) 25.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26.(12分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .27.(12分)关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=1. (1)若m 是方程的一个实数根,求m 的值; (2)若m 为负数,判断方程根的情况.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.D【解析】cos30°=.2故选D.3.B【解析】【分析】【详解】解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.4.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.5.D【解析】【分析】各项中每项计算得到结果,即可作出判断.【详解】解:A.原式=8,错误;B.原式=2+42,错误;C.原式=1,错误;D.原式=x6y﹣3=63xy,正确.故选D.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.D【解析】【详解】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D7.D【解析】【分析】直接利用分式的加减运算法则计算得出答案.【详解】解:31x-231xx-+-=﹣31x-+3(1)(1)xx x--+=﹣3(1)(1)(1)xx x+-++3(1)(1)xx x--+=333 (1)(1)x xx x --+--+=26 (1)(1)xx x---+,故小明、小红都不正确.故选:D.【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.8.B【解析】【分析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.9.B【解析】【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF ≌△ADF , ∴∠AFD=∠AFB , ∵CB=CE , ∴∠CBE=∠CEB ,∵∠BCE=∠BCD+∠DCE=90°+60°=150°, ∴∠CBE=15°, ∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°. ∴∠AFE=120°. 故选B . 【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化. 10.B 【解析】 【分析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度. 【详解】解:∵sin ∠CAB =62BC AC ==∴∠CAB =45°. ∵∠C′AC =15°, ∴∠C′AB′=60°.∴sin60°=''6B C =解得:B′C′= 故选:B . 【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题. 11.B 【解析】 【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH 可证明△AEG ∽△CEH ,根据相似三角形对应边成比例求出GH的长即BD 的长即可. 【详解】由题意得:FB=EG=2m ,AG=AB ﹣BG=6﹣1.5=4.5m ,CH=CD ﹣DH=9﹣1.5=7.5m , ∵AG ⊥EH ,CH ⊥EH , ∴∠AGE=∠CHE=90°, ∵∠AEG=∠CEH , ∴△AEG ∽△CEH ,∴ EG AG =EH CH =EG GH CH + ,即 24.5=27.5GH+,解得:GH=43,则BD=GH=43m ,故选:B . 【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形. 12.A 【解析】 【分析】根据倒数的定义进行解答即可. 【详解】∵a 的倒数是3,∴3a=1,解得:a=13. 故选A . 【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.m≥114且m≠1. 【解析】 【分析】根据一元二次方程的定义和判别式的意义得到m ﹣1≠0且()()()234510m =---⨯-≥V , 然后求出两个不等式的公共部分即可. 【详解】解:根据题意得m ﹣1≠0且()()()234510m =---⨯-≥V , 解得114m ≥且m≠1.故答案为:114m≥且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)15.23【解析】【分析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将3代入计算即可.【详解】设方程的另一根为x1,又∵3x13,解得x13.故答案为:23【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.16.1.2×10﹣1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:12纳米=12×0.000000001米=1.2×10−1米.故答案为1.2×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.35°【解析】∵四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,∴PE 是△ABD 的中位线,PF 是△BDC 的中位线,∴PE=12AD ,PF=12BC , 又∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=35°.故答案为35°. 18.13【解析】试题解析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.设母线长为R ,则:65ππ5R =⨯,解得:13.R cm =故答案为13.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.20.2x -40.【解析】【分析】原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.21.(1)﹣1;(2)x=﹣1是原方程的根.【解析】【分析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【详解】(1)原式=2﹣22﹣1+2×2 2=﹣2﹣1+2=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.22.﹣9<x<1.【解析】【分析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.23.(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】【分析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D 的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.24.(1)81;(2) 108人;(3)见解析.【解析】【分析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60%20⨯, 九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.25.(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.26.(1)详见解析;(2)详见解析;(3)6.【解析】【分析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.27. (1) 13m =-; (2)方程有两个不相等的实根. 【解析】分析:(1)由方程根的定义,代入可得到关于m 的方程,则可求得m 的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m 是方程的一个实数根,∴m 2-(2m-3)m+m 2+1=1,∴m=−13;(2)△=b2-4ac=-12m+5,∵m<1,∴-12m>1.∴△=-12m+5>1.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.。

2019-2020学年度九年级数学上学期第四次月考试题(含解析) 新人教版

2019-2020学年度九年级数学上学期第四次月考试题(含解析) 新人教版

——教学资料参考参考范本——2019-2020学年度九年级数学上学期第四次月考试题(含解析)新人教版______年______月______日____________________部门一、选择题(每小题3分,满分24分)1.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)2.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:43.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣14.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似5.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°6.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)7.点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB 为等边三角形,△AOB的边长为2,则k的值为()A.2 B.±2C.D.±8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2二、填空题(每小题3分,满分24分)9.已知点P(1,﹣4)在反比例函数y=的图象上,则k的值是.10.若△ADE∽△ACB,且=,DE=10,则BC= .11.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1 S2.(填“>”或“<”或“=”)12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.13.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k<0)的图象上,则m n(填“>”,“<”或“=”)14.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为.15.如图,反比例函数y=(x>0)的图象交Rt△OAB的斜边OA 于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为.16.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n 个图案是由个组成的.三、解答题(本大题共7个小题,满分72分)17.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.18.如图,已知一次函数y=k1x+b与反比例函数y=的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.20.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.21.如图所示,要测量河两岸相对的两点A,B的距离,先从B处出发与AB成90°角方向,向前走80米到C处立一标杆,然后方向不变向前走50米至D处,在D处转90°,沿DE方向走30米,到E处,使A(目标物),C(标杆)与E在同一条直线上,那么可测得A,B间的距离是多少?22.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?23.已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.20xx-20xx学年云南省××市腾冲五中九年级(上)第四次月考数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.2.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:4【考点】相似三角形的判定与性质;三角形中位线定理.【分析】在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.【解答】解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选:D.【点评】此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.3.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣1【考点】反比例函数的性质.【专题】计算题.【分析】根据反比例函数的性质得m+1<0,然后解不等式即可.【解答】解:根据题意得m+1<0,解得m<﹣1.故选:D.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似【考点】命题与定理;相似三角形的判定.【分析】利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.【点评】本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.5.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°【考点】旋转的性质.【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.6.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【考点】反比例函数与一次函数的交点问题.【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.7.点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB 为等边三角形,△AOB的边长为2,则k的值为()A.2 B.±2C.D.±【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【专题】数形结合.【分析】分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A 坐标,即可得出k值.【解答】解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=AOsin60°=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】联立两函数解析式消去y可得x2﹣bx+1=0,由直线y=﹣x+b与反比例函数y=的图象有2个公共点,得到方程x2﹣bx+1=0有两个不相等的实数根,根据根的判别式可得结果.【解答】解:解方程组得:x2﹣bx+1=0,∵直线y=﹣x+b与反比例函数y=的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b>2,或b<﹣2,故选C.【点评】本题主要考查函数的交点问题,把两函数图象的交点问题转化成一元二次方程根的问题是解题的关键.二、填空题(每小题3分,满分24分)9.已知点P(1,﹣4)在反比例函数y=的图象上,则k的值是﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】将点P(1,﹣4)代入y=,即可求出k的值.【解答】解:∵点P(1,﹣4)在反比例函数y=的图象上,∴﹣4=,解得k=﹣4.故答案为﹣4.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数图象上,则点的坐标满足函数的解析式.10.若△ADE∽△ACB,且=,DE=10,则BC= 15 .【考点】相似三角形的性质.【分析】根据△ADE∽△ACB,得到=,代入已知数据计算即可.【解答】解:∵△ADE∽△ACB,∴=,又=,DE=10,∴BC=15.故答案为:15.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等并找准对应边是解题的关键.11.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1 = S2.(填“>”或“<”或“=”)【考点】反比例函数系数k的几何意义.【分析】设p(a,b),Q(m,n),根据三角形的面积公式即可求出结果.【解答】解;设p(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.【点评】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 1.4 .【考点】相似三角形的应用.【分析】判断出△ABC和△AED相似,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,DE∥BC,所以,△ABC∽△AED,所以, =,即=,解得h=1.4m.故答案为:1.4.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,熟记性质并列出比例式是解题的关键.13.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k<0)的图象上,则m >n(填“>”,“<”或“=”)【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】由于比例系数小于0,两点在同一象限,根据反比例函数的图象的性质作答即可.【解答】解:∵k<0,∴反比例函数y=(k<0)在第二象限内,y随x的增大而增大;∵点P1(﹣1,m),P2(﹣2,n)在第二象限,且﹣1>﹣2,∴m>n.故答案为:>.【点评】考查反比例函数y=的图象的性质.用到的知识点为:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内,y随x 的增大而增大.14.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为(2,1).【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故答案为:(2,1).【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.15.如图,反比例函数y=(x>0)的图象交Rt△OAB的斜边OA 于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为8 .【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义以及相似三角形的性质得出S△ODE=S△OBC=k,S△AOB=k+5, =,进而求出即可.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OBC的面积相等=,∵△OAC的面积为5,∴△OBA的面积=5+,∵AD:OD=1:2,∴OD:OA=2:3,∵DE∥AB,∴△ODE∽△OAB,∴=()2,即=,解得:k=8.【点评】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.16.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由16 个组成的,依此,第n个图案是由3n+1 个组成的.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.【解答】解:由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5﹣1)=16,第n个图案基础图形的个数为4+3(n﹣1)=3n+1.故答案为:16,3n+1.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多3个基础图形”是解题的关键.三、解答题(本大题共7个小题,满分72分)17.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.【考点】相似三角形的判定与性质.【专题】证明题.【分析】利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.【解答】证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.【点评】此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.18.如图,已知一次函数y=k1x+b与反比例函数y=的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把A(4,1)代入反比例函数解析式中确定k2,然后把B(a,2)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据一次函数解析式求出其图象与坐标轴的交点坐标,然后用面积的割补法可以求出△ACD的面积.【解答】解:(1)把A(4,1)代入反比例函数y=中,∴k2=4×1=4,∴y=,把B(a,2)代入求出的反比例函数解析式中得,n=2,∴B(2,2),把A(4,1),B(2,2)代入y=k1x+b得,解得.∴一次函数解析式为y=﹣x+3.(2)设直线AB与x轴的交点为E,当x=0时,y=3.当y=0时,x=6,所以直线AB与坐标轴的交点坐标为C(0,3),E(6,0),则S△ACD=S△EO C﹣S△DOC﹣S△ADE=×6×3﹣×1×3﹣(6﹣1)×1=5.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了利用函数的性质求不规则图形的面积.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.20.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.【解答】解:(1)根据题意列表得:1 2341 23452 34563 45674 5678(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.21.如图所示,要测量河两岸相对的两点A,B的距离,先从B处出发与AB成90°角方向,向前走80米到C处立一标杆,然后方向不变向前走50米至D处,在D处转90°,沿DE方向走30米,到E处,使A(目标物),C(标杆)与E在同一条直线上,那么可测得A,B间的距离是多少?【考点】相似三角形的应用.【分析】先根据已知条件求出△ACB∽△ECD,再根据相似三角形的对应边成比例,解答即可.【解答】解:∵∠B=90°,DE⊥BD,∴AB∥DE,∴△ACB∽△ECD,∴AB:DE=BC:CD,∴AB:30=80:50,∴AB=48米,∴AB的长为48米.【点评】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出AB的长.22.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x<4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x<4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.23.已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.【考点】相似三角形的判定与性质;二次函数的最值;矩形的性质;正方形的性质.【专题】压轴题.【分析】(1)①根据EF∥BC,可得,所以,据此求出的值是多少即可.②首先根据EH=x,求出AK=8﹣x,再根据=,求出EF的值;然后根据矩形的面积公式,求出S与x的函数关系式,利用配方法,求出S 的最大值是多少即可.(2)根据题意,设正方形的边长为a,分两种情况:①当正方形PQMN的两个顶点在BC边上时;②当正方形PQMN的两个顶点在AB或AC边上时;分类讨论,求出正方形PQMN的边长各是多少即可.【解答】解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.【点评】(1)此题主要考查了相似三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.(2)此题还考查了二次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.(3)此题还考查了矩形、正方形、直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.。

最新2019-2020年度湘教版九年级数学上学期第四次月考综合测试及答案解析-精编试题

最新2019-2020年度湘教版九年级数学上学期第四次月考综合测试及答案解析-精编试题

湘教版最新九年级数学上学期第四次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列四个数中,是负数的是()A.|﹣1| B.(﹣2)2C.(﹣1)2015D.2.(3分)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.3.(3分)已知点P(﹣a,a﹣1)在平面直角坐标系的第二象限,则a的取值范围在数轴上可表示为()A. B.C. D.4.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对5.(3分)下列计算正确的是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D. 5a﹣2a=36.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.7.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠08.(3分)如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A . 1B .C .D .9.(3分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若△ABC 的面积为,则△ADE 的面积S △ADE 为()A . 6B .9 C .12 D . 1810.(3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是()A . 2B .4 C .2D . 411.(3分)设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是() A . c=3B . c≥3C . 1≤c≤3D .c ≤312.(3分)如图,正方形ABCD 中,AB=8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t (s ),△OEF 的面积为s (cm 2),则s (cm 2)与t (s )的函数关系可用图象表示为()A.B.C.D.二.填空题(每小题3分,共18分)13.(3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学记数法表示飞濑屿的面积约为平方公里.14.(3分)将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是.15.(3分)若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为cm2(结果保留π)16.(3分)函数的自变量取值范围是.17.(3分)如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=2,OH=1,则∠APB的度数是.18.(3分)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y 轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于.三、解答题(共66分)19.(6分)计算:(﹣π)0﹣.20.(6分)先化简,再求值:,其中.21.(8分)2014年,长沙市被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此该市教育部门对部分学校的2014-2015学年八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,在我市2014-2015学年八年级学生中任意抽一名学生,该学生学习态度达标的概率为多少?(达标包括A级和B级)22.(8分)如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积.23.(9分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.24.(9分)如图,在△AB C中,AB=AC,以AB为直径作⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=时,求AF及BE的长.25.(10分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?26.(10分)如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B 两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列四个数中,是负数的是()A.|﹣1| B.(﹣2)2C.(﹣1)2015D.考点:实数.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、|﹣1|=1,不合题意;B、(﹣2)2=4,不合题意;C、(﹣1)2015=﹣1,符合题意;D、=|﹣2|=2,不合题意,故选C点评:此题考查了实数,熟练掌握运算法则是解本题的关键.2.(3分)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.3.(3分)已知点P(﹣a,a﹣1)在平面直角坐标系的第二象限,则a的取值范围在数轴上可表示为()A. B.C. D.考点:在数轴上表示不等式的解集;点的坐标.专题:计算题.分析:由P为第二象限点求出a的范围,表示在数轴上即可.解答:解:∵点P(﹣a,a﹣1)在平面直角坐标系的第二象限,∴,解得:a>1,表示在数轴上,如图所示:,故选A.点评:此题考查了在数轴上表示不等式的解集,以及点的坐标,熟练掌握运算法则是解本题的关键.4.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.专题:分类讨论.分析:根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.解答:解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.点评:本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.5.(3分)下列计算正确的是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D. 5a﹣2a=3考点:多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.解答:解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选C.点评:本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.6.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.解答:解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.点评:此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.7.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0考点:根的判别式;一元二次方程的定义.分析:由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.解答:解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.8.(3分)如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A. 1 B. C. D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.9.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ABC的面积为,则△ADE的面积S△ADE为()A. 6 B.9 C.12 D.18考点:相似三角形的判定与性质.分析:直接利用三角形中位线定理得出DE BC,即可得出△ADE∽△ABC,再利用相似三角形的性质求出答案.解答:解:∵D、E分别是AB、AC的中点,∴DE BC,∴△ADE∽△ABC,∴==,∴=,∵△ABC的面积为,∴△ADE的面积S△ADE=9cm2.故选:B.点评:此题主要考查了相似三角形的判定与性质,得出△ADE∽△ABC是解题关键.10.(3分)如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是()A. 2 B. 4 C.2 D. 4考点:矩形的性质;等边三角形的判定与性质.专题:计算题.分析:本题的关键是利用等边三角形和矩形对角线的性质求长度.解答:解:因为在矩形ABCD中,所以AO=AC=BD=BO,又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=2,所以AC=2AO=4.故选B.点评:本题难度中等,考查矩形的性质.11.(3分)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3C.1≤c≤3 D.c≤3考点:二次函数的性质.分析:因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c 的取值范围.解答:解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.点评:本题考查了二次函数的增减性,解题的关键是由给出的条件得到抛物线过(1,0),再代入函数的解析式得到一次项系数和常数项的关系.12.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.解答:解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二.填空题(每小题3分,共18分)13.(3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学记数法表示飞濑屿的面积约为8×10﹣4平方公里.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0008=8×10﹣4.故答案为:8×10﹣4.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是(1,﹣2).考点:二次函数图象与几何变换.专题:常规题型.分析:先得到原抛物线的顶点坐标,让横坐标加1,纵坐标不变即为新抛物线的顶点坐标.解答:解:∵抛物线y=x2﹣2的顶点坐标为(0,﹣2),向右平移1个单位得到新抛物线的解析式,∴所得抛物线的顶点坐标是(1,﹣2).故答案为:(1,﹣2).点评:本题考查二次函数图象与几何变换的知识,讨论两个二次函数的图象的平移问题,只需看顶点坐标的平移即可.15.(3分)若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为15πcm2(结果保留π)考点:圆锥的计算.专题:计算题.分析:先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:圆锥的侧面展开图的面积=×2π×3×5=15π(cm2).故答案为15π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.16.(3分)函数的自变量取值范围是x>﹣1.考点:函数自变量的取值范围.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1>0,解得:x>﹣1.故答案为:x>﹣1.点评:本题考查了函数自变量的取值范围.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.(3分)如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=2,OH=1,则∠APB的度数是60°.考点:垂径定理;圆周角定理;特殊角的三角函数值.专题:探究型.分析:连接OA,OB,先根据锐角三角函数的定义求出∠AOH的度数,故可得出∠AOB 的度数,再根据圆周角定理即可得出结论.解答:解:连接OA,OB,∵OH⊥AB,AB=2,∴AH=AB=,∵OH=1,∴tan∠AOH===.∴∠AOH=60°,∴∠AOB=2∠AOH=120°,∴∠APB=∠AOB=×120°=60°.故答案为:60°.点评:本题考查的是垂径定理及圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.18.(3分)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y 轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于.考点:反比例函数综合题.专题:压轴题.分析:过点D作DG⊥x轴于点G,过点E作EF⊥y轴于点F.令A(t,),则AD=AB=DG=,AE=AC=EF=t,则图中阴影部分的面积=△ACE的面积+△ABD的面积=t2+×,因此只需求出t2的值即可.先在直角△ADE中,由勾股定理,得出DE=,再由△EFQ∽△DAE,求出QE=,△ADE∽△GPD,求出DP=:,然后根据QE:DP=4:9,即可得出t2=.解答:解:解法一:过点D作DG⊥x轴于点G,过点E作EF⊥y轴于点F.令A(t,),则AD=AB=DG=,AE=AC=EF=t.在直角△ADE中,由勾股定理,得DE====.∵△EFQ∽△DAE,∴QE:DE=EF:AD,∴QE=,∵△ADE∽△GPD,∴DE:PD=AE:DG,∴DP=.又∵QE:DP=4:9,∴:=4:9,解得t2=.∴图中阴影部分的面积=AC2+AB2=t2+×=+3=;解法二:∵QE:DP=4:9,∴EF:PG=4:9,设EF=4t,则PG=9t,∴A(4t,),由AC=AE AD=AB,∴AE=4t,AD=,DG=,GP=9t,∵△ADE∽△GPD,∴AE:DG=AD:GP,4t:=:9t,即t2=,图中阴影部分的面积=4t×4t+××=.故答案为:.点评:本题考查了反比例函数的性质,勾股定理,相似三角形的判定与性质,三角形的面积等知识,综合性较强,有一定难度.根据QE:DP=4:9,得出t2的值是解题的关键.三、解答题(共66分)19.(6分)计算:(﹣π)0﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、开方、特殊角的三角函数值、负整数指数幂四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣×+2﹣3=1﹣3+2﹣3=﹣3.点评:本题考查实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)先化简,再求值:,其中.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=÷=•=,当x=﹣时,原式=﹣6.点评:本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.21.(8分)2014年,长沙市被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此该市教育部门对部分学校的2014-2015学年八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,在我市2014-2015学年八年级学生中任意抽一名学生,该学生学习态度达标的概率为多少?(达标包括A级和B级)考点:条形统计图;扇形统计图;概率公式.分析:(1)利用A级的人数是50,所占的百分比是25%,即可求得总人数;(2)利用总数200乘以对应的百分比即可;(3)利用360°乘以对应的百分比;(4)达标的概率就是所长的比例.解答:解:(1)调查的总人数是:50÷25%=200(人);(2)C级的人数是:200×(1﹣25%﹣60%)=30(人).;(3)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(4)在我市2014-2015学年八年级学生中任意抽一名学生,该学生学习态度达标的概率是:0.85.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积.考点:矩形的判定与性质;等边三角形的性质.分析:(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可;(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.解答:(1)证明:∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形,∵在△ABC中,AB=AC,AD平分∠BAC,∴AD⊥BC(等腰三角形三线合一性质),∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°,∴∠ACE=30°,AE=2,CE=2,∵四边形ADCE为矩形,∴OC=OA=2,∵CF=CO,∴CF=2,过O作OH⊥CE于H,∴OH=OC=1,∴S 四边形AOFE=S△AEC﹣S△COF=×2×2﹣×2×1=2﹣1.点评:本题考查了矩形的性质和判定,等边三角形的性质,含30度角的直角三角形性质,勾股定理等知识点的应用,题目是一道综合性比较强的题目,难度适中.23.(9分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型.分析:(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30﹣a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案,再根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.解答:解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,解得:15≤a≤17,∵a只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台,方案1:15×0.5+1.5×15=30(万元),方案2:16×0.5+1.5×14=29(万元),方案3:17×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意a只能取整数.24.(9分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=时,求AF及BE的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)若要证明OD∥AC,则可转化为证明∠C=∠ODB即可;(2)连接AD,首先利用已知条件可求出BD的长,再证明△ADC∽△AFD,利用相似三角形的性质:对应边的比值相等即可求出AF及BE的长.解答:解:(1)∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠C=∠ODB,∴OD∥AC,(2)连接AD,∵AB为直径,∴AD⊥BD,∴∠ADC=90°,∵AB=10,cos∠ABC=,∴BD=AB•cos∠ABC=2,∴AD=4,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,∵AC∥OD,∴∠AFD=90°,∵∠ADC=∠AFD,∠DAF=∠CAD,∴△ADC∽△AFD,∴,∴,∴AF=8,∵OD∥AF,∴,∴,∴BE=.点评:本题考查了圆的切线性质,及解直角三角形的知识和相似三角形的判定和性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.25.(10分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.专题:代数综合题;压轴题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;。

2019-2020年九年级数学第四次模拟测试卷和答案

2019-2020年九年级数学第四次模拟测试卷和答案

2019-2020年九年级数学第四次模拟测试卷和答案一、选择题1.-7的倒数是A. B. 7 C. D. -72.的相反数是()A.﹣ B.3 C.﹣3 D.3.在平面直角坐标系中,点P(-8,xx)在第( )象限.A.一 B.二C.三 D.四4.计算(﹣x2)•x3的结果是()A. x3B.﹣x5C. x6D.﹣x65.在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A. B. C. D.6..不等式组的整数解的个数是()A.B.C.D.7.把二次函数配方成顶点式为()A.B.C.D.8.如图,矩形ABCD中,AB=3,BC=4,点E,F,G,H分别在AB、BC、CD、AD上,若∠1=∠2=∠3=∠4,四边形EFGH的周长是()A. 5 B. 7 C. 10 D.149.抛物线 y = ax2+bx+c向右平移5个单位,再向上平移1个单位,得到的抛物线的解析式为 y = -3 (x -1) 2+4,则抛物线 y = ax2+bx+c的顶点坐标是A.(6,3)B.(6,5)C.(-4,3)D.(-4,5)10.6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是( )A、30B、40C、60D、6511.求1+2+22+23+ +2xx的值,可令S=1+2+22+23+…+2xx,则2S=2+22+23+24+…+2xx,因此2S﹣S=2xx﹣1.仿照以上推理,计算出1+5+52+53+ +5xx的值为()A.5xx﹣1 B.5xx﹣1 C.D.12.下列各点中,在反比例函数图象上的是A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)二、填空题13.求绝对值小于100的所有整数和__________________14.若,则= .15.已知,则代数式的值是 .16.在离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪的高度为1.5米,那么旗杆的高度为 (用含α的代数式表示)17.若反比例函数y=的图象经过点(-2,2),则的值为▲.18.已知抛物线y=x2-3x-4,则它与x轴的交点坐标是 . 19.(2011•南京)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AO B=80°.为了避免触礁,轮船P与A、B的张角∠APB 的最大值为_________________20.某班有女生a人,男生比女生的2倍少5人,则男生有___________________人. 三、解答题21.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=AC,求该梯形各内角的度数.22.解不等式组:,并把它的解集在数轴上表示出来.23.如图,已知一次函数y=kx+b的图象经过点(0,4)和(1,6),(1)求这个函数表达式并判断(-3,-2)是否在此函数的图象上;(2)求该函数图像与x轴、y轴围成三角形的面积。

2019-2020年九年级第四次模拟数学试卷

2019-2020年九年级第四次模拟数学试卷

2019-2020年九年级第四次模拟数学试卷(满分为120分,时间为120分钟)一、选择题(8×3分=24分)1、下列运算中,正确的是( )A = ±3B =2C (-2)0=0D 2-1=2、函数y=中,自变量x 的取值范围是( )A x > -2B x ≥ -2C x ≠-2D x ≤- 2 3、近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点. 为进一步普及环保和健康知识,我市某中学举行了“建设宜居中卫,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是( ) A 70分 80分 B 80分 80分 C 90分 80分 D 80分 90分4、如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DE F ,则四边形ABFD 的周长为( )A 6B 8C 10D 125、某企业退休职工李师傅xx 年月退休金为1500元,xx 年达到2160元,设李师傅的月退休金从xx 年到xx 年年平均增长率为,可列方程为 ( ) A 、 B 、C 、D 、2160)1(1500)1(150015002=++++x x6、已知函数(其中)的图像如图所示,则一次函数与反比例函数的图像可能是 ( )7、如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数 (x>0)的图象经过顶点B ,则k 的值为 ( ) A .12 B .20 C .24 D .32mn8、某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是 ( ) A 8.4小时 B 8.6小时 C 8.8小时 D 9小时 二、填空题(8×3分=24分)9、 分解因式: a 3-a = .10、若则= 。

2019-九年级上学期第四次限时训练数学试题

2019-九年级上学期第四次限时训练数学试题

2019-2020 年九年级上学期第四次限时训练数学试题一、选择题 :(本大题共 10 小题, 每题 3 分, 共 30 分) 1.以下运算中,正确的选项是( )(A) a a a 2(B) a a 2a 2 (C) (2 a) 2 4a 2(D) (a 3 )2a 52. 某种细胞的直径是5 104 毫米,这个数是()A.毫米 B.毫米C.毫米D.毫米3. 以下计算正确的选项是( )A. 23=6B.2 3= 5 C.82=2 D.82=44. 以下命题中,假命题是( )A. 三角形随意两边之和大于第三边B. 方差是描绘一组数据颠簸大小的量C. 两相像三角形面积的比等于周长的比的平方D. 不等式的解集是x < 15. 64 的立方根是 ( )( A )4(B )- 4( C )81(D )- 836.如图,将三角尺的直角极点放在直尺的一边上,30°, 250°的度数等,则于( )(A)50°(B)30°(C)20°(D)15°y12y 2231Ay 1x1 O1 2(第 6 题图)( 第 7 题图 )7.如下图, 反比率函数y 与正比率函数 y的图象的一个交点是 A(2,1) ,若 y 2 y 1 0 ,12则 x 的取值范围在数轴上表示为() ( A )12(B)1 2(C)12(D)1 28. 若错误!未找到引用源。

,则 错误!未找到引用源。

的值是 ( )D. 69. 假如是锐角,且 sin3,那么 cos(90)的值为()5A.4B. 3C.3D.4554310.将 4 个数 a , b , c ,d 排成 2 a b 行、 2 列,两边各加一条竖直线记成就叫做 2 阶行c da b =ad-bc ,若x 1 1 x .列式,定义d1 x x = 8,则 x= ( )c1D. 2二、填空 :(本大 共 8 小 ,每小 3 分,共 24 分,只需求填写最后 果.)11.当 x,分式1 存心 .3x12.从 有 1 到 9 序号的 9 卡片中随意抽取一 ,抽到序号是3 的倍数的概率是. 13.把 x34x分解因式, 果 ________________________________.14.如 ,在△ ABC 中,AB =AC , A40 , △ ABC 的外角∠ BCD =度.yyx 2bx cBC1D-1 O 1xEA C D( 1,-2 )AOB(第 14 题) (第 15 题)(第 16 题)15.如 ,已知二次函数y x 2 bx c 的 象 点( -1 , 0),( 1, -2 ),当 y 随 x 的增大而增大 ,x 的取 范 是.16.如 , AB 是半 直径, 半径 OC ⊥ AB 于点 O ,AD 均分∠ CAB 交弧 BC 于点 D , CD 、OD ,出以下四个 :①AC ∥ OD ;② CE OE ;③△ ODE ∽△ ADO ;④ 2CD 2 CE AB .其中正确 的序号是.17. 已知扇形的 心角 45°,弧 等于 !未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年九年级上学期第四次限时训练数学试题一、选择题 :(本大题共 10 小题, 每小题 3 分, 共 30 分) 1.下列运算中,正确的是( )(A) a a a 2(B) a a 2a 2 (C) (2 a) 2 4a 2(D) (a 3 )2a 52. 某种细胞的直径是5 104 毫米,这个数是()A. 0.05毫米 B. 0.005毫米C.0.0005毫米D.0.00005毫米3. 下列计算正确的是 ()A. 23=6B.2 3= 5 C.82=2 D.82=44. 下列命题中,假命题是( )A. 三角形任意两边之和大于第三边B. 方差是描述一组数据波动大小的量C. 两相似三角形面积的比等于周长的比的平方D. 不等式的解集是x < 15. 64 的立方根是 ( )( A )4(B )- 4( C )81(D )- 836.如图,将三角尺的直角顶点放在直尺的一边上,30°, 250°的度数等,则于( )(A)50°(B)30°(C)20°(D)15°y12y 2231Ay 1x1 O1 2(第 6 题图)( 第 7 题图 )7.如图所示, 反比例函数y 与正比例函数 y的图象的一个交点是 A(2,1) ,若 y 2 y 1 0 ,12则 x 的取值范围在数轴上表示为() ( A )12(B)1 2(C)12(D)1 28. 若错误!未找到引用源。

,则 错误!未找到引用源。

的值是 ( )A.3B.4C.5D. 69. 如果是锐角,且 sin3,那么 cos(90)的值为()5A.4B. 3C.3D.4554310.将 4 个数 a , b , c ,d 排成 2 a b 行、 2 列,两边各加一条竖直线记成就叫做 2 阶行c da b =ad-bc ,若x 1 1 x .列式,定义d1 x x = 8,则 x= ( )c1A.-1B.-2C.1D. 2二、填空 :(本大 共 8 小 ,每小 3 分,共 24 分,只要求填写最后 果.)11.当 x,分式1 有意 .3x12.从 有 1 到 9 序号的 9 卡片中任意抽取一 ,抽到序号是3 的倍数的概率是. 13.把 x34x分解因式, 果 ________________________________.14.如 ,在△ ABC 中,AB =AC , A40 , △ ABC 的外角∠ BCD =度.yyx 2bx cBC1D-1 O 1xEA C D( 1,-2 )AOB(第 14 题) (第 15 题)(第 16 题)15.如 ,已知二次函数y x 2 bx c 的 象 点( -1 , 0),( 1, -2 ),当 y 随 x 的增大而增大 ,x 的取 范 是.16.如 , AB 是半 直径, 半径 OC ⊥ AB 于点 O ,AD 平分∠ CAB 交弧 BC 于点 D , CD 、OD ,出以下四个 :①AC ∥ OD ;② CE OE ;③△ ODE ∽△ ADO ;④ 2CD 2 CE AB .其中正确 的序号是.17. 已知扇形的 心角 45°,弧 等于 !未找到引用源。

, 扇形的半径是18.a 是不 1 的有理数, 我 把1 称 a 的差倒数 。

如:2 的差倒数是 11 , 1的1 a... 1 2差倒数是1 1.已知a 11, a 是 a 的差倒数, a 是 a 的差倒数,a 是 a 的差的1 ( 1)232132 43倒数,⋯,依此 推,a 2012 的差倒数 a 2013 =.三、解答 :(共66 分)19.( 6 分) 算: (1) 12cos3027 (2。

220.( 6 分)先化 ,再求 :,其中 a 是方程 x 2x=6 的根.21.( 共 8 分,每小4 分)(1) 解不等式 : !未找到引用源。

.并把它的解在数 上表示出来.32 11 23( 2)解方程:.22. (8 分 ) 光明中学 全校 1 000 名学生 行了校园安全知 . 了解本次知的成 分布情况,从中随机抽取了部分学生的成 (得分取正整数, 分 100 分),并制了如 的 数分布表和 数分布直方 (不完整).分数 率50.5~60.5 10a60.5~70.5 b70.5~80.50.280.5~90.5 520.2690.5~100.0.37频数80 70 60 50 40 30 20 100 50.5 60.5 70.5 80.5 90.5成绩 / 分合计c1请根据以上提供的信息,解答下列问题:( 1)直接写出频数分布表中 a , b , c 的值,补全频数分布直方图;( 2)上述学生成绩的中位数落在哪一组范围内?(3)学校将对成绩在 90.5~100.5 分之间的学生进行奖励,请估计全校 1 000 名学生中约有多少名获奖?23. ( 9 分) 为了解决农民工子女就近入学问题,我市每小学计划 2014 年秋季学期扩大办学规模. 学校决定开支八万元全部用于购买课桌凳、 办公桌椅和电脑, 要求购买的课桌凳与 办公桌椅的数量比为 20:1,购买电脑的资金不低于 16000 元,但不超过 24000 元.已知一套办公桌椅比一套课桌凳贵 80 元,用 2000 元恰好可以买到 10 套课桌凳和 4 套办公桌椅.(课桌凳和办公桌椅均成套购进)( 1)一套课桌凳和一套办公桌椅的价格分别为多少元?( 2)求出课桌凳和办公桌椅的购买方案.24. ( 9 分)( 1)如图 1,已知 OC 是∠ AOB 内部的一条射线,∠ AOC =30°, OE 是∠ COB 的平分线.当∠ COE = 40°时,求∠ AOB 的度数;(2)如图 2,已知射线 ox 与射线 oy 互相垂直, B , A 分别为 ox 、oy 上一动点,∠ ABx 、∠BAy 的平分线交于 C .问: B 、 A 在 ox 、 oy 上运动过程中,∠ C 的度数是否改变 ?若不改变,求出其值;若改变,说明理由.( 3)如图 3,E 和 D 分别在△ ABC 的边 BA 和 CA 的延长线上, CF 、EF 分别平分∠ ACB 和∠ AED ,若∠ B = 70°,∠ D=40°,求∠ F 的大小.B ECO A图 1图 21,将 n 个边长为 1 3OABC,相25. (10 分 ) 在平面直角坐标系中,如图 的正方形并排组成矩形 邻两边 OA 和 OC 分别落在 x 轴和 y 轴的正半轴上 ,设抛物线 y ax 2 bx c ( a <0)过矩 形顶点 、 .B C(1)当 n =1 时,如果 a =-1 ,试求 b 的值; EFMN ,EFCB(2)当 =2 时,如图 2,在矩形 上方作一边长为 1 的正方形使在线段nOABC上,如果 M , N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形 OABC 绕点 O 顺时针旋转, 使得点 B 落到 x 轴的正半轴上, 如果该抛物线同时经过原点 O . 试求当 n =3 时 a 的值;yyyMNCBCB C⋯FEBOOA xOA xxA12326. ( 10 分 ) 如图,在平面直角坐标系xOy中,我们把由两条射线AE, BF和以 AB为直径的半圆所组成的图形叫作图形 C(注:不含 AB线段)。

已知 A(1,0),B(,0),AE∥BF,且半圆与 y 轴的交点 D在射线 AE的反向延长线上。

(1)求两条射线AE, BF所在直线的距离;(2)当一次函数y x b 的图象与图形C恰好只有一个公共点时,写出 b 的取值范围;当一次函数 y x b 的图象与图形C恰好只有两个公共点时,写出 b 的取值范围;(3)已知□AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形 C上,且不都在两条射线上,求点M的横坐标 x 的取值范围。

麓山国际学校 2013--2014--1 初三第四次限时训练数 学 试 卷(参考答案 )一、 :号 1 2 34 5 6 7 8 9 10答案CCCD A CDBBD二、填空 . 11、 X ≠3; 12 、1; 13、 x( x2)( x 2) ;14 、 110°;、 x >131516、① ④;17 、 2;18 、42三、解答 :解答要写出必要的文字 明、 明 程或演算步 . 19. (本小 分 6 分 )[ 解 ]原式 =2 23 331(2 分)2=2 3 3 31 (4 分 )=23 3(6分 )20 ( 本小 分 6 分)解:原式 ====.∵ a 是方程 x 2x=6 的根,∴ a 2a=6, ∴原式 =.21. ( 1) . 解:由①得: !未找到引用源。

(1 分)由②得: !未找到引用源。

(2 分)∴不等式 的解集!未找到引用源。

. ( 3 分)解在数 上表示(4 分)( 2)解:去分母得: x (x+2 ) 1=x 24,(1 分)去括号得: x 2 +2x 1=x 24,(2 分)解得: x= , (3 分)x= 是分式方程的解.(4 分)22. ( 本 分 8 分 )解:( 1) a0.05; b 24; c 200. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 作 略 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分( 2) 80.5~90.5 ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分( 3) 370 人.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分23.解:( 1) 一套 桌凳和一套 公桌椅的价格分x 元、 y 元,得:,⋯(2分)解得(3 分)∴一套 桌凳和一套 公桌椅的价格分 120 元、 200 元 ⋯( 4 分); (2) 公桌椅m 套, 桌凳20m 套,由 意得:16000≤80000 120×20m 200×m ≤24000⋯( 6 分) 解得:⋯( 8 分),∵m 整数,∴m=22 、 23、 24,有三种 方案:⋯( 9 分) 方案一方案二 方案三桌凳(套) 440 460 480 公桌椅(套)22232424.解:( 1)∵ OE 是∠ COB 的平分 (已知),∴∠ COB = 2∠ COE (角平分 定 ).⋯⋯1分∵∠ COE = 40°,∴∠ COB = 80°.⋯⋯2分B∵∠ AOC = 30°,∴∠=∠ +∠ = 110°.⋯⋯3分AOB AOC COB( 2)∠ C 的度数不改 , 45°(步 同前)(3 分)(3) 55°(步 同前)(3分 )y25. 解: ( 本 10分 )C(1)由 意可知,抛物 称 直x = 1,b 12O∴⋯⋯ 3分2a, 得 b = 1 ;2ax 2(2) 所求抛物 解析式 ybx 1 ,由 称性可知抛物 点B (2, 1)和点 M (1,2)y421 4a 2b ,aM1∴11解得3C1. 82abF42b.3O4 x 28 x∴所求抛物 解析式y1;⋯⋯ 6 分33ECO ABAxNBEAx( 3)当 n =3 , OC=1, BC =3,所求抛物 解析式 y ax 2bx ,yC 作 CD ⊥ OB 于点 D , Rt △ OCD ∽ Rt △ CBD ,∴OD OC 1,CD BC 3 OD =t , CD =3t ,C∵ OD 2CD 2OC 2,B1 102 22, ∴ tO Dx∴ (3t)t1 1010 ,A∴C (10,310 ), 又 B ( 10 ,0),1010 ∴把 B 、 C 坐 代入抛物 解析式,得10a10b , 10解得 : a =⋯⋯10 分1 a ;3 10 10 b.310101026. ( 本小 分 10 分) [ 解 ] (1) 分AD 、DB , 点D 在直AE上,如 1,∵ 点 D 在以 AB 直径的半 上,∴ADB=90,∴ BD AD.在 Rt △ DOB 中,由勾股定理得BD=OD 2 OB 2= 2.∴ AE//BF, 两条射 AE 、 BF 所在直 的距离2 .(3分)(2)当一次函数 y=x b 的 象与 形C 恰好只有一个公共点 ,b 的取 范 是b=2 或 1<b<1;当一次函数 y=x b 的 象与 形C 恰好只有两个公共点 , b 的取 范 是1<b<2 ;(6分)(3)假 存在 足 意的 □ AMPQ ,根据点 M 的位置, 分以下四种情况 :当点 M 在射 AE 上 ,如 2.∵ A 、M 、 P 、 Q 四点按 方向排列, ∴ 直PQ 必在直 AM 的上方,∴ P 、Q 两点都在 AD 弧上,且不与 A 、 D 重合. ∴0<PQ<2.∵ AM//PQ 且 AM=PQ,∴0<AM< 2 , ∴ 2<x< 1.当点 M在 AD弧 ( 不包括点D)上时,如图 3.∵A 、M、 P、 Q四点按顺时针方向排列,∴直线 PQ必在直线 AM的下方。

相关文档
最新文档