九年级数学下册试题及答案.doc

合集下载

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷及答案【可打印】

仁爱版九年级下册《数学》期末考试卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方,则这个数是()。

A. 1B. 0C. 1D. 1或12. 已知函数y=2x3,当x=2时,y的值是()。

A. 1B. 1C. 5D. 53. 下列哪个数是实数?()A. √1B. 3+4iC. πD. i4. 已知三角形ABC中,∠A=60°,∠B=70°,则∠C的度数是()。

A. 50°B. 60°C. 70°D. 80°5. 下列哪个数是分数?()A. 0.5B. √2C. πD. i6. 已知正方形的对角线长为10cm,则它的面积是()。

A. 25cm²B. 50cm²C. 100cm²D. 50√2cm²7. 下列哪个数是无理数?()A. 0.333B. √3C. 2/3D. 1.4148. 已知圆的半径为5cm,则它的面积是()。

A. 25πcm²B. 50πcm²C. 100πcm²D. 25cm²9. 下列哪个数是正数?()A. 3B. 0C. √1D. 1/210. 已知函数y=x²2x+1,当x=1时,y的值是()。

A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)1. 一个数的平方根是±3,则这个数是__________。

2. 已知函数y=3x+2,当x=0时,y的值是__________。

3. 下列哪个数是有理数?__________(填选项)A. 0.5B. √2C. πD. i4. 已知正方形的边长为6cm,则它的周长是__________。

5. 下列哪个数是负数?__________(填选项)A. 3B. 0C. √1D. 1/2三、解答题(每题10分,共30分)1. 已知函数y=2x3,求当x=4时,y的值。

九年级数学下册 各单元综合测试题附答案4套

九年级数学下册 各单元综合测试题附答案4套

人教版九年级数学下册第二十六章综合测试卷03一、选择题(每小题4分,共32分)1.下列函数是反比例函数的是()A .12y x =B .12y x =C .21y x =D .12y x =+2.当0x >时,函数5y x=-的图x 象在()A .第四象限B .第三象限C .第二象限D .第一象限3.反比例函数12ky x-=的图象x 经过点(2,3)-,则k 的值为()A .6B .6-C .72D .72-4.已知反比例函数1y x=,下列结论不正确的是()A .图象经过点1,1()B .图象在第一、第三象限C .当1x >时,01y <<D .当0x <时,y 随x 的增大而增大5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度ρ(单位:3kg/m )是体积V (单位:3m )的反比例函数,它的图象如图26-8所示,当310 m V =时,二氧化碳的密度是()A .35 kg/mB .32 kg/mC .3100 kg/mD .31 kg/m 6.如图26-9,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交2x 于1,2A (),2,1B --()两点,若12y y <,则x 的取值范围是()A .1x <B .2x -<C .20x -<<或1x >D .2x -<或01x <<7.若函数1y k x =-()和函数ky x=的图象在同一坐标系中,则其图象可为图中的()A .①③B .①④C .②③D .②④8.如果函数1ky x-=的图象与直线y x =没有交x 点,那么k 的取值范围是()A .1k >B .1k <C .1k ->D .1k -<二、填空题(每小题5分,共20分)9.试写出图象位于第二、第四象限的一个反比例函数的解析式________.10.点P 在反比例函数(0)ky k x=≠的图象上,点2,4Q ()与点P 关于y 轴对称,则反比例函数的解析式为________.11.若点,2P a ()在一次函数24y x =+的图象上,它关于y 轴的对称点在反比例函数ky x=的图象上,则该反比例函数的解析式为________.12.如图26-11,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在上的图象AB 上,点B ,E 在反比例函数ky x=上,1OA =,6OC =,则正方形ADEF 的边长为________.三、解答题(共48分)13.(8分)已知变量y 与1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数解析式。

数学初三下册试题及答案

数学初三下册试题及答案

数学初三下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(1/2)2. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对3. 已知一个等腰三角形的两边长分别为3cm和4cm,那么这个三角形的周长是:A. 10cmB. 11cmC. 14cmD. 无法确定4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个数的立方等于-8,那么这个数是:B. -2C. 2或-2D. 以上都不对6. 已知一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π cm²7. 一个等差数列的前三项依次为2,5,8,那么这个数列的公差是:A. 1B. 2C. 3D. 48. 一个直角三角形的两条直角边长分别为3cm和4cm,那么这个三角形的斜边长是:A. 5cmB. 6cmC. 7cmD. 8cm9. 函数y=x²-4x+3的最大值是:A. 0B. 1C. 2D. 310. 一个数的绝对值是5,那么这个数是:B. -5C. 5或-5D. 以上都不对二、填空题(每题3分,共30分)1. 计算:(2+3)×(2-3) = __________。

2. 一个数的相反数是-8,那么这个数是 __________。

3. 一个数的倒数是1/2,那么这个数是 __________。

4. 一个数的平方等于16,那么这个数是 __________。

5. 一个数的立方等于27,那么这个数是 __________。

6. 计算:√(9) = __________。

7. 计算:(-3)³ = __________。

8. 计算:(-2)×(-4) = __________。

北师大版数学九年级下册-实际问题与二次函数——面积、利润问题课时对应练习(Word版含答案)

北师大版数学九年级下册-实际问题与二次函数——面积、利润问题课时对应练习(Word版含答案)

第11课时实际问题与二次函数——面积、利润问题1.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m22.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5B.6C.7D.83.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定6.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为元时,可获得最大利润.5.(2019•天门)矩形的周长等于40,则此矩形面积的最大值是_____.6.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD、AB平行,则矩形框架ABCD的最大面积为_____m2.7.(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.9.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=﹣x 2+10x ,y 2=2x ,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( ) A .30万元B .40万元C .45万元D .46万元10.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .√3cm 2B .32√3cm 2C .92√3cm 2D .272√3cm 211.(2018•武汉)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t −32t 2.在飞机着陆滑行中,最后4s 滑行的距离是 _____ m . 12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为 75 m 2.13.(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 _____ .14.(2017•常德)如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 __________ .15.(2019•盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?16.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:时间t/天1361036…日销售量m/件9490847624…未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式y2=﹣0.5+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a 的取值范围.17.已知抛物线y =12x 2+mx ﹣2m ﹣2(m ≥0)与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C(1)当m =1时,求点A 和点B 的坐标(2)抛物线上有一点D (﹣1,n ),若△ACD 的面积为5,求m 的值 (3)P 为抛物线上A 、B 之间一点(不包括A 、B ),PM ⊥x 轴于点M ,求AM⋅BM PM的值.【参考答案】1.C . 2.A . 3.B . 4.65. 5.100. 6.4.7.(1)由题意得:y =80+20×60−x10∴函数的关系式为:y =﹣2x +200 (30≤x ≤60) (2)由题意得:(x ﹣30)(﹣2x +200)﹣450=1800 解得x 1=55,x 2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元. (3)设每月获得的利润为w 元,由题意得: w =(x ﹣30)(﹣2x +200)﹣450 =﹣2(x ﹣65)2+2000 ∵﹣2<0∴当x ≤65时,w 随x 的增大而增大 ∵30≤x ≤60∴当x =60时,w 最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元. 8.(1)根据题意得:(30﹣2x )x =72, 解得:x =3,x =12, ∵30﹣2x ≤18, ∴x =12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=152时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米;(3)由题意得:﹣2x2+30x≥100,∵30﹣2x≤18,解得:6≤x≤10.9.D.10.C.提示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,{AO=AOOD=OK,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=√3x,∴DE=6﹣2√3x,∴纸盒侧面积=3x(6﹣2√3x)=﹣6√3x2+18x,=﹣6√3(x−√32)2+9√32,∴当x=√32时,纸盒侧面积最大为9√32.11.24. 12.75.13.0<a <6.提示:设未来30天每天获得的利润为y , y =(110﹣40﹣t )(20+4t )﹣(20+4t )a 化简,得y =﹣4t 2+(260﹣4a )t +1400﹣20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴−260−4a2×(−4)>29.5解得,a <6, 又∵a >0,14.y =2x 2﹣4x +4.提示:如图所示:∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2. ∴∠1+∠2=90°, ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF . ∴∠1+∠3=90°, ∴∠2=∠3,在△AHE 与△BEF 中, ∵{∠A =∠B∠2=∠3EH =FE,∴△AHE ≌△BEF (AAS ), ∴AE =BF =x ,AH =BE =2﹣x , 在Rt △AHE 中,由勾股定理得:EH 2=AE 2+AH 2=x 2+(2﹣x )2=2x 2﹣4x +4; 即y =2x 2﹣4x +4(0<x <2)。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

(word版)初三数学考卷含答案),文档

(word版)初三数学考卷含答案),文档

数学试卷一、选择题:〔每题4分,共40分〕1.化简(2)2的结果正确的选项是〔〕A.-2 B .2 C .±2D.42.在实属范围内 x有意义,那么x的取值范围是〔〕A.x ≥0 B.x ≤0 C .x >0 D.x <03.以下运算中,正确的选项是〔〕A.234265B.842C.2733D.(3)234.假设关于x的一元二次方程(m 1)x25xm23m20的常数项是,那么的m值是〔〕A.1B.2C.1或2D.0 5.方程x24x的解是〔〕A.x=4B.x=2C.x=4或x=0D.x=06.对于抛物线y1(x5)23,以下说法正确的选项是〔〕3A.开口向下,顶点坐标〔 5,3〕B.开口向上,顶点坐标〔5,3〕yC.开口向下,顶点坐标〔-5,3〕D.开口向上,顶点坐标〔-5,3〕O x 7.二次函数yax2bxc的图像如下列图,那么点Q〔a,c〕b在〔〕7题图A.第一象限B.第二象限C.第三象限D.第四象限8.如图,四个边长为2的小正方形拼成一个大正方形,P A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,AOB8题且位于右上方的小正方形内,那么∠APB等于〔〕A.30°B.45°C.60°D.90°9.某车的刹车距离y〔m〕与开始刹车时的速度x〔m/s〕之间满足二次函数12yx20〔x>0〕,假设该车某次的刹车距离为5m,那么开始刹车时的速度为〔〕A.40m/s B.20m/sC.10m/s D.5m/s10在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是二、填空题〔此题包括5小题,每题4分,共20分,请把你认为正确的答案填到对应的空格里〕11、假设二次函数y(x m)21,当x1时,y随x的增大而减小,那么m的取值范围是____________.12、假设二次函数yx26xc的图象经过A〔-1,y1〕、B〔2,y2〕、C〔32,y3〕三点,那么关于y1、y2、y3大小关系正确的选项是____________.13.如图5,抛物线y=-x2+2x+m〔m<0〕与x轴相交于点A〔x1,0〕、B〔x2,0〕,点A在点B的左侧.当x=x2-2时,y0〔填“>〞“=〞或“<〞号〕.__________________14.抛物线y=﹣x2+bx+c的局部图象如下列图,假设y>0,那么x的取值范围是.15、二次函数y=x2+bx-2的图象与x轴的一个交点为〔1,0〕,那么它与x轴的另一个交点坐标是_.三、解答题:〔每题8分,共24分〕16、〔8分〕计算:(548627415)317、〔8分〕用配方法解方程:x24x2018、〔8分〕x1、x2是方程x26x30的两实数根,求x2x1的值.. x1x2四、解答题〔本大题共 3小题,每题 10分,共30分〕19.〔10分〕如图,∠AOB =90°,∠B =30°,△A ′OB ′可以看作是由△AOB 绕点O 顺时针旋转α角度得到的.假设点A ′在AB 上,求旋转角α的度数。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合测试(B 卷)
(50分钟,共100分)
班级:_______ 姓名:_______ 得分:_______ 发展性评语:_____________
一、请准确填空(每小题3分,共24分)
1.在函数①y=2x 2+2,②y=2x 2+x(1-2x),③y=x 2(1+x 2)-1,④y=21
x
+x 2,⑤y=x(x+1),⑥y=123++x x x ,
⑦y=1
22
4++x x x 中,是二次函数的是_____.(只填序号)
2.某函数具有下列两条性质:①图象关于y 轴成轴对称;②当x>0时,函数y 随自变量x 的增大而减小,请举一例:______.(用表达式表示)
3.某电视台综艺节目接到热线电话5000个,现要从中抽取“幸运观众”10名,王芳同学打通了一次热线电话,那她成为“幸运观众”的概率是_____.
4.如图1,⊙O 中,AB=BC=CD ,∠ABC=140°,则∠AED=_____.
5.已知一个圆锥的高是202,底面圆半径为10,则这个圆锥的侧面展开图的圆心角等于_____.
6.在△ABC 中,∠C=90°,sin A=
5
3
,BC=15,则△ABC 的周长是 ,面积是______. 7.如图2,一棵树在离地2 m 的地方被风刮断,量根部到树尖的距离为4 m ,猜想该树的高为_____ m. 8.想一想,怎样把一个圆形纸片通过折叠,折出一个面积最大的正方形?动手做一做,请把折痕在图3中画出来.折叠方法: .
A
B C
D
E O
2 m
4 m
(1) (2) (3)
二、相信你的选择(每小题3分,共24分)
9.若二次函数y=ax 2+bx+c 的图象如图4所示,则点A(-a ,
c
b
)在第( )象限. A.一
B.二
C.三
D.四
x
y
O
A
B C
D A
B
O
(4) (5) (6)
10.某次测试中,随机抽取了10份试卷,成绩如下:(单位:分)76,82,94,83,90,88,85,85,83,84.则这组数据的平均数和中位数分别为( )
A.85,84.5
B.85,85
C.84,85
D.84.5,84.5 11.△ABC 中,∠A=60°,AB=6 cm ,AC=4 cm ,则△ABC 的面积是( )
A.23 cm 2
B.43 cm 2
C.63 c m 2
D.12 cm 2
12.如图5,已知楼高AB 为50 m ,铁塔基与楼房房基间的水平距离BD 为50 m ,塔高DC 为
3
3
50150+ m ,
下列结论中,正确的是( )
A.由楼顶望塔顶仰角为60°
B.由楼顶望塔基俯角为60°
C.由楼顶望塔顶仰角为30°
D.由楼顶望塔基俯角为30° 13.如图6,将半径为4的圆形纸片沿半径OA 、OB 将其截成1∶5两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )
A.2
B.
3
10
C.
32或310 D.31或3
5 14.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x 2+bx+c 的图象过点(1,0),求证:
这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数图象不具有的性质是( ) A.过点(3,0) B.顶点是(2,-2)
C.在x 轴上截得的线段长是2
D.与y 轴的交点是(0,3)
15.已知:如图7,⊙A 的圆心为(4,0),半径为2,OP 切⊙A 于P 点,则阴影部分的面积为( )
A.π3
232-
B.π3232+
C.323
4
-π D.π3
4
32-
A
P O
x
y
图7
图8
16.下列说法中,你认为正确的是
A.一口袋中装有99个红球,1个黑球,则摸一次摸到黑球的概率为
99
1
; B.如图8所示是可以自由转动的转盘,它平均每转6次,指针可能有5次落在黑色区域; C.小明前五次掷硬币都是正面朝上,则他肯定地说第六次掷还是正面朝上; D.某次摸奖的中奖率是1%,则只要摸奖100张,一定有一张中奖 三、考查你的基本功(共14分)
17.(6分)如果等腰三角形两腰上的高之和等于底边上的高,请猜测这个三角形底角的正切值.
18.(8分)已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(m ,O)、B(n ,O),且m+n=4,
3
1=n m . (1)求此抛物线的表达式;
(2)设此抛物线与y 轴的交点为C ,过C 作一平行于x 轴的直线交抛物线于另一点P ,请求出△ACP 的面积S △ACP .
A B
C
O x
y
四、生活中的数学(共18分 )
19.(8分)要测量河两岸相对两棵树A 、B 之间的距离,王立同学从A 点沿垂直AB 的方向前进到C 点,测得∠ACB=45°.继续沿AC 方向前进30 m 到点D ,此时沿得∠ADB=30°.依据这些数据能否求出两树之间的距离AB ?能求,写出求解过程;不能,说明理由.(3取1.73,精确到
0.1 m)
20.(10分)如图11是一块直角三角形钢板,∠C=90°,BC=a ,AC=b ,AB=c.现想利用这块直角三角形钢板剪一个半圆形钢板,且保证半圆的半径为最大,猜想一下半圆的圆心应在何处?请说明理由.
A
B C
五、探究拓展与应用(共20分)
21.(10分)王磊同学设计了如图12所示的图案,他设计的方案是:在△ABC 中,AB=AC=6 cm , ∠
B=30°,以A 为圆心,以AB 长为半径作¼BEC
;以BC 为直径作¼BDC ,则该图案的面积是多少? A
B
C
E D
22.(10分)在“配紫色”游戏中,请你设计出两个转盘,使在游戏中,配成紫色的概率为
2
1.
参考答案
一、
1.①⑤⑦
2.y=-x 2(不唯一)
3.
500
1
4.60°
5.120°
6.60 150
7.(25+2)
8.方法:(1)先对折成半圆,如图a ;
(2)再对折成
4
1
圆,如图b ;
a b c
(3)展开,得到互相垂直直径的折痕,顺次沿连接圆周上相邻两直径端点的线折叠(如图c),此四条折线围成的四边形是正方形且面积最大.
二、9.D 10.A 11.C 12.C 13.C 14.B 15.A 16.B
三、17.解:如图所示, ∵AB=AC, ∴BE=CF . ∵AD=BE+CF, ∴AD=2BE .
∵Rt △ADC ∽Rt △BEC, ∴BC
AC
BE AD . ∴AC=2BC=4CD .
A
E F
∴AD=1522=-CD AC CD .

15=CD
AD
, 即tanACB=15. 18.解:(1)∵⎪⎩⎪
⎨⎧==+,3
1,
4n m n m ∴⎩⎨⎧==.3,1n m
∴A(1,0),B(3,0).
∴⎩⎨
⎧++-=++-=.390,10c b c b 得⎩⎨⎧-==.
3,4c b ∴y=-x 2+4x -3.
(2)∵y=-x 2+4x -3 , ∴C(0,-3). ∴y=-x 2+4x -3. 设P(x ,-3) , ∴x=4. ∴P(4,-3). ∴|PC|=4. ∴S △ACP =
21×|PC|×|OC|=2
1
×4×3=6. 四、19.解:设AB 为x m, ∴AC=AB=x m . ∵CD=30 m , ∴AD=(x+30) m .
在Rt △ABC 中, tan30°=
AD
AB
. ∴
30
33+=x x . ∴x ≈41.0(m) 答:两树间的距离约为41.0 m. 20.解:半圆圆心O 应在斜边AB 上且距B 点
b a a
c +处,且b
a ac
+最大(如图).

AC r AB OB =, ∴b r C OB =. ∴OB=b c
·r .
又∵BC r AB OA =, ∴OA=a c ·r , c=OA+OB=b cr a cr +.
∴r=b a ab +. ∴OB=b
a ac +.
五、21.解:∵AB=AC=6 cm ,∠ABC=30°,∴∠BAC=120°, BC=63.
S 扇BAC =
36036
120⨯⨯π=12π( c m 2),
S △ABC =3933621
=⨯⨯( c m 2),
S 半圆BD C =ππ2
27)33(212
=
⨯. ∴2cm )392
3
(S -+=+=∆πBAC ABC BDC S S S 扇半圆阴. 22.(1)参考.
O
r r A B
C






.2
143214121=⨯+⨯。

相关文档
最新文档