人教版九年级数学教材下册

合集下载

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。

本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。

教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。

但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。

三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。

2.培养学生的几何思维和解决问题的能力。

3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。

四. 教学重难点1.掌握相似三角形的性质。

2.能够运用相似三角形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。

通过案例教学,让学生直观地理解和掌握相似三角形的性质。

通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。

同时,教师结合性质给出相应的例题,让学生进一步理解和运用。

3.操练(15分钟)教师给出一些练习题,让学生独立完成。

教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。

4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3一. 教材分析人教版九年级数学下册第28.2.1节《解直角三角形》是整个初中数学的重要内容之一,主要让学生了解直角三角形的性质,学会使用锐角三角函数来解直角三角形。

本节内容是在学生已经掌握了锐角三角函数的定义和性质的基础上进行学习的,是进一步培养学生解决实际问题能力的关键环节。

教材通过丰富的实例和练习,引导学生探索直角三角形的性质和解题方法,从而提高学生的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数有一定的了解。

但是,对于如何灵活运用锐角三角函数来解直角三角形,以及如何将实际问题与数学知识相结合,仍需要进一步引导和培养。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学,引导他们主动探索和思考,提高他们的数学应用能力。

三. 教学目标1.让学生掌握直角三角形的性质,理解并熟练运用锐角三角函数来解直角三角形。

2.培养学生解决实际问题的能力,提高学生的数学思维能力和解决问题的能力。

3.通过对本节内容的学习,培养学生的团队合作意识和交流表达能力。

四. 教学重难点1.重点:让学生掌握直角三角形的性质,学会使用锐角三角函数来解直角三角形。

2.难点:如何引导学生将实际问题与数学知识相结合,提高学生解决实际问题的能力。

五. 教学方法1.情境教学法:通过丰富的实例,引导学生进入学习情境,激发学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生主动探索和思考,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识和交流表达能力。

4.实践操作法:让学生通过实际操作,加深对直角三角形性质的理解,提高学生的动手能力。

六. 教学准备1.教学课件:制作精美的教学课件,辅助教学,提高学生的学习兴趣。

2.实例材料:准备相关的实际问题,引导学生将数学知识应用于解决实际问题。

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3一. 教材分析本节课的主题是《相似三角形的判定》,是人教版九年级数学下册第27.2.1节的内容。

相似三角形是几何中的一个重要概念,它是学习更复杂几何知识的基础。

本节课的内容包括相似三角形的定义、性质和判定方法。

通过本节课的学习,学生将对相似三角形有更深入的理解,并能够运用相似三角形的知识解决实际问题。

二. 学情分析九年级的学生已经学习了三角形的性质、角的度量等基础知识,对几何图形有一定的认识。

但是,他们对相似三角形的理解和应用还比较模糊,需要通过本节课的学习来进一步明确相似三角形的概念和判定方法。

此外,学生可能对一些抽象的概念和证明过程感到困难,需要教师在教学过程中进行耐心引导和解释。

三. 教学目标1.理解相似三角形的定义和性质。

2.学会使用相似三角形的判定方法判断两个三角形是否相似。

3.能够运用相似三角形的知识解决实际问题。

四. 教学重难点1.相似三角形的定义和性质。

2.相似三角形的判定方法。

3.运用相似三角形的知识解决实际问题。

五. 教学方法本节课采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题、展示案例、引导学生进行小组讨论和合作,激发学生的思考和探究欲望,培养学生的动手操作能力和团队合作精神。

六. 教学准备1.准备相关的教学案例和图片。

2.准备教学课件和板书设计。

3.准备练习题和作业题。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾三角形的基本性质和角的度量知识。

激发学生对相似三角形的兴趣和好奇心。

2.呈现(10分钟)展示一些相似三角形的案例,让学生观察和分析,引导学生发现相似三角形的特征。

引导学生通过小组讨论,总结出相似三角形的定义和性质。

3.操练(10分钟)让学生通过实际操作,使用尺子和直尺来画出相似三角形。

引导学生通过小组合作,探索并验证相似三角形的判定方法。

4.巩固(10分钟)让学生解答一些相似三角形的练习题,巩固他们对相似三角形的理解和应用。

部审人教版九年级数学下册教学设计27.2.1 第2课时《三边成比例的两个三角形相似》

部审人教版九年级数学下册教学设计27.2.1 第2课时《三边成比例的两个三角形相似》

部审人教版九年级数学下册教学设计27.2.1 第2课时《三边成比例的两个三角形相似》一. 教材分析人教版九年级数学下册第27.2.1节《三边成比例的两个三角形相似》是相似三角形内容的一部分。

本节内容主要让学生掌握三边成比例的两个三角形相似的判定方法,理解相似三角形的性质,并能运用相似三角形解决实际问题。

教材通过实例引入,引导学生探究相似三角形的判定方法,进而探究相似三角形的性质,最后通过练习巩固所学知识。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念、性质和判定方法,具备了一定的几何思维能力。

但部分学生对于相似三角形的概念和性质可能还比较模糊,对于如何运用相似三角形解决实际问题可能还存在困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过实际例子探究相似三角形的判定方法和性质,提高学生的几何思维能力。

三. 教学目标1.知识与技能:使学生掌握三边成比例的两个三角形相似的判定方法,理解相似三角形的性质,并能运用相似三角形解决实际问题。

2.过程与方法:通过探究相似三角形的判定方法和性质,培养学生的几何思维能力,提高学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的良好学习习惯。

四. 教学重难点1.重点:三边成比例的两个三角形相似的判定方法,相似三角形的性质。

2.难点:如何运用相似三角形解决实际问题。

五. 教学方法1.情境教学法:通过实例引入相似三角形的概念,引导学生探究相似三角形的判定方法和性质。

2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,激发学生的学习兴趣。

3.互动式教学法:教师与学生、学生与学生之间进行互动,共同探讨相似三角形的判定方法和性质。

4.巩固练习法:通过课堂练习和课后作业,巩固学生所学知识。

六. 教学准备1.教学课件:制作课件,展示相似三角形的实例和判定方法。

2.练习题:准备相关练习题,用于课堂练习和课后作业。

九年级下册人教版数学教材

九年级下册人教版数学教材

九年级下册人教版数学教材一、二次函数。

1. 二次函数的概念。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是函数表达式的二次项系数、一次项系数和常数项。

- 例如y = 2x^2+3x - 1是二次函数,这里a = 2,b=3,c=-1。

2. 二次函数的图象和性质。

- 图象的画法。

- 列表:先取一些自变量x的值,计算出对应的y值。

例如对于y=x^2,当x = - 2时,y=(-2)^2=4;当x=-1时,y = (-1)^2=1等。

- 描点:把上面计算出的坐标(x,y)在平面直角坐标系中描出来。

- 连线:用平滑的曲线将这些点连接起来,就得到二次函数的图象。

- 性质。

- 当a>0时,二次函数y = ax^2+bx + c的图象开口向上,对称轴为x =-(b)/(2a),在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大,函数有最小值y=frac{4ac - b^2}{4a}。

- 当a<0时,二次函数y = ax^2+bx + c的图象开口向下,对称轴为x=-(b)/(2a),在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,函数有最大值y=frac{4ac - b^2}{4a}。

3. 二次函数与一元二次方程。

- 二次函数y = ax^2+bx + c(a≠0),当y = 0时,ax^2+bx + c = 0(a≠0)就是一元二次方程。

- 一元二次方程ax^2+bx + c = 0(a≠0)的根就是二次函数y = ax^2+bx + c(a≠0)的图象与x轴交点的横坐标。

- 判别式Δ=b^2-4ac:当Δ>0时,二次函数图象与x轴有两个交点;当Δ = 0时,二次函数图象与x轴有一个交点;当Δ<0时,二次函数图象与x轴没有交点。

二、相似。

1. 相似图形。

- 形状相同的图形叫做相似图形。

人教版数学九年级下册第二十七章《相似》教材分析课件共62张

人教版数学九年级下册第二十七章《相似》教材分析课件共62张

(2016年)29. 在平面直角坐标系xOy中,点P的坐标为(x1,y1)点Q的坐标为(x2,y2),且x1≠x2,y1≠ y2若P、Q为 某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”。下图为点P,Q 的 “相关矩形”的示意图。 (1)已知点A的坐标为(1,0),
这三道题没有涉及相似的知识,但都是在坐标系中给 间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
出图形新定义,然后按着特殊到一般的方法研究相关 ①在点P1( ,0),P2( , ),P3( ,0)中,⊙O的关联点是;
②点P在直线y = - x上,若P为⊙O的关联点,求点P的横坐标的取值范围;
第二十七章《相似》教材分析
《相似》教材分析 一、看要求 二、品教材
三、说教法 四、谈落实
看要求
1.课标对图形的相似的具体要求:
图形与几何
图形与变化
图形的相似
(1)了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似,了解相似多边形和相似比的含义。
基本实践活动:测物体的高度(课本39页,54页),测河宽 (课本40页),制作艺术字(课本54页)等.
说教法
(一)重视知识间联系,注重数学思想方法的教学。
数学思想是数学知识的精髓,在运用数学知识的过 程中,起着指导作用.数学方法是数学思想的具体 体现,是学习和运用数学知识的工具.下面就相似 中涉及的常见数学思想作如下总结:
M
ABCD 面积的1/9 ?
DN
A
(2)是否存在时刻t,使以A,M,N为顶点的三角
形与△ACD相似?若存在,求t的值;若不存在,

人教版数学九年级下册:(反比例函数)反比例函数(教案)

人教版数学九年级下册:(反比例函数)反比例函数(教案)

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档