大数据常见面试题

合集下载

大数据行业面试题目及答案

大数据行业面试题目及答案

大数据行业面试题目及答案一、概述大数据行业在近年来迅速发展,对于求职者来说,面试是进入这个行业的重要一步。

本文将为大家介绍一些常见的大数据行业面试题目及其答案,希望能够帮助大家更好地准备与应对面试。

二、技术问题1. 什么是大数据?大数据的特点是什么?大数据是指规模庞大、复杂度高且难以通过传统方式进行处理的数据集合。

其特点包括数据量巨大、多样性、高速度和价值密度低。

2. 大数据处理的常用方法有哪些?常用的大数据处理方法包括分布式存储与计算、数据挖掘和机器学习、并行计算和分布式文件系统等。

3. 请介绍一下Hadoop生态系统。

Hadoop生态系统是由Apache基金会开发和维护的一套开源大数据处理平台。

它包括HDFS(分布式文件系统)、MapReduce(分布式计算框架)和YARN(资源管理器)等核心组件。

4. 什么是MapReduce?它的工作原理是什么?MapReduce是一种分布式计算模型,其工作原理基于分治法和函数式编程思想。

它将任务分解成多个子任务,并通过Map和Reduce两个阶段完成数据的处理和计算。

5. 数据清洗在大数据处理中的重要性是什么?数据清洗是指通过对数据集进行去噪、去重、填充缺失值等处理,使数据变得规整、干净、可用。

在大数据处理过程中,数据清洗是确保数据质量和结果准确性的重要步骤。

三、业务问题1. 你认为大数据对于企业有哪些价值?大数据可帮助企业进行市场分析、精准营销、客户关系管理、商业智能等方面的工作,提升企业的运营效率和决策能力,创造更大的商业价值。

2. 在大数据分析中,常用的数据挖掘技术有哪些?常用的数据挖掘技术包括分类、聚类、关联规则挖掘、预测和异常检测等。

3. 请介绍一下数据湖(Data Lake)的概念和作用。

数据湖是指以一种原始、未经加工和结构化的方式存储大量数据的存储库。

它可以集中存储各种类型和格式的数据,为数据科学家和分析师提供快速而灵活的查询和访问,以支持数据分析和决策。

大数据工程师面试题

大数据工程师面试题

大数据工程师面试题一、问题一:请简要介绍大数据工程师的角色和职责。

大数据工程师是负责处理、管理和分析大数据的专业人员。

他们的主要职责包括:- 构建和维护大规模数据处理系统,例如数据仓库、数据湖等。

- 设计和开发数据管道,包括数据采集、清洗、转换和加载(ETL)过程。

- 评估和选择合适的大数据技术栈和工具,例如Hadoop、Spark、NoSQL数据库等。

- 编写和优化复杂的查询和分析脚本,以支持业务需求。

- 设计和实现大规模数据存储解决方案,例如分布式文件系统、列存储等。

- 实施数据安全和隐私保护措施,确保数据的合规性。

- 进行性能调优和故障排除,以确保数据处理系统的高可用性和可靠性。

- 与业务团队密切合作,了解他们的需求,并提供相应的数据解决方案。

二、问题二:请详细说明Hadoop框架的组成和工作原理。

Hadoop是一个用于分布式存储和处理大规模数据的开源框架,它的核心组成包括以下几个部分:1. Hadoop分布式文件系统(HDFS):HDFS是Hadoop框架的存储层,它将大规模的数据分散存储在多台服务器上,以实现高可靠性和可扩展性。

2. Hadoop分布式计算框架(MapReduce):MapReduce是Hadoop 的计算层,它根据数据分布在不同的机器上进行计算,通过将任务分为Map和Reduce两个阶段来实现并行处理。

Map阶段对输入数据进行拆分和处理得到中间结果,Reduce阶段对中间结果进行聚合从而得到最终的输出结果。

3. YARN(Yet Another Resource Negotiator):YARN是Hadoop的资源管理器,负责集群资源的调度和管理。

它可以根据不同的应用需求,合理分配计算资源,并监控任务的执行情况。

Hadoop的工作原理如下:- 当用户提交作业时,YARN将作业的代码和相关信息分发到集群中的各个节点上。

- 根据作业的代码逻辑,数据将被拆分成多个块,并在集群中的节点上进行并行处理。

大数据面试题试卷

大数据面试题试卷

大数据面试题及答案汇总版第1部分选择题1.1 Hadoop选择题1.1.1 HDFS1.下面哪个程序负责 HDFS 数据存储?A.NameNodeB.JobtrackerC.DatanodeD.secondaryNameNodeE.tasktracker2. HDFS 中的 block 默认保存几份?A.3份B.2份C.1份D.4份3. 下列哪个程序通常与NameNode 在一个节点启动?A. SecondaryNameNodeB.DataNodeC.TaskTrackerD. Jobtracker4. HDFS 默认 Block Size(新版本)A. 32MBB.64MBC.128MBD.256MB5. Client 端上传文件的时候下列哪项正确A. 数据经过 NameNode 传递给 DataNodeB.Client 端将文件切分为Block,依次上传C.Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作6. 下面与 HDFS 类似的框架是?A.NTFSB.FAT32C.GFSD.EXT37. 的8. 的1.1.2 集群管理1. 下列哪项通常是集群的最主要瓶颈A. CPUB.网络C.磁盘IOD.内存2. 关于SecondaryNameNode 哪项是正确的?A.它是 NameNode 的热备B.它对内存没有要求C.它的目的是帮助NameNode 合并编辑日志,减少NameNode 启动时间D.SecondaryNameNode 应与 NameNode 部署到一个节点3. 下列哪项不可以作为集群的管理?A. Puppet B.Pdsh C.ClouderaManager D.Zookeeper4. 配置机架感知的下面哪项正确A. 如果一个机架出问题,不会影响数据读写B.写入数据的时候会写到不同机架的 DataNode 中C.MapReduce 会根据机架获取离自己比较近的网络数据5. 下列哪个是 Hadoop 运行的模式A. 单机版B.伪分布式C.分布式6. Cloudera 提供哪几种安装 CDH 的方法A. Cloudera manager B.Tarball C.Yum D.Rpm7.1.2 Hbase选择题1.2.1 Hbase基础1. HBase 来源于哪篇博文? CA TheGoogle File SystemBMapReduceCBigTableD Chubby2. 下面对 HBase 的描述是错误的? AA 不是开源的B 是面向列的C 是分布式的D 是一种 NoSQL 数据库3. HBase 依靠()存储底层数据 AA HDFSB HadoopC MemoryDMapReduce4. HBase 依赖()提供消息通信机制 A AZookeeperB ChubbyC RPCD Socket5. HBase 依赖()提供强大的计算能力 DAZookeeperB ChubbyC RPCDMapReduce6. MapReduce 与 HBase 的关系,哪些描述是正确的? B、CA 两者不可或缺,MapReduce 是 HBase 可以正常运行的保证B 两者不是强关联关系,没有 MapReduce,HBase 可以正常运行CMapReduce 可以直接访问 HBaseD 它们之间没有任何关系7. 下面哪些选项正确描述了HBase 的特性? A、B、C、DA 高可靠性B 高性能C 面向列D 可伸缩8. 下面哪些概念是 HBase 框架中使用的?A、CA HDFSB GridFSCZookeeperD EXT39. D1.2.2 Hbase核心1. LSM 含义是?AA 日志结构合并树B 二叉树C 平衡二叉树D 长平衡二叉树2. 下面对 LSM 结构描述正确的是? A、CA 顺序存储B 直接写硬盘C 需要将数据 Flush 到磁盘D 是一种搜索平衡树3. LSM 更能保证哪种操作的性能?BA 读B 写C 随机读D 合并4. LSM 的读操作和写操作是独立的?AA 是。

大数据面试题试卷

大数据面试题试卷

⼤数据⾯试题试卷⼤数据⾯试题及答案汇总版第1部分选择题1.1 Hadoop选择题1.1.1 HDFS1.下⾯哪个程序负责 HDFS 数据存储?A.NameNodeB.JobtrackerC.DatanodeD.secondaryNameNodeE.tasktracker2. HDFS 中的 block 默认保存⼏份?A.3份B.2份C.1份D.4份3. 下列哪个程序通常与NameNode 在⼀个节点启动?A. SecondaryNameNodeB.DataNodeC.TaskTrackerD. Jobtracker4. HDFS 默认 Block Size(新版本)A. 32MBB.64MBC.128MBD.256MB5. Client 端上传⽂件的时候下列哪项正确A. 数据经过 NameNode 传递给 DataNodeB.Client 端将⽂件切分为Block,依次上传C.Client 只上传数据到⼀台 DataNode,然后由 NameNode 负责 Block 复制⼯作6. 下⾯与 HDFS 类似的框架是?A.NTFSB.FAT32C.GFSD.EXT37. 的8. 的1.1.2 集群管理1. 下列哪项通常是集群的最主要瓶颈A. CPUB.⽹络C.磁盘IOD.存2. 关于SecondaryNameNode 哪项是正确的?A.它是 NameNode 的热备B.它对存没有要求C.它的⽬的是帮助NameNode 合并编辑⽇志,减少NameNode 启动时间D.SecondaryNameNode 应与 NameNode 部署到⼀个节点3. 下列哪项不可以作为集群的管理?A. Puppet B.Pdsh C.ClouderaManager D.Zookeeper4. 配置机架感知的下⾯哪项正确A. 如果⼀个机架出问题,不会影响数据读写B.写⼊数据的时候会写到不同机架的 DataNode 中C.MapReduce 会根据机架获取离⾃⼰⽐较近的⽹络数据5. 下列哪个是 Hadoop 运⾏的模式A. 单机版B.伪分布式C.分布式6. Cloudera 提供哪⼏种安装 CDH 的⽅法A. Cloudera manager B.Tarball C.Yum D.Rpm7.1.2 Hbase选择题1.2.1 Hbase基础1. HBase 来源于哪篇博⽂? CA TheGoogle File SystemBMapReduceCBigTableD Chubby2. 下⾯对 HBase 的描述是错误的? AA 不是开源的B 是⾯向列的C 是分布式的D 是⼀种 NoSQL 数据库3. HBase 依靠()存储底层数据 AC MemoryDMapReduce4. HBase 依赖()提供消息通信机制 A AZookeeperB ChubbyC RPCD Socket5. HBase 依赖()提供强⼤的计算能⼒ DAZookeeperB ChubbyC RPCDMapReduce6. MapReduce 与 HBase 的关系,哪些描述是正确的? B、CA 两者不可或缺,MapReduce 是 HBase 可以正常运⾏的保证B 两者不是强关联关系,没有 MapReduce,HBase 可以正常运⾏CMapReduce 可以直接访问 HBaseD 它们之间没有任何关系7. 下⾯哪些选项正确描述了HBase 的特性? A、B、C、DA ⾼可靠性B ⾼性能C ⾯向列D 可伸缩8. 下⾯哪些概念是 HBase 框架中使⽤的?A、CA HDFSB GridFSCZookeeperD EXT39. D1.2.2 Hbase核⼼1. LSM 含义是?AA ⽇志结构合并树B ⼆叉树C 平衡⼆叉树D 长平衡⼆叉树2. 下⾯对 LSM 结构描述正确的是? A、CC 需要将数据 Flush 到磁盘D 是⼀种搜索平衡树3. LSM 更能保证哪种操作的性能?BA 读B 写C 随机读D 合并4. LSM 的读操作和写操作是独⽴的?AA 是。

大数据专员面试题目(3篇)

大数据专员面试题目(3篇)

第1篇一、基础知识与概念理解1. 题目:请简述大数据的基本概念及其与普通数据的主要区别。

解析:考察应聘者对大数据基本概念的理解。

应聘者应能够解释大数据的规模(大量、多样、快速)、价值密度低、处理和分析的技术和方法等特点,并说明大数据与普通数据在数据量、处理方式、分析目标等方面的区别。

2. 题目:大数据的五个V指的是什么?解析:考察应聘者对大数据特征的理解。

大数据的五个V分别是Volume(数据量)、Velocity(数据速度)、Variety(数据多样性)、Veracity(数据真实性)和Value(数据价值)。

应聘者应能够解释每个V的具体含义。

3. 题目:请简述Hadoop生态系统中的主要组件及其功能。

解析:考察应聘者对Hadoop生态系统的了解。

应聘者应能够列举Hadoop生态系统中的主要组件,如Hadoop分布式文件系统(HDFS)、Hadoop YARN、Hadoop MapReduce、Hive、Pig、HBase等,并解释每个组件的基本功能和作用。

4. 题目:请简述数据仓库和数据湖的区别。

解析:考察应聘者对数据仓库和数据湖的理解。

应聘者应能够解释数据仓库和数据湖在数据存储、处理、查询等方面的差异,以及它们在数据分析中的应用场景。

二、数据处理与分析5. 题目:请简述ETL(提取、转换、加载)过程在数据处理中的作用。

解析:考察应聘者对ETL过程的了解。

应聘者应能够解释ETL在数据预处理、数据清洗、数据转换等方面的作用,以及ETL工具在数据处理中的应用。

6. 题目:请描述数据切分、增量同步和全量同步的方法。

解析:考察应聘者对数据同步的理解。

应聘者应能够解释数据切分、增量同步和全量同步的概念,并举例说明在实际应用中的具体操作方法。

7. 题目:请简述数据挖掘中的分类、聚类和预测方法。

解析:考察应聘者对数据挖掘方法的了解。

应聘者应能够列举数据挖掘中的分类、聚类和预测方法,如决策树、K-means、支持向量机、神经网络等,并解释每种方法的基本原理和应用场景。

大数据相关面试题

大数据相关面试题

一、选择题1.以下哪个不是大数据的特征?A.体积大(Volume)B.价值密度低(Value)C.速度快(Velocity)D.准确性高(Accuracy)(正确答案:D)2.Hadoop是一个能够对大量数据进行分布式处理的软件框架,其核心设计之一是?A.HDFS(Hadoop Distributed File System)B.HBaseC.MapReduce(正确答案)D.Hive3.在大数据处理中,以下哪项技术通常用于实时流数据处理?A.Apache HadoopB.Apache SparkC.Apache Kafka(正确答案)D.Apache Hive4.NoSQL数据库相比于传统的关系型数据库,其主要优势是什么?A.更强的数据一致性B.更适合存储结构化数据C.更高的写入和读取速度(正确答案)D.更复杂的查询功能5.以下哪个工具常用于大数据可视化?A.Apache PigB.Tableau(正确答案)C.Apache FlinkD.Apache Cassandra6.在数据仓库中,星型模式(Star Schema)的设计主要是为了?A.提高数据查询速度(正确答案)B.增加数据冗余C.简化数据更新操作D.提升数据安全性7.以下哪个不是机器学习在大数据分析中常见的应用?A.预测分析B.数据清洗(正确答案)C.用户行为分析D.推荐系统8.在进行大数据处理时,数据科学家通常使用哪种语言进行数据处理和分析?A.JavaB.Python(正确答案)C.C++D.JavaScript。

大数据工程师面试题及答案

大数据工程师面试题及答案

大数据工程师面试题及答案在大数据领域,对工程师的要求越来越高。

以下是一些常见的大数据工程师面试题及答案,希望能为您的面试准备提供一些帮助。

一、基础知识1、请简要介绍一下 Hadoop 生态系统中的主要组件。

答案:Hadoop 生态系统主要包括 HDFS(分布式文件系统)用于存储大规模数据;YARN(资源管理框架)负责资源的分配和调度;MapReduce(分布式计算框架)用于处理大规模数据的计算任务。

此外,还有 Hive(数据仓库工具)、HBase(分布式数据库)、Sqoop(数据导入导出工具)等组件。

2、什么是数据仓库?与数据库有什么区别?答案:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

数据库主要用于事务处理,强调实时性和一致性;而数据仓库侧重于数据分析和决策支持,数据量大、结构复杂,存储历史数据。

二、数据处理和分析1、如何处理数据倾斜问题?答案:数据倾斜通常是指某些键值的分布不均匀,导致某些任务处理的数据量远大于其他任务。

可以通过对倾斜的键进行加盐处理,或者使用 Combiner 函数在 Map 端进行局部聚合来缓解。

还可以对数据进行重新分区,或者调整并行度等方式来解决。

2、请介绍一下 Spark 的核心概念,如 RDD、DataFrame 和 Dataset。

答案:RDD(弹性分布式数据集)是 Spark 的基础数据结构,具有不可变、可分区、可并行操作等特点。

DataFrame 类似于关系型数据库中的表,具有列名和数据类型。

Dataset 是 DataFrame 的扩展,提供了类型安全和面向对象的编程接口。

三、数据存储1、介绍一下 HBase 的架构和工作原理。

答案:HBase 基于 Hadoop 的 HDFS 存储数据,采用主从架构。

HMaster 负责管理表的元数据,HRegionServer 负责存储和管理实际的数据。

数据按照行键进行排序和存储,通过 Region 进行划分和管理。

大数据常用面试题

大数据常用面试题

大数据常用面试题在大数据领域,面试过程中经常会涉及到一些常见的问题,这些问题旨在考察面试者对于大数据的理解、技术能力和解决问题的能力。

本文将介绍一些常用的大数据面试题及其解答。

一、大数据的定义和特点1. 请简要解释什么是大数据?大数据是一种处理和分析超大规模、复杂多样、高速增长的数据集的方法和技术。

它具有三个特点:数据量庞大、数据类型多样、数据生成速度快。

2. 大数据与传统数据的区别是什么?相比传统数据,大数据具有更高的数据量、更多类型的数据和更快的数据生成速度。

传统数据更注重数据的精确性和规整性,而大数据则更注重从数据中挖掘出有价值的信息。

3. 大数据的4V是什么?大数据的4V指的是Volume、Variety、Velocity和Value。

Volume 表示数据的规模,Variety表示数据的多样性,Velocity表示数据的生成速度,Value表示数据的价值。

二、大数据处理和存储技术1. 请简要介绍一下Hadoop和Spark。

Hadoop是一种分布式计算框架,主要用于处理大规模数据集,采用了分布式计算和分布式存储的方式。

Spark是一种快速通用的集群计算系统,可以高效地处理大规模数据集,并具有更快的速度和更强的扩展性。

2. 请简要介绍一下MapReduce的工作原理。

MapReduce是Hadoop中的一种计算模型,它的工作原理可以概括为Map和Reduce两个过程。

Map过程将输入数据切分为若干个小任务,并由多个计算节点并行处理,生成中间结果。

Reduce过程将Map过程生成的中间结果进行合并和计算,得到最终结果。

3. 请简要介绍一下Hive和HBase。

Hive是一种基于Hadoop的数据仓库工具,可以将结构化数据映射到一张表中,并提供类似SQL的查询接口。

HBase是一种分布式的面向列的NoSQL数据库,用于存储大规模结构化、半结构化和非结构化数据。

三、大数据算法和模型1. 请解释一下什么是机器学习?机器学习是一种通过计算机利用大数据并不断优化算法和模型的方法,使计算机能够从数据中自动学习并改进性能,而无需显式地编程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据常见面试题
万事俱备只欠东风,大数据技术已经学到手,接下来就是该面对找工作了的难题了,虽说大数据人才急缺,很好找工作,但如果你想找到一份自己满意的工作还是要下功夫的。

自然一套新版的大数据面试题是必不可少的,正所谓知己知彼,百战不殆!千锋小编节选了千锋讲师刚刚总结出来的大数据常见面试题,欢迎各位小伙伴自行下载。

1、hdfs存储机制
1)client端发送写文件请求,namenode检查文件是否存在,如果已存在,直接返回错误信息,否则,发送给client一些可用namenode节点
2)client将文件分块,并行存储到不同节点上datanode上,发送完成后,client 同时发送信息给namenode和datanode
3)namenode收到的client信息后,发送确信信息给datanode
4)datanode同时收到namenode和datanode的确认信息后,提交写操作。

2、用mr设计一个分组排重计数算法
输入文件格式:二级域名,一级频道,二级频道,访问ip地址,访问者id
需求:按照二级域名,一级频道,二级频道分组,计算pageview数,计算独立ip数和独立访问者id数。

3、Linkedlist和ArrayList的区别
ArrayList是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。

LinkedList使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但是插入数据时只需要记录本项的前后项即可,所以插入速度较快。

4、http安全问题
1)重要信息:MD5,AES加密
2)不太重要的数据:用签名
3)登录态:
5、linux的启动顺序
通电后读取ROM的BIOS程序进行硬件自检,自检成功后把计算机控制权交给BIOS中BOOTsequence中的下一个有效设备,读取该设备MBR找到操作系统,载入linux的bootloader,一般是grub。

之后载入kernel,执行/etc/rc.d/sysinit ,开启其他组件(/etc/modules.conf),执行运行级别,执行/etc/rc.d/rc.local ,执行/bin/login,末后shell启动。

更多更全的千锋大数据面试题尽在千锋教育官网,而且是免费领取哦!小编在这里只是抛砖引玉,更多干货等你自己来挖掘。

相关文档
最新文档