一元二次方程应用2- 变化率问题

合集下载

专题04 一元二次方程的应用(八大类型)(题型专练)(原卷版)

专题04  一元二次方程的应用(八大类型)(题型专练)(原卷版)

专题04 一元二次方程的应用(八大类型)【题型1 一元二次方程应用-变化率】【题型2 一元二次方程应用-传染问题】【题型3 一元二次方程应用-分支问题】【题型4 一元二次方程应用-比赛问题及迁移运用】【题型5 一元二次方程应用-销售问题】【题型6 一元二次方程应用-每每问题】【题型7 一元二次方程应用-几何面积问题】【题型8 一元二次方程应用-几何动态问题】【题型1 一元二次方程应用-变化率】1.(2023春•鄞州区期中)某商品经过连续两次降价,价格由100元降为64元.已知两次降价的百分率都是x,则x满足的方程是()A.64(1﹣2x)=100B.100(1﹣x)2=64C.64(1﹣x)2=100D.100(1﹣2x)=64 2.(2023•东莞市校级一模)某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x)2=64B.25(1+x2)=64C.64(1﹣x)2=25D.64(1﹣x2)=253.(2021·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196 4.(2023•沭阳县模拟)某商品原价每件75元,两次降价后每件48元,则平均每次的降价百分率是.5.(2022秋•确山县期中)2022年是中国共产党建党101周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,某市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年8月份该基地接待参观人数10万人,10月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计11月份的参观人数能否突破13.5万人?6.(2022春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率.(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?【题型2 一元二次方程应用-分支问题】7.(2022秋•青川县期末)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是()A.4B.5C.6D.7 8.(2022秋•澄海区期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?【题型3 一元二次方程应用-传染问题】9.(2022春•南谯区校级期中)新冠肺炎病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“新冠肺炎”疫情初期,有1人感染了“新冠肺炎病毒”,如若得不到有效控制,经过两轮传染后共有196人感染了“新冠肺炎病毒”,则每轮传染中平均一个人传染了()A.12人B.13人C.14人D.15人10.(2023•兴庆区校级一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.(1+x)2=81 11.(2022秋•沈丘县月考)若有2个人患了流感,经过两轮传染后共有50人患了流感(这2个人在第二轮传染中仍有传染性),则每轮传染中平均一个人传染人.12.(2023•城关区一模)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.13.(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?14.(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?【题型4 一元二次方程应用-比赛问题及迁移运用】15.(2023•东莞市二模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.7B.8C.9D.1016.(2021秋•虎林市校级期末)2021年虎林市教育局组织开展了全市中学生篮球联赛,比赛采用单循环赛制(每两队之间进行一场比赛),共进行了66场比赛,则参加比赛的队伍数量是()A.10B.11C.12D.1317.(2022•黑龙江模拟)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有()个班级.A.8B.9C.10D.11 18.(2023•惠东县一模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支19.(2022秋•于洪区期末)一次会议上,每两个参加会议的人都相互握了一次手.有人统计一共握了66次手,这次会议到会的人数有多少人()A.8B.10C.12D.14 20.(2022秋•南平期中)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有()名同学.A.12B.13C.14D.1521.(2022秋•和平区期末)一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是人.22.(2022秋•荔湾区校级期末)卡塔尔足球世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,则该小组有支球队.23.(2023春•安徽月考)网课期间小夏写了封保护眼睛的倡议书,用微博转发的方式传播,设计了如下转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共157人参与了此次活动,则x为人.24.(2022秋•蔚县校级期末)一个小组有若干人,新年互送贺卡一张,共送贺卡72张,共有人.25.(2022秋•白云区期末)一次足球联赛,赛制为双循环形式(每两队之间都赛两场),共要比赛90场,共有多少个队参加比赛?【题型5 一元二次方程应用-销售问题】26.(2023春•盐都区月考)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商品的进价是多少?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,若想销售该商品每天获利2000元,该商店需将商品的售价定为多少?27.(2023•中山市一模)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?28.(2022秋•九龙坡区期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了a%,进货量比九月底增加3a%,以标价的八折全部售出后,比国庆节的总利润多1200元,求a%的值.29.(2022秋•平遥县期末)某商店通过网络在一源头厂家进一种季节性小家电,由于疫情影响以及市场竞争,该厂家不得不逐年下调出厂价;(1)2019年这个小家电出厂价是每台62.5元,到2021年同期该品牌小家电出厂价下调为40元,若每年下调幅度相同,请你计算该小家电出厂价平均每年下调的百分率;(2)若明年商场计划按每台40元购一批该品牌小家电,经市场预测,销售定价为50元时,每月可售出500台,销售定价每增加1元,销售量将减少10台.因受库存的影响,每月进货台数不得超过300台;商家若希望月获利8750元,则应进货多少台?销售定价多少元?30.(2023•桂林一模)小王计划经营某种时尚产品的专卖店,已知该产品的进货价为70元/件,售价不能低于80元/件,专卖店每月有800元的固定成本开支,根据市场调研,产品的销售量y(件)随着产品的售价x(元/件)的变化而变化,销售量y与售价x之间的部分对应关系如表:80828486…售价x(元/件)500490480470…销售量y(件)(1)求销售量y(件)与售价x(元/件)的函数关系式;(2)小王预计每月盈利8200元,为尽可能让利于顾客,则该产品的售价每件应定为多少元?31.(2022秋•通川区期末)为了满足社区居民强身健体的需要,政府准备采购若干套健身器材免费提供给社区,经过考察了解,飞跃公司有A,B两种型号的健身器材可供选择,已知飞跃公司2020年每套A型健身器材的售价为2.5万元,2020年每套B型健身器材的售价为2万元,2022年每套A型健身器材售价为1.6万元,每套A型,B型健身器材的年平均下降率相同.(1)求2020年到2022年每套A型健身器材年平均下降率;(2)2022年政府经过招标,决定年内采购并安装飞跃公司A,B两种型号的健身器材共80套,政府采购专项经费总计不超过115.2万元,并且采购A型器材费用不能少于B型器材的费用,请求出所需经费最少的采购方案.32.(2023•抚州一模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:40455560销售单价x(元/千克)80705040销售量y(千克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?33.(2022春•莱芜区期末)某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?【题型6 一元二次方程应用-每每问题】34.(2023春•沙坪坝区校级月考)将进货价格为38元的商品按单价45元售出时,能卖出300个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x元时,获得的利润为2300元,则下列关系式正确的是()A.(x﹣38)(300﹣5x)=2300B.(x+7)(300+5x)=2300C.(x﹣7)(300﹣5x)=2300D.(x+7)(300﹣5x)=230035.(2021秋•纳溪区期末)某商场经营某种品牌的玩具,购进时的价格是30元/件,根据市场调查:在一段时间内,当销售价格是40元/件时,销售量是600件,当销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售价格为x元/件(x>40),请你分别用含x 的代数式来表示销售量y件和销售该品牌玩具获得的利润w元.(2)在第(1)间的条件下,若商场获得了10000元的销售利润,求该玩具的销售价格应定为多少元/件.36.(2022秋•东明县期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,为增大生产量,该工厂平均每月生产量增加20%,则该工厂在四月份能生产多少个“冰墩墩”?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利40元,在每个降价幅度不超过10元的情况下,每下降2元,则每天可多售10件.如果每天要盈利1440元,则每个“冰墩墩”应降价多少元?37.(2022秋•龙岗区期末)“双十一”期间,某网店直接从工厂购进A,B两款保温杯,进货价和销售价如表:(注:利润=销售价﹣进货价)A款保温杯B款保温杯进货价(元/个)3528销售价(元/个)5040(1)若该网店用1540元购进A,B两款保温杯共50个,求两款保温杯分别购进的个数.(2)“双十一”后,该网店打算把B款保温杯降价销售,如果按照原价销售,平均每天可售出4个,经调查发现,每降价1元,平均每天可多售出2个,则将B款保温杯的销售价定为每个多少元时,才能使B款保温杯平均每天的销售利润为96元?38.(2023春•长沙期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润=销售价﹣进货价)(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B 种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?39.(2023春•北仑区期中)某超市于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?【题型7 一元二次方程应用-几何面积问题】40.(2023春•温州期中)如图,在长为32米,宽为20米的长方形地面上修筑同样宽的小路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设小路的宽为x米,则下面所列方程正确的是()A.32×20﹣32x﹣20x=100B.32x+20x﹣x2=100C.(32﹣x)(20﹣x)+x2=100D.(32﹣x)(20﹣x)=100 41.(2022春•凭祥市期中)如图,在长为30m,宽为15m的长方形地面上修筑同样宽的道路(图中阴影部分),其余部分铺设草坪,要使草坪的面积为406m2,则小路的宽度应为多少()A.1B.1.5C.2D.442.(2023•两江新区一模)如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)场地,被3条宽度相等的绿化带分为总面积为1750平方米的活动场所,如果设绿化带的宽度为x米,由题意可列方程为()A.(60﹣x)(40﹣x)=1750B.(60﹣2x)(40﹣x)=1750C.(60﹣2x)(40﹣x)=2400D.(60﹣x)(40﹣2x)=1750 43.(2023春•涡阳县期中)如图,长方形铁皮的长为10cm,宽为8cm,现在它的四个角上剪去边长为xcm的正方形,做成底面积为24cm2的无盖的长方体盒子,则x的值为()A.2B.7C.2或7D.3或6 44.(2023春•永嘉县校级期中)如图,在高3m,宽4m的长方形墙面上有一块长方形装饰板(图中阴影部分),装饰板的上面和左右两边都留有宽度为x (m)的空白墙面.若长方形装饰板的面积为4m2,则以下方程正确的是()A.(3﹣x)(4﹣x)=4B.(3﹣x)(4﹣2x)=4C.(3﹣2x)(4﹣x)=4D.(3﹣2x)(4﹣2x)=4 45.(2023•碑林区校级模拟)如图,把一块长AB为40cm的长方形硬纸板的四角剪去四个边长为5cm的小正方形,然后把纸板沿虚线折起,做成一个无盖长方体纸盒.若纸盒的体积是1500cm3,则长方形硬纸板的宽为多少?46.(2022秋•城固县期末)如图,现有一块长11cm,宽7cm的长方形硬纸板,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分(图中阴影部分)做成一个底面积为21cm2的无盖长方体盒子,请求出剪去的小正方形的边长.47.(2023•政和县模拟)为培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为15米)另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边CD长为x米.(1)矩形ABCD的另一边BC长为米(用含x的代数式表示);(2)矩形ABCD的面积能否为80m2,若能,请求出AB的长;若不能,请说明理由.48.(2022秋•从化区期末)某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度不限),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm,矩形面积为ym2.(1)矩形面积y=(用含x的代数式表示);(2)当矩形动物场面积为48m2时,求CD边的长.(3)能否围成面积为60m2矩形动物场?说明理由.【题型8 一元二次方程应用-几何动态问题】49.(2022秋•舞钢市期中)如图,矩形ABCD中,AB=21cm,BC=8cm,动点E从A出发,以3cm/s的速度沿AB向B运动,动点F从C出发,以2cm/s 的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.3s B.s C.3s或s D.2.5s50.(2022•晋中期中)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到C点后停止,点P也随之停止运动,当四边形APQC的面积为9cm2时,则点P运动的时间是()A.3s B.3s或5s C.4s D.5s51.(2022•方城县期末)如图,已知等边三角形ABC的边长为6cm,点P从点A出发,沿A→C→B的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为ts,请解决下列问题:若点P在边AC上,当t为何值时,△APQ为直角三角形?52.(2022秋•江门期末)如图,在△ABC中,∠B=90°,AB=5cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动、同时点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点时,另外一点也随之停止运动.(1)△PQB的面积能否等于9cm2?请说明理由.(2)几秒后,四边形APQC的面积等于16cm2?请写出过程.53.(2021秋•城关区月考)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P,Q两点同时出发,当点Q运动到点C 时,P,Q两点同时停止运动.求:(1)几秒后,PQ的长度等于2cm?(2)△PBQ的面积能否等于7cm2?说明理由.54.(2023春•蚌埠月考)△ABC中,∠B=90°,AB=5cm,BC=6cm,点P 从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点B 开始沿边BC向终点C以2cm/s的速度移动,如果点P、Q分别从点A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:BQ=,PB=(用含t的代数式表示);(2)是否存在t的值,使得△PBQ的面积等于4cm2?若存在,请求出此时t 的值;若不存在,请说明理由.。

人教九年级数学上册- 实际问题与一元二次方程(变化率问题和销售问题)(附习题)

人教九年级数学上册-  实际问题与一元二次方程(变化率问题和销售问题)(附习题)
本节课我们学习增长/下降率问题.
推进新课
知识点1 有关增长/下降率的问题
探究2 两年前生产1t甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在 生产1t甲种药品的成本是3000元,生产1t乙种药品的成 本是3600元,哪种药品成本的年平均下降率较大? 下降率是什么意思?它与原成本、终成本之间有何数量关系?
解:设平均每月的增长率为x. 依题意,32+32(1+x)+32(1+x)2=122. 解得x1=0.25,x2=-3.25(舍去). 二月份发行图书32×(1+0.25)=40(万册) 三月份发行图书32×(1+0.25)2=50(万册)
答:二月份发行图书40万册,三月份发行图书50万册.
课堂小结
下降率是下降额与原成本的比值;
原成本-终成本
下降率=
原成本
×100%
①如果甲种药品成本平均每年的下降率为x,则 下降一次后的成本变为 5000(1-x) ,再次下降 后的成本变为 5000(1-x) 2 .(用代数式表示)
②设甲种药品成本平均每年的下降率为x,由等 量关系 终成本=原成本×(1-下降率)2 可得方 程 5000(1-x)2=3000 ,解这个方程,得到方程的 两根,根据问题的实际意义,应选择哪个根呢? 为什么?
21.3 实际问题与一元二次方程 第2课时 实际问题与一元二次方程(2)
变化率问题和销售问题
新课导入
两年前生产1t甲种药品的成本是5000元, 生产1t乙种药品的成本是6000元,随着生产技 术的进步,现在生产1t甲种药品的成本是3000 元,生产1t乙种药品的成本是3600元,哪种药 品成本的年平均下降率较大?

实际问题与一元二次方程2——平均变化率问题

实际问题与一元二次方程2——平均变化率问题

平均变化率问题 4.(4分)(2013· 兰州)据调查,2011年5月兰州市的房价 均价为7 600元/m2,2013年同期将达到8 200元/m2,假设
这两年兰州市房价的平均增长率为x,根据题意,所列方
程为( C )
A.7 600(1+x%)2=8 200 B.7 600(1-x%)2=8 200 C.7 600(1+x)2=8 200
15.(10分)(2013·巴中)某商场今年2月份的营业额为400 万元,3月份的营业额比2月份增加10%,5月份的营业额 达到633.6万元,求3月份到5月份营业额的月平均增长率. 解:设3月份到5月份营业额的月平均增长率为x,根据
题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=
D.7 600(1-x)2=8 200
5.(4分)某商品的原价为289元,经过连续两次降价后售
价为256元,设平均每次降价的百分率为x,则下面所列方
程中正确的是( A ) A.289(1-x)2=256 B.256(1-x)2=289
C.289(1-2x)=256 D.256(1-2x)=289
6.(4分)(2013· 黔西南)某机械厂七月份生产零件50万个 ,第三季度生产零件196万个,设该厂八、九月份平均每 月的增长率为x,那么x满足的方程是( C ) A.50(1+x)2=196 B.50+50(1+x)2=196 C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196
解是否符合 实际意义 .
,传染性很强,曾有2人同时患 上甲肝,在一天内,一人能传染x人,经过两轮传染后共有
128人患上甲肝,则x的值为( D )
A.10 B.9 C.8 D.7 2.(4分)有一人患了流感,经过两轮后共有225人患上此 病,求每轮传染中平均一人传染了几人?设每轮传染中平 均一人传染了x个人,则可列方程 1+x+(1+x)x=225.

一元二次方程的变化率问题

一元二次方程的变化率问题
生活中普遍存在,有一定的模式
若平均增长(或降低)百分率为x, 增长(或降低)前的是基数量a, 增长(或降低)n次后的量是b,
则它们的数量关系可表示为
a(1 x)n b
其中增长取+,降低取-
自我尝试: 练习1:青山村种的水稻2001年平均每公顷产
7200 kg,2003年平均每公顷产8450 kg,求 水稻每公顷产量的年平均增长率.
) 元;
第二次降价后手机的售价为(
)元
归纳: (1)增长率问题 设基数为a,平均增长率为x,
则一次增长后的值为 a •(1 x)
二次增长后的值为 a •(1 x)2
(2)降低率问题 设基数为a,平均降低率为x,
则一次降低后的值为 a •(1 x)
二次降低后的值为 a •(1 x)2
小结 类似地 这种变化率的问题在实际
2.解决实际问题
解:类似于甲种药品成本年平均下降率的计算,由 方程
6 000(1-x)2 =3 600 解方程,得 x1≈0.225, x2≈1.775. 得乙种药品成本年平均下降率为 0.225. 两种药品成本的年平均下降率相等,成本下降额较 大的产品,其成本下降率不一定较大.成本下降额表示 绝对变化量,成本下降率表示相对变化量,两者兼顾才 能全面比较对象的变化状况.
练习2:某工厂第一季度的一月份生产电视机是 1万台,第一季度生产电视机的总台数是3.31 万台,求二月份、三月份生产电视机平均增长 的百分率是多少?
2.解决实际问题
问题3 两年前生产 1 t 甲种药品的成本是 5 000 元,生产 1 t 乙种药品的成本是 6 000 元,随着生产技 术的进步,现在生产 1 t 甲种药品的成本是 3 000 元, 生产 1 t 乙种药品的成本是 3 600 元,哪种药品成本的 年平均下降率较大?

一元二次方程的应用(第2课时变化率及销售问题)

一元二次方程的应用(第2课时变化率及销售问题)
销售问 题
增长率 问题
降低率 问题
a(1+x)2=b,其中a为增长前 的量,x为增长率,2为增 长次数,b为增长后的量
a(1-x)2=b,其中a为降低前 的量,x为降低率,2为降 低次数,b为降低后的量.注 意1与x位置不可调换
(1)利润=售价-__进___价___;
利润 (2)利润率=进价×100%;
50 台,这样就可以列出一个方程,从而使问题得到解决.
解:设每台冰箱降价x元. 根据题意,得
(2900 x 2500)(8 4 x ) 5000. 50
整理,得 x2 - 300x + 22500 = 0.
解这个方程,得
x1 = x2 = 150.
∴ 2900 - x = 2900 - 150 = 2750.
例 某商场今年2月份的营业额为400万元,3月份的营业额比2 月3份增加10%,5月份的营业额达到633.6万元.求3月份到5月份 营业额的月平均增长率.
解:设3月份到5月份营业额的月平均增长率为x, 根据题意,得400×(1+10%)(1+x)2=633.6. 解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
3.某市某楼盘准备以每平方米5 000元的均价对外销售,由于有关部 门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商 为了加快资金周转,对价格经过两次下调后,决定以每平方米4 050 元的均价开盘销售.若两次下调的百分率相同,求平均每次下调的百 分率.
解:设平均每次下调的百分率为x,根据题意,得 5 000(1-x)2=4 050. 解得x1=0.1=10%,x2=1.9(不合题意,舍去).
平均增长率问题与一元二次方程
例 机动车尾气污染是导致城市空气质量恶化的重要原因.为解决这一问题, 某市1试验将现有部分汽车改装成液化石油气燃料汽车(称为环保汽车),按计 划,该市将使全市的这种环保汽车由目前的325辆增加到两年后的637辆,求这 种环保汽车平均每年增长的百分率.

一元二次方程题目类型

一元二次方程题目类型

一元二次方程题目类型
一元二次方程的题目类型有:
1. 求解一元二次方程的实数解。

这类题目要求学生掌握使用因式分解、配方法、求根公式等方法来解方程。

2. 求解一元二次方程的整数解。

有时,一元二次方程的解可能是整数,学生需要通过分析方程的特点和使用合适的方法来求解整数解。

3. 列一元二次方程解决增长(降低)率问题。

这类问题需要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系。

如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次。

增长率问题可以使用平均增长率公式a(1+x)^n=b(a为原来数,x为平均增长率,n为增长次数,b为增长后的量)来解决;降低率问题可以使用平均降低率公式a(1-x)^n=b(a 为原来数,x为平均降低率,n为降低次数,b为降低后的量)来解决。

九年级数学 第24章 一元二次方程 24.4 一元二次方程的应用 第2课时 变化率问题导学

九年级数学 第24章 一元二次方程 24.4 一元二次方程的应用 第2课时 变化率问题导学

第2课时 变化率问题
解:设第二次降价的百分率为 x,则第一次降价的百分率为21x. 根据题意,
1 得 5000×(1-2x)(1-x)=2400, 整理,得 25x2-75x+26=0, 解得 x1=0.4=40%,x2=2.6>1(不合题意,舍去). 所以第二次降价的百分率为 40%.
12/12/2021
第2课时 变化率问题
[归纳总结]一般的,如果增长(降低)前的量为 a,经过两次增长 (降低)后的量为 b,如果两次增长(降低)的增长(降低)率不同,第一 次增长(降低)的增长(降低)率为 x1,第二次增长(降低)的增长(降低) 率为 x2,则有 a(1+x1)(1+x2)=b[a(1-x1)(1-x2)]=b.
12/12/2021
第2课时 变化率问题
(2)[2017·邢台临城县期中]某厂改进工艺降低了某种 产品的生产成本,两个月内生产成本从每件产品 250 元,降 低到了每件 160 元,平均每月降低率为( B )
A.15% B.20% C.5% D.25%
[解析] 如果设平均每月生产成本的降低率为 x,根据题意可得 250(1 -x)2=160,
∴x1=0.2,x2=1.8(不合题意,舍去).故选 B.
12/12/2021
第2课时 变化率问题
[归纳总结]平均变化率问题 (1)平均(降低)增长率问题应用 a1+xn=b[a(1-x)n=b] 解决,其中 a 为基础数,b 为变化后的目标数,x 为变化率. (2)一般地,若增长(降低)前的量为 a,两次的平均增长(降 低)率为 x,三次的数量之和为 b,则有 a+a(1+x)+a(1+x)2 =b[a+a(1-x)+a(1-x)2=b].
12/12/2021

专题(四) 一元二次方程的实际应用——平均变化率与利润问题

专题(四) 一元二次方程的实际应用——平均变化率与利润问题

(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至
多少元?
解:设这种水果每斤的售价降价 x 元,则(2-x)(100+200x) 1 =300,即 2x2-3x+1=0,解得 x1=1,x2= .当 x=1 时,每天的 2 1 销量为 300 斤;当 x= 时,每天的销量为 200 斤.为保证每天至 2 1 少售出 260 斤,∴x2= 不合题意,舍去.此时每斤的售价为 4-1 2 =3(元).答:销售这种水果要想每天盈利 300 元,张阿姨需将每 斤的售价降至 3 元
4.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每
斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤
的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260 斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售量是 ___________________ 斤(用含x的代数式表示); (100+200x)
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予
以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物
业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优
惠?
解:(1)设平均每次下调的百分率为 x,依题意得 5000(1-x)2 19 =4050,解得 x1=10%,x2= (不合题意,舍去),则平均每次下 10 调 的 百 分 率 为 10% (2) 方 案 ① 的 房 款 是 4050×100×0.98 = 396900( 元 ) , 另外需在两年内付物业管理费 1.5 × 100 × 12 × 2 = 3600(元);方案②的房款是 4050×100=405000(元),故在同等条 件 下 方 案 ① 需 付 款 396900 + 3600 = 400500( 元 ) . ∵400500 < 405000,∴选方案①更优惠
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程(2)
-------变化率问题
探究2
两年前生产 1吨甲种药品的成本是5000元,生产1吨 乙种药品的成本是6000元,随着生产技术的进步, 现在生产 1吨甲种药品的成本是3000元,生产1吨乙 种药品的成本是3600元,哪种药品成本的年平均 下降率较大? 分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元) 乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元) 乙种药品成本的年平均下降额较大.但是,年平 均下降额(元)不等同于年平均下降率(百分数)
小结 类似地 这种增长率的问题在实际
生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长 (或降低)前的是a,增长(或降低)n次后 的量是b,则它们的数量关系可表示为
a (1 x) b
n
其中增长取+,降低取-
练习:
1.某厂今年一月的总产量为500吨,三月的总产
量为720吨,平均每月增长率是x,列方程( B A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=500 )
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
5000 (1x) 3000
2
解方程,得
x 0.225, x 1.775(不合题意, 舍去)
1 2
答:甲种药品成本的年平均下降率约为22.5%.
(舍)
答:这种存款方式的年利率为5%.
1、平均增长(降低)率公式
a(1 x) b
2
2、注意: (1)1与x的位置不要调换 (2)解这类问题列出的方程一般 用 直接开平方法
x
∴(1 x )2 1 36% ∴1 x 0.8 ∴ x1 0.2 x2 1.8
x2 1.8 不合题意舍去. ∴ x 0.2 20%
. 答:平均每月降价
20% .
例1. 某人将2000元人民币按一年定期存入银行,到期后支取1000 元用于购物,剩下的1000元及应得利息又全部按一年定期存入银 行,若银行存款的利率不变,到期后得本金和利息共1155元,求 这种存款方式的年利率. 解:设这种存款方式的年利率为
2.某校去年对实验器材的投资为2万元,预计今明 两年的投资总额为8万元,若设该校今明两年在 实验器材投资上的平均增长率是x,则可列方程

.
3. 商店里某种商品在两个月里降价两次,现在该商品每件 的价格比两个月前下降了36%,问平均每月降价百分之几? 4. 某种细菌,一个细菌经过两轮繁殖后,共有256个细 菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
算一算:乙种药品成本的年平均下降率是多少? 22.5% 比较:两种药品成本的年平均下降率 (相同)
经过计算,你能得出什么结论?成本下降额 较大的药品,它的成本下降率一定也较大 吗 ?应怎样全面地比较对象的变化状况?
经过计算,成本下降额较大的药品,它的成本 下降率不一定较大,应比较降前及降后的价格.
根据题意,得 2000(1 x) 1000 (1 x) 1155 2 整理,得:
x,
2 x 3x 0.155 0
2
3 3.2 ∴x 4 ∴ x1 0.05 5%
∵b 4ac 3 4 2 0.155 10.24 3.22ຫໍສະໝຸດ 2x2 1.55

3. 商店里某种商品在两个月里降价两次,现在该商品每 件的价格比两个月前下降了36%,问平均每月降价百分 之几?
解:设平均每月降价的百分数为 , 又设两个月前的价格为 a 元,则现在的价格为 a(1 36%) 元, 2 根据题意,得 a(1 x ) a (1 36%) ∵ a 0 ,
相关文档
最新文档