北师大版中考数学试卷 E卷

合集下载

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列方程,是一元二次方程的是()A .2 310x x +-=B .2 51y x -=C . 210x +=D .21 1x x +=2.下面几何体的主视图是()A .B .C .D .3.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 的对应高的比为()A .23B .8116C .94D .324.若正方形的对角线长为2,则这个正方形的面积为()A .2B .4CD .5.如图,点A 为反比例函数k y x=的图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,已知△ABO 的面积为3,则k 值为()A .-3B .3C .-6D .66.如图,线段AB 两个端点的坐标分别为(2,2)(2.5,0.8)A B 、,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为()A .(3,1.6)B .(4,3.2)C .(4,4)D .(6,1.6)7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,正方形ABCD 中,E 为BC 中点,连接AE ,DF AE ⊥于点F ,连接CF ,FG CF ⊥交AD 于点G ,下列结论:①CF CD =;②G 为AD 中点;③~DCF AGF ∆∆;④23AF EF =,其中结论正确的个数有()A .1个B .2个C .3个D .4个10.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒二、填空题11.方程x2=x的解为___.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为___.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__颗.14.已知矩形ABCD,当满足条件______时,它成为正方形(填一个你认为正确的条件即可).15.反比例函数kyx=的图象经过点(1,﹣2),则k的值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=_____.三、解答题18.解方程:2x2﹣4x﹣1=0.19.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,小明站在路灯B下的A处,向前走5米到D处,发现自己在地面上的影子DC 是2米.若小明的身高DE是1.8米,则路灯B离地面的高度AB是多少米?21.如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.22.有一块长60m,宽50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中黑色部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a=(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为2430m2,则通道的宽度为多少?23.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x 轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.24.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP 沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E 为直线CD 上的一点,则在平面直角坐标系中是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.25.如图,一次函数y=x+b 和反比例函数y=xk (k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.26.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.A 【分析】根据一元二次方程的概念(只含有一个未知数,并且未知数项的最高次数是二次的整式方程叫做一元二次方程),逐一判断.【详解】A.2310x x +-=,符合一元二次方程的定义,故本选项正确;B.251y x -=,方程含有两个未知数,故本选项错误;C.210x +=,未知数项的最高次数是一次,故本选项错误;D.211x x+=,不是整式方程,故本选项错误.故答案选A.【点睛】本题重点考查了满足一元二次方程的条件:(1)该方程为整式方程.(2)该方程有且只含有一个未知数.(3)该方程中未知数的最高次数是2.2.B 【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B .【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.3.D 【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应高的比等于相似比解答即可.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94,∴△ABC 与△DEF 的相似比为32,∴△ABC 与△DEF 对应高的比为32,故选:D .【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.A 【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解.【详解】如图所示:∵四边形ABCD 是正方形,∴AO=BO=12AC=1cm ,∠AOB=90°,由勾股定理得,2,S 正=2)2=2cm2.故选A .【点睛】考查正方形的性质,解题关键是根据对角线平分、相等、垂直且平分每一组对角进行分析.5.C 【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy =﹣6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0.又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S △AOB 12=⨯|AB|×|OB|12=⨯y×|x|=3,∴﹣xy =6,∴k =﹣6.故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6.C 【分析】根据位似中心的定义可得:2:1OC OA =,由此即可得出答案.【详解】解:由题意得::2:1OC OA =,则端点C 的坐标为(22,22)C ⨯⨯,即为(4,4)C ,故选:C .【点睛】本题考查了位似图形的性质,理解定义是解题关键.7.D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.D 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方,∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2.故选:D .9.D 【分析】如图(见解析),过点C 作CM DF ⊥于点M ,先根据三角形全等的判定定理证出ADF DCM ≅ ,根据全等三角形的性质可得AF DM =,再利用正切三角函数可得1tan 1tan 42BE AB ∠=∠==,从而可得AF FM DM ==,然后根据线段垂直平分线的判定与性质即可判断①;先根据等腰三角形的性质可得25∠=∠,从而可得17∠=∠,再根据等腰三角形的判定可得DG FG =,然后根据角的和差可得36∠=∠,最后根据等腰三角形的判定可得AG FG =,由此即可判断②;先根据上面过程可知3256=∠∠∠=∠=,再根据相似三角形的判定即可判断③;设(0)AF x x =>,从而可得2DF x =,先利用勾股定理可得5,2AD AB BC AE x ====,再根据线段的和差可得32EF x =,由此即可判断④.【详解】解:如图,过点C 作CM DF ⊥于点M ,四边形ABCD 是正方形,,90AB BC CD AD B BAD ADC ∴===∠=∠=∠=︒,2190∴∠+∠=︒,DF AE ⊥ ,90,1390AFD DMC ∴∠=∠=︒∠+∠=︒,32∴∠=∠,在ADF 和DCM △中,9032AFD DMC AD DC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DCM AAS ∴≅ ,AF DM ∴=,点E 是BC 的中点,1122BE BC AB ∴==,349031∠+∠=︒=∠+∠ ,41∴∠=∠,1tan 1tan 42BE AB ∴∠=∠==,12AFDF ∴=,即2DF AF =,DF DM FM AF FM =+=+ ,2AF AF FM ∴=+,即AF FM =,DM FM ∴=,又CM DF ⊥ ,CF CD ∴=,结论①正确;25∴∠=∠,FG CF ⊥ ,90CFG ADC ∴∠=︒=∠,17∴∠=∠,DG FG ∴=,又139076∠+∠=︒=∠+∠ ,36∴∠=∠,AG FG ∴=,AG DG ∴=,即G 为AD 中点,结论②正确;由上已得:32536,2,∠=∠∠∠∠=∠=,56∴∠=∠,在DCF 和AGF 中,2356∠=∠⎧⎨∠=∠⎩,DCF AGF ∴ ,结论③正确;设(0)AF x x =>,则2DF x =,BC AB AD ∴====,122BE BC ∴==,52AE x ∴==,32EF AE AF x ∴=-=,3223AF x EF x ∴==,结论④正确;综上,结论正确的个数有4个,故选:D .10.B 【分析】连接BF ,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF ,根据等边对等角可得∠FBA=∠FAB ,再根据菱形的邻角互补求出∠ABC ,然后求出∠CBF ,最后根据菱形的对称性可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×100°=50°,∵EF 是AB 的垂直平分线,∴AF=BF ,∴∠FBA=∠FAB=50°,∵菱形ABCD 的对边AD ∥BC ,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B .11.0x =或1x =【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.12.2a ≥-且0a ≠##a≠0且a≥-2【分析】根据题意可知0∆≥,代入求解即可.【详解】解:一元二次方程ax 2+4x ﹣2=0,,4,2a a b c ===-,∵关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,∴0∆≥且0a ≠,即244(2)0a -⨯-≥,0a ≠解得:2a ≥-且0a ≠故答案为:2a ≥-且0a ≠.13.14【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,60.36n=+,解得n=14.经检验n=14是原方程的解故估计盒子中黑珠子大约有14个.故答案为:14.14.AB=BC【详解】解:∵四边形ABCD是矩形,∴(1)当AB=BC时,矩形ABCD是正方形;(2)当AC⊥BD时,矩形ABCD是正方形.故答案为:AB=CD(或AC⊥BD).15.﹣2.【分析】将点(1,﹣2)代入kyx=,即可求解.【详解】∵反比例函数kyx=的图象经过点(1,﹣2),∴k21-=,解得k=﹣2.故答案为-2.16.16924【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【详解】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,5=,∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90∘,∵FG⊥AD,∴∠GEF+∠EFG=90∘,∴∠DAA′=∠GFE,在△GEF 和△DA′A 中,90EGF D FG AD DAA GFE ∠=∠=︒⎧⎪=⎨⎪∠'=∠⎩,∴△GEF ≌△DA′A ,∴DA′=EG=5,设AE=x,由翻折的性质可知EA′=x ,则DE=12−x ,在Rt △EDA′中,由勾股定理得:A′E 2=DE 2+A′D 2,即x 2=(12−x)2+52,解得:x=16924,故答案为16924,【点睛】本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.17.4.8【分析】根据菱形的性质得到AC ⊥BD ,求出OA ,OB ,由勾股定理求出AB ,再利用菱形的面积公式得到12AC•BD=AB•DH ,由此求出答案.【详解】解:在菱形ABCD 中,AC ⊥BD ,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt △AOB 中,==5,∵DH ⊥AB ,∴菱形ABCD 的面积=12AC•BD=AB•DH ,即12×6×8=5DH ,解得DH=4.8.故答案为:4.8.【点睛】此题考查了菱形的性质,勾股定理,熟记菱形的性质并熟练应用解决问题是解题的关键.18.【分析】用配方法解一元二次方程即可.【详解】解:∵2x2﹣4x ﹣1=0,∴2x2﹣4x=1,则x2﹣2x=12,∴x2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣,∴.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.19.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .又∵CE ⊥AB ,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.20.路灯B 离地面的高度 6.3AB =米【分析】根据ED ∥AB ,得出△ECD ∽△BCA ,进而得出比例式求出即可.【详解】解:由题图知,2DC =米, 1.8=ED 米,5AD =米,∴527=+=+=AC AD DC (米).∵ED AB ∥,∴ECD BCA ∽△△.∴ED DC AB AC =,即1.827AB =.∴路灯B 离地面的高度 1.87 6.32AB ⨯==(米).【点睛】此题主要考查了相似三角形的应用,得出△ECD ∽△EBA 是解决问题的关键.21.(1)4AC =,60AOB ∠=︒;(2)菱形OBEC 的面积是【分析】(1)根据AB 的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC 的长度,根据矩形的对角线互相平分可得出OBC 为等腰三角形,从而利用外角的知识可得出∠AOB 的度数;(2)先求出△OBC 和的面积,从而可求出菱形OBEC 的面积.(1)解:在矩形ABCD 中,90ABC ∠=︒,在Rt ABC 中,30ACB ∠=︒.∴24AC AB ==.∴2AO OB ==.又∵2AB =,∴AOB 是等边三角形.∴60AOB ∠=︒.(2)解:在Rt ABC 中,由勾股定理,得BC ==.∴122ABC S =⨯⨯= .∴12BOC ABC S S ==△△.∴菱形OBEC 的面积是【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.22.(1)6032x-(2)通道的宽度为2m .【分析】(1)结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,可得方程等式,化简即可得;(2)结合图形,利用大面积减去黑色部分的面积可得方向,求解即可得.(1)解:结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,∴2360a x +=,6032x a -=,故答案为:6032x -;(2)解:根据题意得:(502)(603)2430---⋅=x x x a ,∵6032x a -=,∴603(502)(603)24302x x x x ----⋅=,解得122,38x x ==(不合题意,舍去).∴通道的宽度为2m .【点睛】题目主要考查列代数式及一元二次方程的应用,理解题意,找准面积之间的关系是解题关键.23.(1)6y x =,23y x =;(2)03x <<;(3)理由见解析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.【详解】解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点睛】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.24.(1)直线l 的函数解析式为43233y x =-+(2)点P '到直线CD 的距离为2(3)存在点1(8F +或2(8F --或3(6,14)F -或4(33,25)F ,使以点A ,D ,E ,F 为顶点的四边形为菱形.【分析】(1)用待定系数法即可求解;(2)由△PBD 的面积求出点P 的坐标,进而求出点P'(5,4),构建△P'DN 用解直角三角形的方法即可求解;(3)分AD 是菱形的边、AD 是菱形的对角线两种情况,利用图像平移和中点公式,分别求解即可.(1)解:∵14,(6,0)=-AC C ,点A 在点C 右侧,∴(8,0)A .∵直线l 与直线CD 相交于点(2,8)D ,∴80,28,k b k b +=⎧⎨+=⎩解得4,332.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l 的函数解析式为43233y x =-+.(2)解:如图1,过点P 作PN y ⊥轴于点N ,作'∥PP y 轴,交AB 于点P ',过点P '作'⊥P M CD 于点M ,过点D 作DE y ⊥轴于点E ,设CD 与y 轴交于点F,0设直线CD 的解析式为y mx n =+,∵(6,0),(2,8)-C D ,∴60,28,m n m n -+=⎧⎨+=⎩解得 1.6.m n =⎧⎨=⎩∴直线CD 的解析式为6y x =+.(0,6)F ∴∴6OC OF ==.∴OCF OFC∠=∠∵OC OF ⊥,∴45OCF OFC ∠=∠=︒∵直线l 的解析式为43233y x =-+,∴320,3B ⎛⎫⎪⎝⎭.∴323OB =.∴3214633=-=-=BF OB OF .设(,6)+P a a ,∵7=-= PBD PBF DBF S S S ,∴11722⋅-⋅=BF PN BF DE ,即114(2)723⨯-=a ,解得5a =.∴(5,11)P .∵将线段BP 沿着y 轴方向平移,使得点P 落在直线AB 上的P '处,∴4325433-⨯+=.∴(5,4)'P .∴1147='-=PP .∵45PCA OCF ∠=∠=︒,PP AC '⊥∴45'︒∠=MPP .∵'⊥P M CD ,∴45PP M P PM ''∠=∠=︒∴PMP ' 是等腰直角三角形.∴==''P M ,即点P '到直线CD 的距离为2.(3)解:①如图2,当AD 、AF 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADEF 是菱形,∴,10==∥DE AF AD AF .∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =+.∵(8,0)A ,∴80b +=,解得8b =-.∴直线AF 的解析式为8y x =-.设(,8)-F c c ,∴10===AF AD ,解得8=±c∴12(8(8+--F F .当AD 、AE 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADFE 是菱形,∴,10∥DF AE AD AE ==.∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =-+.∵(8,0)A ,∴-80b +=,解得8b =.∴直线AF 的解析式为8y x =-+.设(,8)F d d -+,∴10DF AD ===,解得6d =-或8d =(舍去),∴3(6,14),F -.②如图3,当AD 为对角线时,则,=∥DF AF AF DE .由①得直线AF 的解析式为8y x =-.设(,8)-F t t ,∵(2,8),(8,0)D A ,2222(2)(88)(8)(8)t t t t -+--=-+-解得33t =.∴4(33,25)F .综上所述,存在点1(852,52)F +或2(852,52)F --或3(6,14)F -或4(33,25)F 使以点A ,D ,E ,F 为顶点的四边形为菱形.【点睛】本题考查的是二次函数综合运用,涉及到二次函数的性质、平行四边形的性质、图形的平移、面积的计算等,分类求解解题的关键.25.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.26.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∴CDE CGH ∠=∠.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。

【北师大版】初三数学下期中一模试题带答案(4)

【北师大版】初三数学下期中一模试题带答案(4)

一、选择题1.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )A .49B .112C .13D .162.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( )A .20B .15C .10D .53.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .14.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )A .18B .38C .58D .125.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为( ) A .2019 B .2020 C .2021 D .20226.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 7.解方程2630x x -+=,可用配方法将其变形为( )A .2(3)3x +=B .2(3)6x -=C .2(3)3x -=D .2(6)3x -= 8.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 9.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶2 11.如图所示,△ABC 是等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是( )①点 P 在∠A 的平分线上; ②AS=AR ; ③QP //AR ; ④△BRP ≌△QSP .A .全部正确B .①②正确C .①②③正确D .①③正确 12.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .26二、填空题13.某次考试中,每道单项选择题有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全部做对的概率是_______.14.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.15.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.16.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 17.如果一元二次方程()()636x x x -=-的两个根是等腰三角形的两条边的长,那么这个等腰三角形的周长为__________.18.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为_______________.19.如图,在矩形ABCD 中,4cm AB =,3cm BC =,点P 为AD 上一点,将ABP 沿着BP 翻折至EBP ,PE 与CD 交于点O ,且OE OD ,则DP 的长度为______cm .20.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.三、解答题21.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.22.某校七年级积极实施拓展性课程,计划开设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”等多个拓展性课程供学生选择,要求每位学生都自主选择其中一门拓展性课程,为此,随机调查了本校部分学生选择拓展性课程的意向,并将调查结果绘制成如下统计图表(不完整):选择意向羽毛球电影鉴赏篮球美食文化其他所占百分比a35%b20%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a,b的值;(2)将条形统计图补充完整;(3)若该校七年级共有480名学生,请估算全校选择“篮球”拓展性课程的学生人数是多少?(4)现有甲、乙两位同学选拓展性课程,他们各自从羽毛球,电影鉴赏,篮球和美食文化四个拓展性课程中任意选择一门,请画出树状图或表格,并求出他们其中一位选择了电影鉴赏,另一位选择了美食文化的概率是多少?23.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.24.解方程:(1)2210x x +-=; (2)3(1)2(1)x x x -=-.25.如图,在四边形ABCD 中,E 、F 分别是AD ,BC 的中点,G ,H 分别是BD 、AC 的中点,依次连接E ,G ,F ,H .(1)求证:四边形EGFH 是平行四边形;(2)当AB=CD 时,EF 与GH 有怎样的位置关系?请说明理由;(3)若AB=CD ,∠ABD=20°,∠BDC=70°,则∠GEF= °.26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.2.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 3.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.也考查了中心对称图形的定义.4.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38, 故选:B .【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.5.C解析:C【分析】由一元二次方程根与系数的关系,得到1a b +=-,然后求出22022a a +=,然后代入计算,即可得到答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴1a b +=-,22022a a +=,∴222()()a a b a a a b ++=+++2022(1)=+-2021=.故选:C .【点睛】本题考查了一元二次方程的解,根与系数的关系,解题的关键是熟练掌握运算法则,正确的进行解题.6.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B解析:B【分析】方程两边同时加6即可配方变形,由此得到答案.【详解】解:方程两边同时加上6,得2696x x -+=,∴2(3)6x -=,故选:B .【点睛】此题考查一元二次方程的配方,掌握配方法的解题方法是解题的关键.8.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x -+=中,24440b ac ∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定,正确,不符合题意; 故选:C .【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A 、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B 、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C 、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D 、平移和旋转都不改变图形的形状和大小,正确,故选:D .【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.11.A解析:A【分析】因为△ABC 为等边三角形,根据已知条件可推出Rt △ARP ≌Rt △ASP ,则AR =AS ,故②正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故①正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故③正确,又可推出△BRP≌△QSP,故④正确.【详解】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴Rt△ARP≌Rt△ASP∴AR=AS,故②正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故①正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故③正确∵Q是AC的中点,∴QC=QP,∵∠C=60°,∴△QPC是等边三角形,∴PB=PC=PQ,∵PR=PS,∠BRP=∠QSP=90°,∴△BRP≌△QSP,故④正确∴全部正确.故选:A.【点睛】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质,熟练掌握上述性质和判定方法是解题的关键.12.B解析:B【分析】直接利用勾股定理得出DC的长,再利用角平分线的定义以及等腰三角形的性质得出BE的长,进而得出答案.【详解】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC==,4则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.二、填空题13.【分析】根据题意列出树状图解答即可【详解】设每道题的四个选项分别为:ABCD且这两道题都只有A选项是正确的列树状图如下:共有16种等可能的情况其中这两道题全部做对的有1种∴该同学的这两道题全部做对的解析:1 16【分析】根据题意,列出树状图解答即可.【详解】设每道题的四个选项分别为:A、B、C、D,且这两道题都只有A选项是正确的,列树状图如下:共有16种等可能的情况,其中这两道题全部做对的有1种,∴该同学的这两道题全部做对的概率是116,故答案为:1 16.【点睛】此题考查用列表法或树状图法求概率,正确理解题意列出树状图是解题的关键.14.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D ,进而得出符合题意的答案. 【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D , 故A+B=5,C+D=8, (1)当A=1时,得B=4, ∵A≤B≤C≤D ,∴B=C=D=4,不合题意舍去,所以A≠1, (2)当A=2时,得B=3, (I )当C=B=3时,D=5, (II )当C >B 时,∵A≤B≤C≤D , ∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4. 故答案为:2,3,3,5或2,3,4,4. 【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.15.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0, 解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0. 【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.16.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3 【分析】先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可. 【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2 ∴x 1+x 2=4,x 1⋅x 2=1 ∴x 1+x 2-x 1⋅x 2=4-1=3. 故答案为3. 【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 17.15【分析】先解一元二次方程根据根的情况可知有两种方式用三角形三边关系排除一组后即可得出三角形周长【详解】解:即∵336不能构成三角形∴这个等腰三角形的三边成为663周长为15故答案为:15【点睛】解析:15 【分析】先解一元二次方程,根据根的情况可知有两种方式,用三角形三边关系排除一组后即可得出三角形周长. 【详解】解:()()636x x x -=-()(3)60x x --=,即123,6x x ==,∵3,3,6不能构成三角形,∴这个等腰三角形的三边成为6,6,3,周长为15. 故答案为:15. 【点睛】本题考查等腰三角形的定义,解一元二次方程,三角形三边关系.不要忽略了用三角形三边关系判断能否构成三角形.18.【分析】先证四边形BGDH 为平行四边形再证BG=BH 然后由勾股定理求B G四边形BGDH 的周长=4BH 即可【详解】由题意得矩形矩形∴四边形是平行四边形∴平行四边形的面积∴四边形是菱形设则在中由勾股定理 解析:34011【分析】先证四边形BGDH 为平行四边形,再证BG=BH ,然后由勾股定理求B G,四边形BGDH 的周长=4BH 即可. 【详解】由题意得矩形ABCD ≌矩形BEDF ,90,7,//,//,11A AB BE AD BC BF DE AD ︒∴∠====,∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⋅=⋅,BG BH ∴=,∴四边形BGDH 是菱形, BH DH DG BG ∴===.设BH DH x ==,则11AH x =-.在Rt ABH △中,由勾股定理得2227(11)x x +-=, 解得85,11x =8511BG ∴=, ∴四边形BGDH 的周长340411BG ==. 【点睛】本题考查四边形的周长问题,关键是证四边形BGDH 为菱形,用勾股定理求BH ,掌握矩形的性质,菱形的性质与判定,会用勾股定理解决问题.19.【分析】设CD 与BE 交于点GAP =x 证明△ODP ≌△OEG (ASA )根据全等三角形的性质得到OP =OGPD =GE 根据翻折变换的性质用x 表示出PDOP 根据勾股定理列出方程解方程即可【详解】解:设CD 与解析:35. 【分析】设CD 与BE 交于点G ,AP =x ,证明△ODP ≌△OEG (ASA ),根据全等三角形的性质得到OP =OG ,PD =GE ,根据翻折变换的性质用x 表示出PD 、OP ,根据勾股定理列出方程,解方程即可. 【详解】解:设CD 与BE 交于点G ,∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =3cm ,CD =AB =4cm , 由折叠的性质可知△ABP ≌△EBP ,∴EP =AP ,∠E =∠A =90°,BE =AB =4cm , 在△ODP 和△OEG 中,DOP EOG OD OED E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEG (ASA ), ∴OP =OG ,PD =GE , ∴DG =EP ,设AP =EP =x ,则PD =GE =3﹣x ,DG =x , ∴CG =4﹣x ,BG =4﹣(3﹣x )=1+x , 根据勾股定理得:BC 2+CG 2=BG 2, 即32+(4﹣x )2=(x +1)2, 解得:x 125=, ∴AP 125=(cm ), ∴DP 35=(cm ). 故答案为:35. 【点睛】本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,熟练掌握翻折变换的性质是解题的关键.20.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可; 【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒, 又∵DE CD =, ∴△CDE 为等边三角形, ∴CD DE CE ==,60E ∠=︒, 设CE x =,则CD DE x ==, ∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x ,∴当3x =时,AC 取得最小值为33此时,3AD CD x ===,∵AB AC ⊥, ∴90BAC =︒, 又30B ∠=︒,∴12AC BC =,即2BC AC =, 222243AB BC AC AC AC AC =-=-=,∴四边形ABCD 周长AD CD AB BC=+++,()32AD CD AC AC =+++,()()632632331563AC =++≥++⨯=+;∴四边形ABCD 的最小值为1563+. 故答案是1563+. 【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.三、解答题21.(1)60人,画图见解析;(2)225人;(3)23【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可; (2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解. 【详解】解:(1)此次调查的学生总人数为1220%60÷=(人). 喜爱排球运动的学生人数为60-12-27=21(人), 补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人.(3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P∴(抽取的两名学生恰好为1名男生和1名女生)82 123 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了条形统计图和扇形统计图.22.(1)300人,a=15%,b=25%;(2)见解析;(3)120人;(4)1 8【分析】(1)用“美食文化”对应的人数除以对应的百分比可得总人数,分别用“羽毛球”和“篮球”的人数除以总人数可得a和b的值;(2)计算出“电影鉴赏”的人数,可补全统计图;(3)用全校七年级的总人数乘以样本中“篮球”对应的百分比即可;(4)画出树状图,利用概率公式计算.【详解】解:(1)总人数为:60÷20%=300人,∴a=45÷300=15%,b=75÷300=25%;(2)35%×300=105,补全统计图入如下:(3)480×25%=120人,∴估计全校选择“篮球”拓展性课程的学生人数是120人;(4)设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”分别为A、B、C、D,画树状图如下:可知:共有16种等可能的情况,其中一位选择了电影鉴赏,另一位选择了美食文化的有2种,∴其中一位选择了电影鉴赏,另一位选择了美食文化的概率为21168=. 【点睛】本题考查的是条形统计图的综合运用,树状图法求概率,样本估计总体,从统计图中得到必要的信息是解决问题的关键. 23.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案; 【详解】(1)解:2450x x --=,(5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y ,1)与点Q(-7,x-y)关于原点对称,∴27010x y x y +-=⎧⎨-+=⎩,解得23x y =⎧⎨=⎩,【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键; 24.(1)112x =-212x =-;(2)11x =,223x = 【分析】(1)配方法求解可得; (2)因式分解法求解可得; 【详解】(1)解:2212x x ++=2(1)2x +=12x +=±11x ∴=-+21x =-.(2)解:3(1)2(1)0x x x ---=(1)(32)0x x --=10x -=;或320x -=11x ∴=,223x =.【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键. 25.(1)见解析;(2)GH ⊥EF ,见解析;(3)25 【分析】(1)首先运用三角形中位线定理可得到EG ∥AB ,EG=12AB ,HF ∥AB ,EG=12AB ,即可得到四边形EGFH 是平行四边形;(2)再运用三角形中位线定理证明邻边相等,从而证明平行四边形EGFH 是菱形,即可证明GH ⊥EF ;(3)由EH ∥CD ,得到∠BDC=∠BPH=70°,由EG ∥AB ,得到∠EGD=∠ABD=20°,再利用三角形的外角性质和菱形的性质即可求解. 【详解】证明:(1)∵E 、G 分别是AD 、BD 的中点, ∴EG ∥AB ,且12GE AB =, 同理可证:HF ∥AB ,且12HF AB =, ∴EG ∥HF ,且EG=HF ,∴四边形EGFH 是平行四边形; (2)GH ⊥EF ,理由如下: ∵G 、F 分别是BD 、BC 的中点 , ∴12GF CD =, 由(1)知12GE AB =, 又∵AB=CD , ∴GE=GF ,又∵四边形EGFH 是平行四边形, ∴四边形EGFH 是菱形, ∴GH ⊥EF ;(3)∵E 、H 分别是AD 、AC 的中点 , ∴EH ∥CD , ∴∠BDC=∠BPH=70°,∵EG ∥AB ,∴∠EGD=∠ABD=20°,∴∠GEP=∠BPH-∠EGD=50°,∵四边形EGFH 是菱形,∴∠GEF=∠HEF=12∠GEP =25°. 故答案为:25.【点睛】本题考查了中点四边形,菱形的判定和性质,三角形中位线的性质,熟练掌握三角形中位线的判定和性质是解题的关键.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中, BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE,即△ADE为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD≌△ACE,然后再利用三边相等证明此三角形是等边三角形.。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测卷(答案解析)(2)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测卷(答案解析)(2)

一、选择题1.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为( )A .12πB .πC .3π2D .3π2.如图,PA PB 、分别与О相切于A B 、两点,点C 为О上一点,连接AC 、,BC 若50P ∠=,则ACB ∠的度数为( )A .115B .130C .65D .753.如图,AB 是⊙O 的直径,C 是⊙O 上一点,BD 平分∠ABC 交⊙O 于点D ,交AC 于点E ,已知DE =2,DB =6,则阴影部分的面积为( )A .2π-33B .4π-63C .4π-33D .π-23 4.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A 3B 5C .23D .255.在ABC ∆中,6,8,10AB BC AC ===,则这个三角形的外接圆和内切圆半径分别是( )A .5,1B .4,3C .5,2D .5,46.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+2 7.如图,P 是正方形ABCD 内的一点,将△ABP 绕点B 顺时针方向旋转到与△CBP '重合,若PB =3,则点P 经过的路径长度为( )A .23B .32C .32πD .34π 8.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .89.如图,在平面直角坐标系中,以原点O 为圆心,6为半径的O 与直线(0)y x b b =-+>交于A ,B 两点,连接,OA OB ,以,OA OB 为邻边作平行四边形OACB ,若点C 恰好在O 上,则b 的值为( )A .33B .23C .32D .22 10.如图,O 是ABC 的外接圆,BC 的中垂线与AC 相交于D 点,若60A ∠=︒,70B ∠=︒,则AD 的度数为( )A .80︒B .70︒C .20︒D .3011.如图,AB 是圆O 的直径,C 、D 、E 都是圆上的点,其中C 、D 在AB 下方,E 在AB 上方,则∠C +∠D 等于( )A .60°B .75°C .80°D .90°12.如图,在扇形BOC 中,∠BOC =60°,点D 为弧BC 的中点,点E 为半径OB 上一动点,若OB =2,则阴影部分周长的最小值为( )A .2+6πB .323+3πC .322+6πD .22+3π 二、填空题13.如图,放置在直线l 上的扇形OAB .由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径2OA =,45AOB ∠=︒,则点 O 所经过的最短路径的长是 ______ .14.如图,等边△ABC 内接于☉O ,BD 为⊙O 内接正十二边形的一边,CD=52,则图中阴影部分的面积等于_________.15.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.16.如图,C ∠是O 的圆周角,45C ∠=︒,则AOB ∠的度数为____.17.如图,ABC 内接于O ,30CAB ∠=︒,45CBA ∠=︒,CD AB ⊥于点D ,若O 的半径为4,则CD 的长为______.18.正六边形的半径为1,则正六边形的面积为________.19.在数学课上,老师提出如下问题:如图,AB 是⊙O 的直径,点C 在⊙O 外,AC ,BC 分别与⊙O 交于点D ,E ,请你作出ABC 中BC 边上的高.小文说:连结AE ,则线段AE 就是BC 边上的高.老师说:“小文的作法正确”请回答:小文的作图依据是__________.20.如图,在矩形ABCD 中,4AB =,6BC =,点E 是AD 上的动点(不与端点重合),在矩形ABCD 内找点F ,使得EF AD ⊥,且满足2·AF AE AD =,则线段BF 的最小值是__________.三、解答题21.已知O 的直径4AB =,C 为O 上一点,2AC =.(1)如图①,点P 是BC 上一点,求APC ∠的大小:(2)如图②,过点C 作O 的切线MC ,过点B 作BD MC 于点D ,BD 与O 交于点E ,求DCE ∠的大小及CD 的长.22.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.23.已知EF 为O 的一条弦,OB EF ⊥交O 于点B ,A 是弦EF 上一点(不与E ,F 重合),连接BA 并延长交O 于点C ,过点C 作O 的切线交EF 的延长线于点D .(1)如图1,若EF 在圆心O 的上方,且与OB 相交于点H ,求证:ACD △是等腰三角形;(2)如图2,若EF 是O 的直径,25AB =,O 的半径为4,求线段DC 的长; (3)如图3,若EF 在圆心O 的下方,且与BO 的延长线相交于点H ,试判断线段DA ,DE ,DF 之间的数量关系,并说明理由.24.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上.(1)若40AOD ∠=︒,求DEB ∠的度数;(2)若3OC =,5OA =,求弦AB 的长.25.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0)(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,求出A 运动经过的路径的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==, 故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.2.A解析:A【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=130°,再利用圆周角定理可求∠ADB=65°,再根据圆的内接四边形对角互补可求∠ACB .【详解】解:如图所示,连接OA 、OB ,在优弧AB 上取点D ,连接AD 、BD ,∵ AP 、BP 是切线,∠P=50°,∴ ∠OAP=∠OBP=90°,∴∠AOB=360°-90°-90°-50°=130°,∴∠ADB=65°,又∵圆的内接四边形对角互补,∴∠ACB=180°-∠ADB=180°-65°=115°.故选:A .本题考查了切线的性质、圆周角定理、圆内接四边形的性质、解题的关键是连接OA 、OB ,求出∠AOB .3.A解析:A【分析】证明△DAE ~△DBA ,求得DA 23=,由AB 是⊙O 的直径,利用勾股定理求得⊙O 的直径,求得∠ABD=30︒,∠COD=60︒,再利用OCD OCD S S S=-阴影扇形即可求解. 【详解】连接OC 、OD 、AD ,∵BD 平分∠ABC ,∴AD CD =,∴∠DAC=∠DBA ,∴△DAE ~△DBA ,∴DA DE DB DA =,即26DA DA=, ∴212DA =,∴DA 23=, ∵AB 是⊙O 的直径,∴∠ADB=90︒,∴222AD BD AB +=,∴AB=43∴⊙O 的半径为3∵DA=OA=OD 23=, ∴△DOA 是等边三角形,∴∠COD=∠AOD=60︒,∴OCD OCD S S S =-阴影扇形(2602312323603602π⨯=-⨯︒233π=-【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质、勾股定理、扇形与等边三角形的面积等知识点,熟练掌握相关性质及定理是解题的关键.4.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE=2222-=-=,213AD DE故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.5.C解析:C【分析】首先根据勾股定理逆定理判断△ABC是直角三角形,得其斜边是10,即可求得外接圆半径和内切圆半径.【详解】∵AC=6,BC=8,AC=10,2226810+=,∴222AC BC AC+=,∴△ABC是直角三角形,且斜边是AC=10,∴其外接圆的半径为5,三角形的内切圆半径=681022+-=,故选:C.【点睛】本题考查了三角形的外接圆和内切圆,勾股定理的逆定理;解题的关键是灵活运用勾股定理的逆定理判断△ABC是以AC为斜边的直角三角形.第II卷(非选择题)请点击修改第II卷的文字说明6.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA,问题得解.【详解】解:∵PA,PB是⊙O的两条切线,∠APB=60°,∴PA=PB,∠APO=12∠APB=30°,PA⊥AO,∴△PAB是等边三角形,∵PA⊥AO,∠APO==30°,∴OP=2OA=2,∴PA=∴△PAB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.7.C解析:C【分析】根据旋转的性质,可得BP′的长,∠PBP′的度数,得到P点运动轨迹为四分之一圆,圆的半径为3,根据弧长公式即可求解.【详解】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°,P点运动轨迹为四分之一圆,圆的半径为3,∴弧PP ' =90331801802n r πππ⨯⨯== 故选C .【点睛】 此题考查旋转的性质、正方形的性质、弧长公式,重点是熟记弧长公式.8.B解析:B【分析】如图,过点A 作AE ⊥BD 于点E ,连接AD ,可得AD=AB=10,根据垂径定理可得DE=BE ,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE 的长,进而可得CD 的长.【详解】解:如图,过点A 作AE ⊥BD 于点E ,连接AD ,∴AD=AB=10,根据垂径定理,得DE=BE ,∴CE=BE-BC=DE-4,根据勾股定理,得AD 2-DE 2=AC 2-CE 2,102-DE 2=82-(DE-4)2,解得DE=132, ∴CD=DE+CE=2DE-4=9,故选:B .【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.9.C解析:C【分析】如图,连接OC 交AB 于T .想办法求出点T 的坐标,利用待定系数法即可解决问题.【详解】解:如图,连接OC 交AB 于T ,设直线AB 交x 轴于M ,交y 轴于N .∵直线AB的解析式为y=-x+b,∴N(0,b),M(b,0),∴OM=ON,∴∠OMN=45°,∵四边形OACB是平行四边形,OA=OB,∴四边形OACB是菱形,∴OC⊥AB,∴∠COM=45°,∵OC=6,∴C(3232∵OT=TC,∴T(322,322),把T点坐标代入y=-x+b,可得b=32故选:C.【点睛】本题考查圆周角定理,平行四边形的性质,菱形的判定,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.C解析:C【分析】首先连接OB,OC,AO,设DO交BC于点E,由∠B=70°,∠A=60°,又由△ABC的边BC 的垂直平分线与△ABC的外接圆相交于点D,根据圆周角定理,即可求得∠AOB与∠BOE 的度数,继而求得答案.【详解】解:如图,连接OB,OC,AO,设DO交BC于点E,∵OD 是△ABC 的边BC 的垂直平分线,∴∠BOE =12∠BOC , ∵∠BAC =12∠BOC , ∴∠BOE =∠BAC ,∵∠A =60°,∠B =70°,∴50∠=°ACB ,∴∠BOE =∠BAC =60°,∴∠BOD =180°−∠BOE =180°−60°=120°,∵∠AOB =2∠ACB =100°,∴AB 的度数为:100°,∴AD 的度数为:120°−100°=20°.故选:C .【点睛】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.D解析:D【分析】连接OE ,根据圆周角定理即可求出答案.【详解】解:连接OE ,根据圆周角定理可知:∠C =12∠AOE ,∠D =12∠BOE , 则∠C +∠D =12(∠AOE +∠BOE )=90°, 故选:D .【点睛】本题考查了圆周角的性质,解题关键是连接半径,构造圆心角,依据圆周角与圆心角的关系进行计算.12.D解析:D【分析】作点C 关于OB 对称点点A ,连接AD 与OB 的交点即为E ,此时CE+ED 最小,进而得到阴影部分的周长最小,再由勾股定理求出AD 的长,由弧长公式求出弧CD 的长.【详解】解:阴影部分的周长=CE+ED+弧CD 的长,由于C 和D 均为定点,E 为动点,故只要CE+ED 最小即可,作C 点关于OB 的对称点A ,连接DA ,此时即为阴影部分周长的最小值,如下图所示:∵A 、C 两点关于OB 对称,∴CE=AE ,∴CE+DE=AE+DE=AD ,又D 为弧BC 的中点,∠COB=60°,∴∠DOA=∠DOB+∠BOA=30°+60°=90°,在Rt △ODA 中,2222=+=DA OD OA ,弧CD 的长为302=1803ππ⨯⨯, ∴阴影部分周长的最小值为2+3π,故选:D .【点睛】本题考查了轴对称图形求线段的最小值,弧长公式,勾股定理等,本题的关键是找出阴影部分周长最小值时点E 的位置进而求解.二、填空题13.【分析】利用弧长公式计算即可【详解】解:如图点的运动路径的长的长的长故答案是:【点睛】本题考查轨迹弧长公式等知识解题的关键是理解题意灵活运用所学知识解决问题 解析:52π. 【分析】利用弧长公式计算即可.【详解】解:如图,点O 的运动路径的长1OO =的长1223O O O O ++的长902452902180180180πππ⋅⋅⋅⋅⋅⋅=++ 52π=, 故答案是:52π. 【点睛】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 14.【分析】首先连接OBOCOD 由等边△ABC 内接于⊙OBD 为内接正十二边形的一边可求得∠BOC ∠BOD 的度数则证得△COD 是等腰直角三角形并利用勾股定理求得圆的半径最后利用S 阴影=S 扇形OCD-S △O解析:252542π- 【分析】首先连接OB ,OC ,OD ,由等边△ABC 内接于⊙O ,BD 为内接正十二边形的一边,可求得∠BOC ,∠BOD 的度数,则证得△COD 是等腰直角三角形,并利用勾股定理求得圆的半径,最后利用S 阴影=S 扇形OCD -S △OCD 进行计算后即可得出答案.【详解】解:连接OB ,OC ,OD ,∵等边△ABC 内接于⊙O ,BD 为内接正十二边形的一边,∴∠BOC =13×360°=120°,∠BOD =112×360°=30°, ∴∠COD =∠BOC−∠BOD =90°,∵OC =OD ,∴∠OCD =45°,∴OC 2+ OD 2=CD 2.即2OC 2=50,∴OC=5, ∴S 阴影=S 扇形OCD -S △OCD=90251252555360242ππ-⨯⨯=-. 故答案为:252542π-. 【点睛】此题考查了正多边形与圆、扇形面积的计算等知识,掌握辅助线的作法以及数形结合思想的应用是解题的关键. 15.【分析】连接AC 根据圆周角定理得出AC 为圆的直径解直角三角形求出AB 求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC ∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为 解析:12【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,求出扇形面积和O 面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒, ∴AC 为直径,即AC=2m ,AB=BC (扇形的半径相等),∵AB 2+BC 2=22,∴m ,∴S 阴影部分=2903602ππ︒⨯=︒(m 2),则:P 针孔扎在扇形(阴影部分)=212==2OS S OA =阴影部分ππ故答案为:12. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.16.【分析】根据圆周角定理计算即可;【详解】∵∴;故答案是【点睛】本题主要考查了圆周角定理准确分析计算是解题的关键解析:90︒【分析】根据圆周角定理计算即可;【详解】∵45C ∠=︒,∴290AOB C ∠=∠=︒;故答案是90︒. 【点睛】本题主要考查了圆周角定理,准确分析计算是解题的关键.17.【分析】连接COOB 则∠O =2∠CAB =60°得到△BOC 是等边三角形求得BC =4根据等腰直角三角形的性质即可得到结论【详解】解:如图连接COOB ∵则∠O =2∠CAB =60°∵OC =OB ∴△BOC 是解析:【分析】连接CO ,OB ,则∠O =2∠CAB =60°,得到△BOC 是等边三角形,求得BC =4,根据等腰直角三角形的性质即可得到结论.【详解】解:如图,连接CO ,OB ,∵30CAB ∠=︒则∠O =2∠CAB =60°,∵OC =OB ,∴△BOC 是等边三角形,∵⊙O 的半径为4,∴BC =4,∵CD ⊥AB ,∠CBA =45°,∴CD 2BC 2×4=2, 故答案为:2【点睛】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.18.【分析】正六边形的面积有6个全等的边长为1的等边三角形面积组成计算一个等边三角形的面积乘以6即可【详解】如图所示等边三角形ABC 的边长为1∵OC 是AB 上的高∴AC=CB=∠AOC=∠AOB=30°∴ 332【分析】正六边形的面积有6个全等的边长为1的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.【详解】如图所示,等边三角形ABC 的边长为1,∵OC 是AB 上的高,∴AC=CB=12,∠AOC=12∠AOB=30°, ∴222211()2OA AC -=- =3 ∴12AOB S AB OC =⋅=13122⨯⨯=3,∴正六边形的面积为:333642⨯=.故答案为33.【点睛】本题考查了正多边形的面积,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.19.半圆(或直径)所对的圆周角是直角【分析】根据直径所对的圆周角是直角即可得出结论【详解】解:∵半圆(或直径)所对的圆周角是直角∴连结AE 则线段AE就是BC边上的高故答案为:半圆(或直径)所对的圆周角是解析:半圆(或直径)所对的圆周角是直角【分析】根据直径所对的圆周角是直角即可得出结论.【详解】解:∵半圆(或直径)所对的圆周角是直角,∴连结AE,则线段AE就是BC边上的高.故答案为:半圆(或直径)所对的圆周角是直角.【点睛】本题考查了作图-基本作图,掌握圆周角定理是解答此题的关键.20.2【分析】连结FD由可证△FAE∽△DAF可得∠DFA=90°可知点F在以AD中点为圆心3为半径的半圆上运动由BFO三点共线时利用两点之间线段最短知BF 最短在Rt△ABO中由勾股定理得BO=可求BF解析:2【分析】连结FD,由2·AF AE AD=可证△FAE∽△DAF,可得∠DFA=90°,可知点F在以AD中点为圆心,3为半径的半圆上运动,由B、F、O三点共线时,利用两点之间线段最短知BF最短,在Rt △ABO 中,由勾股定理得BO=22AB +AO =5,可求BF=5-3=2.【详解】连结FD ,∵2·AF AE AD =,∴AF AD AE AF=, ∵∠FAE=∠DAF ,∴△FAE ∽△DAF ,∴∠FEA=∠DFA ,∵EF AD ⊥,即∠FEA=90°,∴∠DFA=90°,∴点F 在以AD 中点为圆心,3为半径的半圆上运动,当B 、F 、O 三点共线时,BF 最短,在Rt △ABO 中,由勾股定理得,BO=22AB +AO =5,BF=5-3=2,BF 的最小值为2,故答案为:2.【点睛】本题考查三角形相似判定与性质,圆周角性质,勾股定理,两点之间线段最短,掌握三角形相似的判定方法和性质的应用,会根据直角确定点F 在圆周上运动,利用两点之间线段最短解决问题是关键.三、解答题21.(1)30°;(2)30DCE ∠=︒;3CD =【分析】(1)连接OC ,由AB 是圆O 的直径,AB=2AC ,得到AOC △为等边三角形,根据等边三角形的性质得到60AOC ∠=︒,即可得到结论(2)连接OE ,OC ,根据切线的性质得到MC OC ⊥,得到EOB △是等边三角形,根据等边三角形的性质得到60EOB ∠=︒,求得18060COE EOB AOC ∠=︒-∠-∠=︒,推出OCE △是等边三角形,于是得到2CE OC ==,60EOC ∠=︒,根据勾股定理即可得到结论【详解】.解:(1)如图,连接OC .O 的直径4AB =,2OA OC .2AC =,OA OC AC ∴==.AOC ∴是等边三角形.60AOC ∴∠=︒.3102PC C A AO ∴∠=∠=︒. (2)如图,连接OC ,OE .MC 是O 的切线,MC OC ∴⊥.BD MC ⊥,90MCO CDB ∴∠=∠=︒.//BD OC ∴.60B AOC ∴∠=∠=︒.OB OE =,EOB ∴是等边三角形.60EOB ∴∠=︒.18060COE EOB AOC ∴∠=︒-∠-∠=︒.OC OE =,OCE ∴是等边三角形.2CE OC ∴==,60ECO ∠=︒.9030DCE ECO ∴∠=︒-∠=︒在Rt CDE △中,2CE =, 112DE CE ∴==,2222213CD CE DE =-=-=. 【点睛】本题考查了切线的性质,等边三角形的性质和判定,圆周角定理,平行线的判定和性质,正确作出辅助线是解题关键,22.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4∴2222AB AC BC 345=++=又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 23.(1)见解析;(2)线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由见解析.【分析】(1)连接OC ,由题意易得OC DC ⊥,∠B=∠OCB ,则有9090DCA ACO B ∠=︒-∠=︒-∠,进而可得DAC DCA ∠=∠,然后问题可求证; (2)连接OC ,则OC DC ⊥,由勾股定理可得2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,然后再由勾股定理可求DC 的长;(3)连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF ,由题意可得9090DCA OCB HBA ∠=︒-∠=︒-∠,则有DA DC =,进而可得CED DCF ∠=∠,然后有CDF EDC ∽△△,则根据相似三角形的性质及线段的等量关系可求解.【详解】(1)证明:如图,连接OC ,则OC DC ⊥,∵OB=OC ,∴∠B=∠OCB ,∴9090DCA ACO B ∠=︒-∠=︒-∠,又∵90DAC BAH B ∠=∠=︒-∠,∴DAC DCA ∠=∠,∴DA DC =,∴ACD △是等腰三角形;(2)如图,连接OC ,则OC DC ⊥,∵在Rt ABO △中,25AB =,O 的半径为4,∴2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,∴在Rt OCD △中,()22242x x +=+, ∴3x =,即线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由:如图,连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF , ∵DC 为O 的切线,∴9090DCA OCB HBA ∠=︒-∠=︒-∠,又∵90BAH HBA ∠=︒-∠,CAD BAH ∠=∠,∴∠=∠DCA CAD ,∴DA DC =,∵CG 是O 的直径,∴90CFG ∠=︒,∴90CED CGF GCF ∠=∠=︒-∠,又∵90DCF GCF ∠=︒-∠,∴CED DCF ∠=∠,又∵D D ∠=∠,∴CDF EDC ∽△△, ∴DC DF DE DC=, ∴2DC DE DF =⋅,∴2DA DE DF =⋅.【点睛】 本题主要考查相似三角形的性质及切线的性质定理,熟练掌握相似三角形的性质及切线的性质定理是解题的关键.24.(1)20°;(2)8【分析】(1)欲求DEB ∠,又已知一圆心角,可利用圆周角与圆心角的关系求解; (2)利用垂径定理可以得到142A C B C B A ===,从而得到结论. 【详解】解:(1)OD AB ⊥,∴AD BD =,11402022DEB AOD ∴∠=∠=⨯︒=︒. (2)3OC =,5OA =,且⊥OD AB ,4AC ∴=,OD AB ⊥, ∴12AD BD AB ==, 142AC BC AB ∴===, 8AB ∴=.【点睛】此题考查了圆周角与圆心角定理以及垂径定理,熟练掌握垂径定理得出4AC CB ==是解题关键.25.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点,∴12DE EC AC ==, ∴EDC ECD ∠=∠,∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =, ∴2210BC BD CD =+=∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△,∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.26.(1)见解析;(2)见解析;2π【分析】(1)根据轴对称的性质画图即可;(2)根据旋转的性质画图即可;利用公式求弧长即可.【详解】(1)如图所示:(2)OA 222222+=,A 90222ππ⨯=; 【点睛】本题考查了利用旋转变换与轴对称变换作图以及求弧长,熟练掌握网格结构,准确找出对应点的位置,熟练运用弧长公式是解题的关键.。

菱形的判定、判定与性质综合(原卷版)-九年级数学(北师大版)

菱形的判定、判定与性质综合(原卷版)-九年级数学(北师大版)

第02讲菱形的判定、判定与性质综合1.掌握菱形的判定定理2.学会利用菱形的判定与性质综合解题菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.考点一:菱形的判定例1.在下列条件中,能够判定ABCD Y 为菱形的是()A .AB AC =B .AC BD ⊥C .90A ∠=︒D .AC BD =例2.如图,添加下列条件不能判定ABCD Y 是菱形的是().A .AB BC =B .AC BD ⊥C .BD 平分ABC ∠D .AC BD=例3.下列条件中能判断四边形是菱形的是()A .对角线互相垂直B .对角线互相垂直且平分C .对角线相等D .对角线相等且互相平分例4.如图所示,四边形ABCD ,当AB CD ∥,AB CD =时,再下列选项中,添加一个条件,使得四边形ABCD 是菱形的是()A .对角线互相平分B .对角线相等C .对角线互相垂直D .有一个内角是直角例5.在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是()A .AB AD =B .AC BD =C .90ABC ∠= D .AB CD =例6.在平行四边形ABCD 的对角线AC 与BD 相交于点O ,5BC =, 6AC =,8BD =,则四边形ABCD ()A .平行四边形B .矩形C .菱形D .正方形例7.如图,在ABCD Y 中,对角线AC 、BD 交于点O ,请添加一个条件:____________,使平行四边形ABCD 为菱形(不添加任何辅助线).例8.如图,用直尺和圆规作菱形ABCD ,作图过程如下:①作锐角A ∠;②以点A 为圆心,以任意长度为半径作弧,与A ∠的两边分别交于点B ,D ;③分别以点B ,D 为圆心,以AD 的长度为半径作弧,两弧相交于点C ,分别连接DC ,BC ,则四边形ABCD 即为菱形,其依据是()A .一组邻边相等的四边形是菱形B .四条边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .每条对角线平分一组对角的平行四边形是菱形考点二:利用菱形的判定与性质求长度、角度、面积例9.如图,在菱形ABCD 中,AC BD 、相交于O ,70ABC ∠=︒,E 是线段AO 上一点,则BEC ∠的度数可能是()A .100︒B .70︒C .50︒D .20︒例10.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,ABC ∠的平分线交AD 于点F ,连接EF ,若12BF =,10AB =,则AE 的长为()A .16B .15C .14D .13例11.如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD ,在其中一张纸条转动的过程中,下列结论一定成立的是()A .AD CD =C .AC BD =D .四边形ABCD 例12.如图,将矩形纸片ABCD 角线的交点O 上,下列说法:①四边形四边形AECF 的面积为833,④A .4B .3考点三:利用菱形的判定与性质解答证明例13.如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 的中点,CE AB ∥,DE AC ∥,DE 交BC 于点F ,连结CD ,BE .(1)求证:四边形CDBE 是菱形;(2)若6AC =,8BC =,则四边形CDBE 的面积是________.例14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE AC ∥,CE BD ∥.(1)判断四边形OCDE 的形状,并进行证明;(2)若4AB =,30ACB ∠=︒,求四边形OCDE 的面积.例15.如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,CE AD ∥,AE BC ∥.(1)求证:四边形ADCE 是菱形;(2)若AC =6,AB =8,求菱形ADCE 的面积.例16.如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.例17.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,过点B 作BF AC ∥,BF AE =,连接DE ,CF ,EF ,线段EF 交BC 于点H .(1)若180BFC ACD ∠+∠=︒,求证:四边形EFCD 为菱形;(2)在(1)问的基础上,若120BFC ∠=︒,4BF CF ==,求四边形EHCD 的面积.说法正确的是()A .若OB =OD ,则▱C .若OA =OD ,则▱2.(2022·甘肃兰州·为AD 的中点,连接A .4B .2A .43B 二、解答题4.(2022·湖南郴州·统考中考真题)如图,四边形ABCD 是菱形,E ,F 是对角线AC 上的两点,且AE CF =,连接BF .FD ,DE ,EB .求证:四边形DEBF 是菱形.5.(2022·山东聊城·统考中考真题)如图,ABC 中,点D 是AB 上一点,点E 是AC 的中点,过点C 作CF AB ∥,交DE 的延长线于点F .(1)求证:AD CF =;(2)连接AF ,CD .如果点D 是AB 的中点,那么当AC 与BC 满足什么条件时,四边形ADCF 是菱形,证明你的结论.1.在一组对边平行的四边形中,增加一个条件,使得这个四边形是菱形,那么增加的条件可以是()A .另一组对边相等,对角线相等B .另一组对边相等,对角线互相垂直C .另一组对边平行,对角线相等D .另一组对边平行,对角线相互垂直2.两个边长为2的等边三角形如图所示拼凑出一个平行四边形ABCD ,则对角线BD 的长为()A .2B .4C .3D .233.如图,在ABCD Y 中,E 、F 分别为边AD 、BC 的中点,点G 、H 在AC 上,且AH CG =,若添加一个条件使四边形EGFH 是菱形,则下列可以添加的条件是()A .AB AD =B .AB AD ⊥C .AB AC =D .AB AC ⊥4.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为()A .6B .12C .24D .485.如图,菱形ABCD 的对角线交于点O ,过点A 作AE CD ⊥于点E ,连接OE .若3AB =,2OE =,则DE 的长度为()A .53B .32C .43D .1426.如图,在四边形ABCD 中,AB CD BC AD ,∥∥,且AD DC =,则下列说法:①四边形ABCD 是平行四边形;②AB BC =;③AC BD ⊥;④BD 平分ABC ∠;⑤若68AC BD ==,,则四边形ABCD 的面积为24.其中正确的有(A .2个B .3个7.菱形ABCD 中,60D ∠=︒.点则AEF △的面积为().A .43B .3对角线OB 上的一个动点,A .1(1,)2B 10.如图,把菱形ABCD 交于点K ,GD 的延长线交③∠DHE =12∠BAD ;④∠A .1个B .2个二、填空题11.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.12.若▱ABCD 的对角线则AE 的长为______cm .15.如图,在四边形ABCD 中,对角线=6,AC =8,则四边形周长为_____16.如图,在给定的一张平行四边形下:分别作A B ∠∠,的平分线AE ,68AE BF ==,,则四边形ABEF 的周长是______.17.如图,在菱形ABCD 中,6AB =,∠BCD =60°OC 上一点,连接ED ,若43AE =,则DE 的长为18.如图,菱形ABCD 中,60BAD ∠=︒,AC 与BD CD DE =,连结BE ,分别交AC ,AD 于点F 、G ,连结②ABF ODGF S S >△四边形;③由点A 、B 、D 、E 构成的四边形是菱形;④正确的结论是______(请填写正确的序号)19.已知:如图,在ABCD Y 20.如图,四边形ABCD 的对角线(1)求证:四边形ABCD 是平行四边形EAO DCO ∠=∠.(1)求证:AOE COD ≌△△;(2)若AB BC =,求证:四边形OE AB =.(1)求证:四边形ABCD 是菱形.(1)DF =EF ;24.如图,在ABCD Y 中,AC BD ,交于点O (1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.25.如图,在菱形ABCD 中,对角线AC ,BD 连接CE ,CF ,BE AF =,AB AC =.(1)求证:CE CF =;(2)若23ABCD S =菱形,求菱形ABCD 的周长.26.已知在菱形ABCD 中,点P 在CD 上,连接AP .(1)在BC 上取点Q ,使得∠PAQ =∠B ,①如图1,当AP ⊥CD 于点P 时,求证:②如图2,当AP 与CD 不垂直时,判断①中的结论(即请给出证明,若不成立,则需说明理由.(2)如图3,在CD 的延长线取点N ,连接∠ANC =45°,求此时线段DN 的长.。

(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》检测卷(包含答案解析)(1)

(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》检测卷(包含答案解析)(1)

一、选择题1.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小2.如图,长方形ABCD 是由6个正方形组成,其中有两个一样大的正方形,且最小正方形边长为1,则长方形ABCD 的边长DC 为( )A .10B .13C .16D .193.如图,把矩形ABCD 沿EF 对折,若112,AEF ∠=︒则1∠等于( )A .43B .44C .45︒D .46︒4.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .21):1B .(221):1-C .2∶1D .5∶25.如图,已知菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,若菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,菱形的对角线交点D 的坐标为( )A .()3,3-B .()1,3--C .()2,3D .33,2⎛⎫-- ⎪ ⎪⎝⎭6.如图,在长方形ABCD 中,AF BD ⊥,垂足为E ,AF 交BC 于点F ,连接DF ,且DF 平分BDC ∠.下列结论中:①ABD CDB ≅;②ADE BDF S S =△△;③90ABD CDF ∠+∠=︒;④AD DF =.其中正确的个数有( )A .4个B .3个C .2个D .1个7.如图,在正方形ABCD 中,E F 、分别在CD AD 、边上,且CE DF =,连接BE CF 、相交于G 点.则下列结论:①BE CF =;②BCG DFGE S S ∆=四边形;③2CG BG GE =⋅;④当E 为CD 中点时,连接DG ,则45FGD ∠=︒;正确结论的个数是( )A .1B .2C .3D .48.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ︒∠=,则AED =∠A .60°B .65°C .70°D .75°9.如图,矩形纸片ABCD 中,6AB =,12BC =.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF BG ⊥;②GE GF =;③GDK △和GKH △的面积相等;④当点F 与点C 重合时,75DEF ∠=︒,其中正确的结论共有( ).A .1个B .2个C .3个D .4个10.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒11.如图所示,正方形ABCD 中,E ,F 是对角线AC 上两点,连接BE ,BF ,DE ,DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )A .∠1=∠2B .BE =DFC .∠EDF =60°D .AB =AF 12.如图,菱形ABCD 的边长是5,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为( )A .221B .421C .12D .24二、填空题13.如图,在Rt ABC 中,90BAC ∠=︒,30ACB ∠=︒,8AB =,点P 为BC 上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为______.14.如图,四边形ABCD 是一个正方形,E 是BC 延长线上一点,且AC =EC ,则∠DAE 的度数为_________.15.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为_______________.16.请你写出一个原命题与它的逆命题都是真命题的命题____________________ . 17.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.18.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作//EF BC 分别交AB 、CD 于E 、F ,连接PB ,PD .若2AE =,8PF =.则图中阴形部分的面积为_________.19.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边BC 与对角线BD 重合,点A 与点C 恰好落在同一点处,则矩形纸片ABCD 的周长是______.20.如图,CD 与BE 互相垂直平分,AD ⊥DB ,∠BDE=70°,则∠CAD= °.三、解答题21.在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连接CD ,DE .(1)如图1.①若∠CDE =90°,求证:∠A =∠E .②若BD 平分∠CDE ,且∠E =24°,求∠A 的度数.(2)设∠A =α(α>45°),∠DEC =β,若CD =CE ,求β关于α的函数关系式,并说明理由. 22.如图,在△ABC 中,已知AB=AC ,∠BAC=90°,BC=12cm ,直线CM ⊥BC ,动点D 从点C 开始以每秒4cm 的速度运动到B 点,动点E 也同时从点C 开始沿射线CM 方向以每秒2cm 的速度运动.(1)问动点D 运动多少秒时,△ABD ≌△ACE ,并说明理由;(2)设动点D 运动时间为x 秒,请用含x 的代数式来表示△ABD 的面积S ;(3)动点D 运动多少秒时,△ABD 与△ACE 的面积比为4:1.23.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.24.长方形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,6OC =.(1)如图,在AB 上取一点M ,使得CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求B ′点的坐标.(2)求折痕CM 所在直线的解析式.(3)在x 轴上是否能找到一点P ,使B CP '△的面积为13?若存在,直接写出点P 的坐标?若不存在,请说明理由.MN,设25.如图,在ABC中,点O是AC边上的一个动点,过点O作直线//BC∠的平分线于点F,连接AF.MN交BCA∠的角平分线于点E,交BCA∠的外角ACG=;(1)求证:EO FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)在(2)的条件下,ABC满足什么条件时,四边形AECF是正方形?并说明理由.26.如图,在ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当ABC满足什么条件时,四边形DBFE是菱形?为什么?(3)四边形DBFE能否是正方形?如果能,ABC应满足什么条件?如果不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D 、平移和旋转都不改变图形的形状和大小,正确,故选:D .【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】利用正方形的性质,用两种方法表示CD ,从而建立等式求解即可.【详解】设两个一样大的正方形边长为x ,则各正方形边长表示如图,由AD =BC 可列方程:x +2+x +1=2x -1+x ,解得x =4,则DC =x +1+x +x =13,故选B【点睛】本题考查了正方形的性质,熟练掌握正方形的性质,构造等式求解是解题的关键. 3.B解析:B【分析】根据矩形的对边平行,可得∠AEF+∠BFE=180°,继而求得∠BFE=68°,再利用折叠的性质和平角的定义求解即可.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEF+∠BFE=180°,∵112AEF ∠=︒,∴∠BFE=68°,∴∠1=180°-2∠BFE=44°,故选B .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质,平角的定义,熟练掌握折叠的性质是解题的关键.4.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.5.D解析:D【分析】过A 作AE ⊥OC 于E ,由菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,求出A(1D 为AC 中点,可求D (12458=360︒⨯︒,转8次回到原位置,菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,2020445=45252+88⎛⎫︒⨯︒ ⎪⎝⎭,相当于旋转454=180︒⨯︒,菱形旋转180°。

2024-2025学年七年级上学期北师大版期末数学练习卷[含答案]

2024-2025学年七年级上学期北师大版期末数学练习卷[含答案]

2024-2025学年七年级(上)期末数学练习卷满分120分,时间120分钟一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10102.如图是由完全相同的6个小立方体组成的几何体,则该几何体从右面看到的形状图为( )A .B .C .D .3.下列说法中正确是( )A .a -表示负数B .若||=x x ,则0x >C .单项式229xy -的系数为2-D .多项式222372a b a b ab -+-的次数是44.如图,数轴上点A 、B 、C 分别表示数a 、b 、c .有下列结论:①0>+a b ;②0abc <;③0<-a c ;④10ab-<<;则其中结论正确的序号是( )A .①②B .②③C .②③④D .①③④5.已知关于x 的方程23124kx x ---=的解是整数,且k 是正整数,则满足条件的所有k 值的和为( )A .4B .5C .7D .86.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒,如图,六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D .7.已知关于x 的一元一次方程20232023x m x +=-的解为6x =,则关于y 的一元一次方程2023(5)2028y m y --=-的解为y =( )A .11y =-B .2y =C .10y =D .11y =8.如图,D 、E 顺次为线段AB 上的两点,195AB BE DE =-=,,C 是AD 的中点,则AE AC -的值是( )A .5B .6C .7D .89.某次足球积分赛,每队均比赛14场,胜一场记3分,平一场记1分,负一场记0分.某中学足球队的胜场数是负场数的3倍,这个足球队在这次积分赛中积分可能是( )A .12B .34C .18D .2910.若“⊕”是一个对于有理数0与1的运算符号,其运算法则如下:000Å=,011Å=,101Å=,110Å=.则下列运算正确的是( )A .()0010ÅÅ=B .()0111ÅÅ=C .()1110ÅÅ=D .()1001ÅÅ=二、填空题(本题共5小题,每小题3分,共15分)11.若m n ,互为相反数,则()()822231m n m n ---+的值为 .12.如图,射线OA 表示北偏西36°,且∠AOB =154°,则射线OB 表示的方向是 .13.已知A =3x 3+2x 2﹣5x +7m +2,B =2x 2+mx ﹣3,若多项式A +B 不含一次项,则多项式A +B 的常数项是 .14.某机械厂加工车间有33名工人,平均每名工人每天加工大齿轮5个或小齿轮15个,已知2个大齿轮和3个小齿轮配成一套,应安排 名工人加工大齿轮,才能刚好配套.15.历史上数学家欧拉最先把关于x 的多项式用()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当2x =时,多项式的值为()2825f m n =++.若对于多项式()537f x tx mx nx =+++,有()35f =,则()3f -的值为 .三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.计算:(1)()202021120.5|1(3)|3---´´--;(2)240.5130.5x x ---=.17.先化简再求值:()()22223311a b ab a b ab +----,其中1a =,1b =-.18.已知OD 、OE 分别是AOB Ð、AOC Ð的平分线.(1)OC 是AOB Ð外部的一条射线.若34AOC Ð=°,120BOC Ð=°,则DOE Ð= °;若154BOC Ð=°,求DOE Ð的度数.(2)OC 是AOB Ð内部的一条射线,BOC m Ð=°,直接写出DOE Ð的度数.(用含m 的代数式表示)19.如图,一扇窗户,窗框为铝合金材料,上面是由三个大小相等的扇形组成的半圆窗框构成,下面是由两个大小相等的长x ,宽y 的长方形窗框构成,窗户全部安装玻璃.(本题中π取3,长度单位为米)(1)一扇这样窗户一共需要铝合金多少米?(用含x ,y 的式子表示)(2)一扇这样窗户一共需要玻璃多少平方米?铝合金窗框宽度忽略不计(用含x ,y 的式子表示)(3)某公司需要购进10扇这样的窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:铝合金(元/米)玻璃(元/平方米)甲厂商180不超过100平方米的部分,90元/平方米,超过100平方米的部分,70元/平方米乙厂商20080元/平方米,每购一平方米玻璃送0.1米铝合金当4x =,2y =时,该公司在哪家厂商购买窗户合算?20.“小组合作学习”成为我县推动课堂教学改革、打造自主学习课堂的重要举措.某中学从全校学校中随机抽取 100 人作为样本,对“小组合作学习”实施前后学习的学习兴趣变化情况进行调查分析,统计如下: 请结合图中信息解答下列问题:(1)求分组前学生学习兴趣为“高”的所占的百分比为 ;(2)直接补全分组后学生学习兴趣的统计图;(3)通过“小组合作学习”前后对比,100 名学生中学习兴趣获得提高的学生共有多少人?(4)请你估计全校 3000名学生中学习兴趣获得提高的学生有多少人?21.某人去水果批发市场采购香蕉,他看中了A 、B 两家香蕉.这两家香蕉品质一样,零售价都为6元/千克,批发价各不相同.A 家规定:批发数量不超过1000千克,全部按零售价的90%优惠;批发数量超过1000千克且不超过2000千克,全部挍零售价的85%优惠;批发数量超过2000千克的全部按零售价的78%优惠.说朋:如果批发香蕉3000千克,直接按678%3000´´计算,B 家的规定如下表:数量范围(千克)0~500500以上15001500以上价格(元)零售价的95%零售价的80%零售价的75%表格说明:批发价格分段计算,如:某人批发香蕉2100千克,则总费用()695%500680%1000675%21001500=´´+´´+´´-(1)如果他批发600千克香蕉,则他在A 、B 两家批发各需要多少钱:(2)如果他批发x 千克香蕉(15002000x <<),则他在A 、B 两家批发各需要多少钱(用含有x 的代数式表示);(3)若恰好在两家批发所需总价格相同,则他批发的香蕉数量可能为多少千克?22.【定义】若0180a °<Ð<°,0180b °<Ð<°,且45a b Ð-Ð=°,则称a Ð、Ðb 互为“半余角”.已知,如图,O 为直线AB 上一点,15AOM Ð=°,60BON Ð=°.(1)图中的“半余角”有哪几对?(2)若射线ON 绕点O 以每秒10°的速度顺时针旋转,设旋转时间为t 秒()021t <<.①当13.5t =时,请判断BON Ð与MON Ð是否互为“半余角”,并说明理由;②若射线OM 同时绕点O 以每秒15°的速度顺时针旋转,当AON Ð与MON Ð互为“半余角”时,直接写出t 的值.23.如图1,已知120AOC Ð=°,射线OM 以每秒8°的速度,从射线OC 开始逆时针向射线OA 旋转,到达射线OA 之后又以同样的速度顺时针返回,直到到达射线OC 停止,射线ON 从射线OA 开始,以每秒4°的速度顺时针向射线OC 旋转,直到到达各自的目的地才停止.设旋转时间为t 秒.(1)当5t =秒时,求出MON Ð的度数.(2)在运动过程中,当MON Ð达到48°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OM 、射线OA 、射线ON 其中一条射线是另外两条射线组成的角的角平分线?如果存在,请求出t 的值;如果不存在,请说明理由.1.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【分析】本题考查的是从不同方向看几何体,根据从右面看到的平面图形即可得到答案.【详解】解:从右面看到的形状图为:;故选:C .3.D【分析】根据字母表示数,()()()0000a a a a a a ì>ï==íï-<î,单项式的系数:除字母以外的数字因数,多项式的次数:多项式中次数最高项的次数,进行逐一判断,即可求解.【详解】A.当0a =时,0a -=,故此项错误;B.||=x x ,则0x ³,故此项错误;C.单项式229xy -的系数为29-,故此项错误;D.23a b -的次数是3,227a b 的次数是4,2ab -的次数是2,所以多项式222372a b a b ab -+-的次数是4,故此项正确.故选:D .【点睛】本题主要考查了字母表示数,绝对值的性质,单项式的系数的定义,多项式次数的定义,理解定义,掌握性质是解题的关键.4.C【分析】本题主要考查了数轴,有理数的混合运算;根据数轴可得0b a c <<<,且a b c <<,再根据有理数的加减乘除运算法则,可以逐项判断得出正确答案.【详解】解:①∵0b a <<,<a b ,∴0a b +<,故①错误;②∵0b a c <<<,∴0abc <,故②正确;③∵a c <,∴0a c -<,故③正确;④∵0b a <<,<a b ,∴10ab -<<,故④正确.综上所述,正确的有②③④.故选:C .5.A【分析】本题主要考查了一元一次方程的拓展题型,根据一元一次的方程先解出x ,根据题意可得21k -是5的约数,得出满足题意的所有k 值,算出和即可.【详解】解:先求解方程23124kx x ---=,解得:521x k =-,∵x 为整数,且k 是正整数,∴211k -=或者215k -=∴k 的值为1或3,∴所有k 值的和为134+=,故选:A .6.C【分析】本题考查了正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B 、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C 、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D 、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选:C .7.D【分析】将6x =代入20232023x m x +=-得,6202362023202320226m =--´=--´,再将m 的值代入2023(5)2028y m y --=-即可求得y 的值.【详解】解:将6x =代入20232023x m x +=-得,2023662023m ´+=-,解得:6202362023202320226m =--´=--´,将202320226m =--´代入2023(5)2028y m y --=-得,()3220220226023(5)2028y y =-´----,解得:11y =,故选:D .【点睛】本题考查了解一元一次方程,解题的关键是在表示m 的值时,要与方程2023(5)2028y m y --=-相似,便于计算.8.C【分析】先根据题意得到5BE DE =+,进而推出142AD DE =-,再由线段中点的定义得到7AC DE =-,则77AE AC CE CD DE DE DE -==+=-+=.【详解】解:∵5BE DE -=,∴5BE DE =+,∵19AB =,∴1925142AD AB BD AB DE BE DE DE =-=--=--=-,∵C 是AD 的中点,∴172AC CD AD DE ===-,∴77AE AC CE CD DE DE DE -==+=-+=,故选:C .【点睛】本题主要考查了与线段中点有关的计算,正确理清线段之间的关系是解题的关键.9.D【分析】本题考查了一元一次方程的应用,解题关键是根据题意列方程,设出负场数为x 场,再表示出胜场数与平场数,最后利用比赛积分=负场的积分+平场的积分+胜场的积分逐个选项去排除即可得出正确答案.【详解】解:设所负场数为x 场,则胜3x 场,平()144x -场,依题意得,比赛积分033144145x x x x =×+´+-=+,当14512x +=时,0.4=-x ,故A 不符合题意;当14534x +=时,4x =,312x =,4121614+=>,故B 不符合题意;当14518x +=时,0.8x =,故C 不符合题意;当14529x +=时,3x =,故D 符合题意;故选:D .10.D【分析】本题主要考查了新定义运算,解题的关键是根据题干信息列式计算即可.【详解】解:A .()001011ÅÅ=Å=,故A 错误;B .()011110ÅÅ=Å=,故B 错误;C .()111011ÅÅ=Å=,故C 错误;D .()100101ÅÅ=Å=,故D 正确.故选:D .11.―2【分析】本题考查了整式的加减,相反数的性质;先去括号然后合并同类项,进而根据0m n +=,代入化简结果,即可求解.【详解】解:∵m n ,互为相反数,∴0m n +=,∴()()822231m n m n ---+82462m n m n =--+-442m n =+-2=-,故答案为:―2.12.南偏东62°【详解】试题解析:如图,由题意可得,∠AON=36°,∠AOB=154°,∴∠BOE=∠AOB-∠AON-∠NOE=154°-36°-90°=28°,∴∠SOB=90°-∠BOE=62°,∴射线OB 表示的方向是南偏东62°.故答案为:南偏东62°.13.34【详解】∵A +B =(3x 3+2x 2﹣5x +7m +2)+(2x 2+mx ﹣3)=3x 3+2x 2﹣5x +7m +2+2x 2+mx ﹣3=3x 2+4x 2+(m ﹣5)x +7m ﹣1∵多项式A +B 不含一次项,∴m ﹣5=0,∴m =5,∴多项式A +B 的常数项是34,故答案为:34【点睛】本题考查整式的加减,解题的关键是熟练掌握整式的加减法则.14.22【分析】此题主要考查了一元一次方程的应用,首先设每天加工大齿轮的有x 人,则每天加工小齿轮的有()33x -人,再利用2个大齿轮与3个小齿轮刚好配成一套得出方程求出答案,读懂题意,列出方程是解题关键.【详解】解:设每天加工的大齿轮的有x 人,则每天加工小齿轮的有()33x -人,根据题意可得:()3521533x x ´=´-,解得:22x =,故答案为:22.15.9【分析】本题考查的是求代数式的值,添括号的应用,理解题意,利用整体代入的思想求值是解本题的关键.先求解533332t m n ++=-,再求解()()()5337333t n f m =-+--+-,通过添括号,再整体代入求值即可.【详解】解:∵()537f x tx mx nx =+++,()35f =,∴5333375t m n +++=,∴533332t m n ++=-,∴()()()5337333t n f m =-+--+-()533337t m n =-+++()27=--+9=.故答案为:9.16.(1)5-(2)x =―1【分析】本题主要考查含乘方的有理数混合运算和解一元一次方程,熟练掌握相关运算法则及求解方法是解题的关键.(1)根据混合运算的法则,先算幂指数、绝对值和括号里面的,再进行加减计算即可;(2)根据解一元一次方程的步骤,先去分母和括号,再移项和合并同类项,进一步系数化为1即可.【详解】(1)解:原式1112823æö=---´´ç÷èø311823=--´´14=--=5-.(2)解:240.5130.5x x ---=Q ,()2420.513x x -\--=,去分母,得:()2460.53x x ---=,去括号,得:24633x x --+=,移项,得:26343x x -=+-,合并同类项,得:44x -=,系数化为1,得:1x =-.17.22ab ,2【分析】本题主要考查了整式化简求值,解题的关键是熟练掌握去括号法则和合并同类项法则,注意括号前面为负号时,将负号和括号去掉后,括号里每一项的符号要发生改变.先根据整式加减运算法则进行化简,然后再把数据代入求值即可.【详解】解:()()22223311a b ab a b ab +----222233311=+-+--a b ab a b ab22ab =,当1a =,1b =-时,原式()2211=´´-21=´2=.18.(1)60,77DOE Ð=°(2)12m °【分析】本题考查了角平分线的定义,角的计算以及列代数式,解题的关键是熟练掌握双角平分线的解题思路,能够根据角度关系用字母表示DOE Ð;(1)先由角平分线的定义分别求出12AOD AOB Ð=Ð,12AOE AOC Ð=Ð,再由BOC AOB AOC Ð=Ð+Ð可以求出12DOE BOC ÐÐ=,最后代入BOC Ð的度数即可求出DOE Ð的度数;(2)先由角平分线的定义分别求出12AOD AOB Ð=Ð,111222AOE AOC AOB m Ð=Ð=Ð-°,再由DOE AOD AOE ÐÐÐ=-,即可用含m 的代数式表示出DOE Ð的度数;【详解】(1)解:Q OD 、OE 分别是AOB Ð、AOC Ð的平分线,\ 12AOD AOB Ð=Ð,12AOE AOC Ð=Ð,又Q BOC AOB AOC Ð=Ð+Ð,()11112222DOE AOD AOE AOB AOC AOB AOC BOC \Ð=Ð+=Ð+Ð=Ð+Ð=Ð;∴若120BOC Ð=°,则111206022DOE BOC Ð=Ð=´°=°,当154BOC Ð=°时,111547722DOE BOC Ð=Ð=´°=°;故填:60;(2)Q OD 、OE 分别是AOB Ð、AOC Ð的平分线,12AOD AOB \Ð=Ð,11112222AOE AOC AOB BOC AOB m Ð=Ð=Ð-Ð=Ð-°(),11112222DOE AOD AOE AOB AOB m m \Ð=Ð-Ð=Ð-Ð-°=°().19.(1)5.54x y+(2)2328xy x +(3)甲【分析】(1)求出制作窗框的铝合金材料的总长度即可;(2)求出窗框的面积即可;(3)分别求出甲、乙的费用比较大小即可判断;【详解】(1)11144422L x y x x y p =++×=+()米(2)22132·2228x S xy xy x p æöæö=+´=+ç÷ç÷èøèø米2(3)铝合金长:()5.544210300´+´´=玻璃面积:220甲:180300901007012071400´+´+´=元乙:()2003002200.180********´-´+´=元∵7140073200<,∴公司在甲厂商购买窗户合算.【点睛】本题考查代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.20.(1)30%(2)答案见解析(3)15人(4)450人【分析】(1)用整体1减去极高、低、中所占的百分比,即可求出分组前学生学习兴趣为“高”的所占的百分比;(2)用抽查的总人数减去学习兴趣极高、高和低的人数,求出学习兴趣“中”的人数,从而补全统计图;(3)根据题意先分别求出小组合作学习后学习兴趣提高的人数;(4)用全校的总人数乘以学习兴趣获得提高的学生所占的百分比即可.【详解】(1)解:分组前学生学习兴趣为“高”的所占的百分比为1(25%20%25%)30%-++=,故答案为:30%;(2)解:分组后学习兴趣为“中”的人数为100(30355)30-++=(人),补全条形图如下:(3)解:分组前学习兴趣“中”的有10025%25´=(人),分组后兴趣提高的有30255-=(人),分组前学生学习兴趣“高”的有10030%30´=(人),分组后兴趣提高的有35305-=(人),分组前学习兴趣为“极高”的有10025%25´=(人),分组后兴趣提高的有30255-=(人),55515++=(人),答:随机抽取100名学生中分组后学习兴趣获得提高的共有15人.(4)解:153000450100´=(人),答:估计全校3000名学生中学习兴趣获得提高的学生有450人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)A 家:3240元;B 家:3330元;(2)A 家:5.1x (元);B 家:()4.5900x +元(3)他批发的香蕉数量可能为750或1500或5000千克【分析】本题考查的是分段收费,列代数式,整式的加减运算的应用,一元一次方程的应用,清晰的分类讨论是解本题的关键.(1)A 家:由600千克的零售价乘以90%即可;B 家:500千克按照零售价的95%,100千克按照零售价的80%,再求和即可;(2)A 家:由x 千克的零售价乘以85%即可;B 家:500千克按照零售价的95%,1000千克按照零售价的80%,()1500x -千克按照零售价的75%计算,再求和即可;(3)分情况讨论:500千克以内,两个店的费用不相等,当5001000x <£时, 当10001500x <£时,当15002000x <£时, 当2000x >时, 再建立方程求解即可.【详解】(1)解: A 家:600690%3240´´=元.B 家:()500695%600500680%28504803330´´+-´´=+=元;(2)∵15002000x <<,A 家:685% 5.1x x ´=(元)B 家:()500695%1000680%1500675%x ´´+´´+-´´()28504800 4.56750 4.5900x x =++-=+元;(3)500千克以内,两个店的费用不相等,当5001000x <£时,依题意有()690%500695%500680%x x ´=´´+-´´,解得750x =;当10001500x <£时,依题意有()685%500695%500680%x x ´=´´+-´´,解得1500x =;当15002000x <£时,依题意有()()685%500695%1500500680%1500675%x x ´=´´+-´´+-´´,解得1500x =;舍去,当2000x >时,依题意有()()678%500695%1500500680%1500675%x x ´=´´+-´´+-´´解得5000x =.故他批发的香蕉数量可能为750或1500或5000千克.22.(1)三对,AOM Ð和BON Ð,MON Ð和BON Ð,AON Ð和BOMÐ(2)①是,理由见解析;②2或18【分析】本题主要考查了结合图形中角的计算,一元一次方程的应用,解题的关键是数形结合,注意进行分类讨论.(1)根据半余角定义进行求解即可;(2)①先求出1013.56075BON Ð=°´-°=°,()1518075120MON Ð=°+°-°=°,再根据半余角定义判断即可;②分两种情况:当AON Ð与MON Ð在AB 的上方时,当AON Ð与MON Ð在AB 的下方时,分别列出方程,求出结果即可.【详解】(1)解:三对:AOM Ð和BON Ð,MON Ð和BON Ð,AON Ð和BOM Ð.∵15AOM Ð=°,60BON Ð=°,∴1801560105MON Ð=°-°-°=°,18060120AON Ð=°-°=°,18015165BOM Ð=°-°=°,∴156045AOM BON Ð-Ð=°-°=°,1056045MON BON Ð-Ð=°-°=°,12016545AON BOM Ð-Ð=°-°=°,AOM \Ð和BON Ð互为“半余角”,MON Ð和BON Ð互为“半余角”,AON Ð和BOM Ð互为“半余角”;(2)解:①是 ;理由如下:当13.5t =时,1013.56075BON Ð=°´-°=°,∴()1518075120MON Ð=°+°-°=°,45MON BON \Ð-Ð=°,MON \Ð和BON Ð是互为“半余角”;②当AON Ð与MON Ð在AB 的上方时,由题意可知:151051012010AON t t Ð=°+°+=°+,10515101055MON t t t Ð=°-+=°-,∴12010105545t t °+-°+=°,解得:12t =,24(t =-舍去),当AON Ð与MON Ð在AB 的下方时,由题意可知:()180106024010AON t t Ð=°--°=°-,()()3601515240101055MON t t t Ð=°-°+-°-=°-,24010105545t t \°--°+=°,解得:318t =,436(t =舍去),综上所述t 的值为2或18.23.(1)60MON Ð=°(2)t 的值为6秒或14秒或18秒(3)存在,t 的值为7.5秒或12秒或20秒【分析】本题主要考查了角的计算,一元一次方程的应用,解题的关键是注意进行分类讨论.(1)根据旋转的速度,求出MON Ð的度数即可;(2)分三种情况进行讨论:当010t <£,当1015t <£,当1530t <£,分别列出方程进行计算即可;(3)分三种情况:当010t <£,当1015t <£,当1530t <£,分别列出方程,求解即可.【详解】(1)解:当5t =时,5840COM Ð=´°=°,5420AON Ð=´°=°,则120402060MON Ð=°-°-°=°;(2)解:①当010t <£秒时,1208448t t --=,解得6t =;②当1015t <£秒时,8412048t t +-=;解得14t =;③当1530t <£秒时,()4812048t t --=n ,解得18t =;综上所述,t 的值为6秒或14秒或18秒;(3)解:存在.①当010t <£秒时,ON 平分AOM Ð,120844t t t --=,解得7.5t =;②当1015t <£秒时,OM 平分AON Ð,841201208t t t +-=-,解得12t =;③当1530t <£秒时,OM 平分AON Ð,()481208120t t t --=-n n ,解得20t =.综上所述,t 的值为7.5秒或12秒或20秒.。

安徽省2024年中考数学试卷(解析版)

安徽省2024年中考数学试卷(解析版)

2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。

北师大版九年级(下) 中考题同步试卷:1.5 测量物体的高度(03)

北师大版九年级(下) 中考题同步试卷:1.5 测量物体的高度(03)

北师大版九年级(下)中考题同步试卷:1.5 测量物体的高度(03)一、选择题(共2小题)1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51C.50+1D.1012.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m二、填空题(共6小题)3.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)4.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)5.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.6.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)7.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.8.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).三、解答题(共22小题)9.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠F AE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)10.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)11.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.12.为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)13.如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A 的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA =60°,求旗杆AB的高度.(结果保留根号)14.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD 之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)15.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)16.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A 的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)19.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)20.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)21.如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A 处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)22.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A 的仰角为30°,求旗杆AB的高度.(结果保留根号)23.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B 的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)24.如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.41,≈1.73.25.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.26.如图所示,小明家小区空地上有两棵笔直的树CD、EF.一天,他在A处测得树顶D 的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)27.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)28.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )29.如图,某景区有一出索道游览山谷的旅游点,已知索道两端距离AB为1300米,在山脚C点测得BC的距离为500米,∠ACB=90°,在C点观测山峰顶点A的仰角∠ACD =23.5°,求山峰顶点A到C点的水平面高度AD.(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)30.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.北师大版九年级(下)中考题同步试卷:1.5 测量物体的高度(03)参考答案一、选择题(共2小题)1.C;2.D;二、填空题(共6小题)3.50;4.137;5.200+200;6.3+9;7.7;8.10;三、解答题(共22小题)9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;第11页(共11页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版中考数学试卷E卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)若a,b互为相反数,则下面四个等式中一定成立的是()
A . a+b=0
B . a+b=1
C . |a|+|b|=0
D . |a|+b=0
2. (2分) (2018七上·大丰期中) 下列说法中,正确的是()
A . 负数的偶数次幂是正数
B . 一个数的平方等于它的倒数,这个数为±1
C . 一个数的相反数小于它本身
D . 同号两数相除,取被除数的符号
3. (2分) (2017七下·江苏期中) 下列多项式相乘,不能用平方差公式计算的是()
A . (x+3y)(x-3y)
B . (-2x+3y)(-2x-3y)
C . (x-2y)(2y+x)
D . (2x-3y)(3y-2x)
4. (2分)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有()
A . 4个
B . 3个
C . 2个
D . 1个
5. (2分)把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()
A .
B .
C .
D .
6. (2分)如图,P为半⊙O直径BA延长线上一点,PC切半⊙O于C,且PA:PC=2:3,则sin∠ACP的值为()
A .
B .
C .
D . 无法确定
7. (2分)(2019·广州模拟) 为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果做了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()
A . 众数
B . 平均数
C . 中位数
D . 方差
8. (2分) (2019八下·双阳期末) 已知矩形的面积为36cm2 ,相邻两条边长分别为xcm和ycm,则y与x之间的函数图象正确的是()
A .
B .
C .
D .
9. (2分) (2018七上·揭西月考) 将正整数按如图所示的位置顺序排列,根据图中的排列规律,2018应在()
A . A位
B . B位
C . C位
D . D位
10. (2分)(2017·瑶海模拟) 如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()
A .
B .
C .
D .
二、填空题 (共8题;共10分)
11. (1分)(2018·连云港) 已知A(﹣4, )、B(﹣1, )是反比例函数
图像上的两个点,则与的大小关系为________.
12. (1分)(2019·崇川模拟) 92000用科学记数法表示为________.
13. (1分) (2019七下·大石桥期中) 如图,∠A=70°,O是AB上一点,直线CO与AB 所夹的∠BOC=820.当直线OC绕点O按逆时针方向旋转________时,OC//AD.
14. (1分)如图,DE与BC不平行,当=________时,△ABC与△AED相似.
15. (1分)(2018·萧山模拟) 如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为________.
16. (3分)如图,图①经过________变换得到图②;图①经过________变换得到图
③;图①经过________变换得到图④.(填“平移”、“旋转”或“轴对称”)
17. (1分)(2019·葫芦岛) 如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是________.
18. (1分) (2019七下·海安月考) 关于的的不等式组恰有两个整数解,则实数的取值范围为________.
三、解答题 (共8题;共72分)
19. (6分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此
(1)判断下列等式成立的是________(填序号).
①cos(﹣60°)=﹣;②sin2x=2sinx•cosx;③sin(x﹣y)=sinx•cosy﹣cosx•siny.
(2)利用上面的规定求①sin75°,②sin15°.
20. (5分)(2019·中山模拟) 先化简,再求值:÷(1﹣),其中m=
21. (11分)(2018·龙湾模拟) 为了保护视力,某学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示,(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表格所示.
抽取的学生活动后视力频数分布表
分组频数
4.0≤x<4.22
4.2≤x<4.44
4.4≤x<4.66
4.6≤x<4.810
4.8≤x<
5.021
5.0≤x<5.27
(1)此次调查所抽取的样本容量为________;
(2)若视力达到4.8以上(含4.8)为达标,请估计活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.
22. (5分)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为130m的正方形,且每一个侧面与底面成65°角(即∠ABC =65°),这座金字塔原来有多高(结果取整数)?
(参考数据:sin65°=0.9,cos65°=0.4,tan65°=2.1)
23. (10分) (2019七上·贵阳期末) 如图,在数轴上,点A表示-5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动.设运动时间为t秒.
(1)当t为多少秒时,P,Q两点相遇,求出相遇点所对应的数;
(2)当t为何值时,P,Q两点的距离为3个单位长度,并求出此时点P对应的数.
24. (15分) (2017九上·宜昌期中) 如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.
(1)求证:AD=DE;
(2)求∠DCE的度数;
(3)若BD=1,求AD,CD的长.
25. (10分) (2019九上·镇原期末) 已知:如图,AB是⊙O的直径,BC是弦,∠B =30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.
26. (10分)(2017·鹤岗) 如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.
参考答案
一、选择题 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共8题;共10分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共72分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略
第11 页共11 页。

相关文档
最新文档