硝基与亚硝基化合物

合集下载

硝基化合物的性质

硝基化合物的性质
分类 胺与亚硝酸的反应
NaNO2, HCl 0-5oC -N2
现象
1o胺
RNH2 R+
+ [R-NN]Cl
1o胺放出N2气体
醇、烯、卤代烃等的混合物
R2NH NaNO2, HCl [R2N-N=O]
2o胺
R3N + HNO2
OH-
N-亚硝基
2o胺出现黄色油状物 3o胺发生成盐反应
3o胺
[R3NH]+NO2-
硝基化合物的性质——化学性质
含α-H的硝基烷在碱性条件下生成碳 负离子,作为亲核试剂参与反应。
C6H5CHO + CH3NO2 EtONa C6H5CH CHNO2
H2C CHCN
+
CH3NO2
EtONa
CNCH2CH2CH2NO2
第二节 胺
一、分类 胺根据在氮上的取代基的数目,可分为
NH2 NH N N
Hofmann消除例:
CH3 N(CH3)3 OH 99% NaOC2H5, HOC2H5 (NaOC2H5 作为碱) CH2 ' H3C H2C H2C N CH2 CH3 CH3 OH 1% CH2 + CH3
CH3 CH2 CH2
CH
CH3

CH2 CH2 CH CH3 96%
CH2
N(CH3)3 I
胺有碱性,遇酸能形成盐 RNH2 + CH3COOH CH3COO- +NH3R
(三)化学性质
应用例1:鉴别或定量分析
鉴定:溶于盐酸
定量分析:盐酸标液滴定(非水滴定)
(三)化学性质
应用例2:分离、提纯
混合物 盐酸溶解

经济学硝化和亚硝化

经济学硝化和亚硝化


ω(H2SO4)
100-ω(H2SO4)-ω(HNO3)+2ω(HNO3)/7Φ
(Ф>1)
26
第27页/共63页
• Ф≤1时,可推出:
D.V.S. =
ω(H2SO4) 1- ω(H2SO4)-5/7 ω(HNO3)
注意:若为a﹪,则把a代入式中计算;若把式子中的 100改为1,则代入的是a﹪ )
废酸中硫酸的质量 废酸的总质量
×100%

ω(H2SO4)
100-5 ω(HNO3) / 7Φ
(或1)
×100%
(Ф>1)
29
第30页/共63页
• Ф≤1时,可推出:
F.N.A.

ω(H2SO4) 100-5ω(HNO3) / 7
×100%
30
第31页/共63页
以上公式表明,F.N.A.为常数时,ω(H2SO4)和 ω(HNO3)为线型关系。这表明 :满足相同废酸计算 含量的混酸组成是多种多样的。而真正具有实际意 义的混酸组成仅是直线中的一小段。
25
第26页/共63页
脱水值计算公式: ω(HNO3)和ω(H2SO4)——混酸中硝酸和硫酸的质量百分数, φ——硝酸比, 以100份质量混酸为计算基准: 混酸含水质量=100- ω(H2SO4)- ω(HNO3) 硝化生成水质量=(ω(HNO3)/φ)×18/63=2ω(HNO3)/7φ
D.V.S.
17
第18页/共63页
6.3 影响因素→ 6.3.4 搅拌
6.3.4 搅拌 良好的搅拌装置和冷却设备对提高传热和传质效
率非常重要。要求转数:小型设备:1100r/min; 工业生产:1~4m3硝化锅,转数400-100 r/min。 环式或泵式硝化器,2000-3000 r/min。 间歇硝化的开始阶段要严防停转,否则再启动时

硝基化合物

硝基化合物
O R
成环和重排
O R C CH2 R' 成环 O R + C CH2 R' 重排 R R' O R C CH2R' + N N O
+ + H2C N N C R
醛和环酮以重排产物为主,普通的酮主要生成环氧化物。酮分子中 与羰基相连的两个烃基不相同时,得到两种重排产物的混合物。
O R O R C CH2 H + + H2C N N C H + N N O R C CH3
H 重排
O + CH2N2
O CH2 + N N
O + N2
O C CH2 CH2N2 CH2
O C CH2 + N N
O C
环丙酮
3. 与酰氯反应
O R
脱去氯化氢
O R O H C CH2 Cl + -H+ N N O R C CH + N N + N N
+ + H2C N N C Cl
-Cl
R
第一节 硝基化合物
硝基化合物可分为脂肪族硝基化合物和芳香族硝基化合物。 硝基化合物的结构
CH3 + N O
Sp2杂化
O
O O
C-N 147pm , <ONO = 127
N-O
+ N
122pm
+ N O O
+ N
O O
P, π 共轭
CH3
NO2
μ= 3.5 D
硝基为强的吸电子基
厚 第十八章 止 其它含氮化合物
H2 O R'OH NH3 O O RCH2COR'

有机化学 含氮有机化合物

有机化学 含氮有机化合物

第十三章含氮有机化合物名称结构式名称结构式氨NH3胺RNH2,ArNH2R2NH (Ar)2NHR3N (Ar)3N氢氧化铵NH4OH季铵碱R4N+OH-铵盐NH4Cl季铵盐R4N+Cl-硝酸HO-NO2硝基化合物R-NO2 Ar-NO2亚硝酸HO-NO亚硝基化合物R-NO Ar-NO13.1硝基化合物由硝酸和亚硝酸可以导出四类含氮的有机物,即硝酸酯、亚硝酸酯、硝基化合物和亚硝基化合物H O NO2 R O NO2R NO2硝酸硝酸酯(补充)硝基化合物H O N O R O N O R N O亚硝酸亚硝酸酯亚硝基化合物一、 硝基化合物的命名和结构硝酸酯和亚硝酸酯的命名与有机酸酯的命名相同,如CH 3ONO 2CH 2CH 2ONO硝酸甲酯 亚硝酸乙酯(补充)2 硝基和亚硝基化合物中将硝基和亚硝基看作为取代基CH 3NO 2NO 2CH 3NO硝基甲烷 邻硝基甲苯 对亚硝基甲苯CH 3硝酸酯和芳香多硝基化合物都有爆炸性,常被用做炸药,如CH2ONO2CHONO2CH2ONO2O2NCH3NO2NO2三硝基甘油酯2,4,6-三硝基甲苯(TNT)硝基化合物的结构,可表示为由一个N=O和一个N→O配位键组成。

OR NO电子衍射法证明,硝基中两个氮氧键长是完全相同的,CH3NO2 分子中的两个N—O键的键长均为0.122nm。

原因:硝基中氮原子以sp2杂化,三个原子形成共平面的σ键。

二、硝基化合物的性质1、物理性质颜色多为淡黄色沸点比相应的卤代烃高, 常温下为高沸点的液体或结晶固体溶解性不溶于水,易溶于有机溶剂,液体的硝基化合物是有机化合物的良好的溶剂但是因为硝基化合物有毒性,可透过皮肤被机体吸收,生产上很少采用它,例如硝基苯有剧毒;多硝基化合物有爆炸性, 如2,4,6-三硝基甲苯(TNT)为烈性炸药2、脂肪族硝基化合物的化学性质(1)脂肪族硝基化合物的酸性硝基为吸电子基团,脂肪族硝基化合物中的-氢原子很活泼,显弱酸性,可与碱作用生成盐从而溶于碱中O R CH2NOOH R CH NORCH NO NaOH [ RCHNO ] - +H O2 2 + 2 Na + 2(2)与羰基化合物的缩合反应:有α-氢的硝基化合物,在碱性条件下可与醛或酮发生缩合反应,类似于羟醛缩合。

硝基与亚硝基化合物

硝基与亚硝基化合物

Nitro Alkanes and Nitro ArenesStructureThe nitrogen is trigonal planar with a bond angles of 120°, there are two resonance forms so implying that the two oxygens are equivalent;Electronic EffectsThese are strongly electron withdrawing both inductively, -I, and mesomerically, by resonance, -R. This means that both the C-N s bond and the p system are strongly polarised, C d+-NO2d-.Due to the -I inductive effect of the s bond the pKa values of nitro group containing compounds can also be affected;Ph-NO2, this substituent is ortho, para directing due to the -R resonance effect of the p bond. The -I will also still operate but is less obvious here.SpectroscopyI.R.The n max for the N=O stretch is 1500-1600 cm-1, compared to the C=O stretch at 1650-1800 cm-1.NMRFor a CH protons, adjacent to the group, the chemical shift, d, = 4.3, due to electron withdrawing effect;U.V .The nitro group causes a pronounced shift of l max to longer wavelengths when conjugated to unsaturated p systems, a bathochromic shift. This is why nitro compounds are often yellow.Synthesis of Nitro-CompoundsAliphatic nitro compounds are synthesised by;Gas Phase Nitration of AlkanesThis commercial free radical process involves the NO2 radical;Electrophilic Nitration of Enolate AnionsThe use of the enolate active methylenes forms a stable product due to the chelation of the counter ion;Nitrate SN2 displacement of alkyl halidesTwo products, a nitro compound and a nitrite ester, are produced due to the sodium nitrate acting as an ambident nucleophile, either a N or O nucleophile;The use of silver nitrate produces only the nitro compound as it is not an ambident nucleophile.Oxidation with PeracidsNitro compounds can be produced by oxidised of amine by peracids;Aromatic Nitro CompoundsThese are synthesised by electrophilic aromatic substitution with NO2+ ions;ReactionsAs the nitro group is strongly electron withdrawing and shows affinity with the C=O group. Thus addition across the N=O is possible and reduction is easy.a Anionsa anions are easily formed with base and stabilised by resonance as nitronate anions, c.f. C=O enolate formation;The protons on nitro methane, MeNO2, have a pKa of 10.2, c.f. MeCOCH2CO2Et pKa 11. So in order to remove the a protons on nitro alkane an appropriate base in required.As the nitronate ion is delocalised it is a soft nucleophile and show usual reactivities of stabilised, soft, carbanions.AlkylationHenry ReactionThis reaction is analogous to the Aldol reaction;If R' is aryl the mechanism of elimination is;If R' is alkyl the mechanism of elimination is;Michael AdditionsThe Michael addition is a conjugate addition as the double bond is the soft centre of the ester, the carbonyl carbon being the hard centre. It proceeds by the following mechanism;Ambident NucleophilesNitronate anions themselves can act as ambident nucleophiles with either attack from the C, a soft nucleophile, or from the O, hard nucleophile. These will attack soft or hard electrophiles respectively;This ambident behaviour can be seen in the Nef reaction;O-alkylation is Possible with a hard alkylating agent like Meerwen's Bact, this is a Me+ source;The ambident nature of the nitro group makes it a very versatile reagent.ReductionGeneralIn principle the reduction of nitro compounds should follow the path;The reduction of nitroso groups is generally more easily achieved but the nitro group can be reduced in a number of different ways;PhotochemicallyMetal/H+ ReactionsMetals, such as Fe, Zn, Sn can be used with H+ to reduce the nitro group by a sequence of single electron transfer (SET)/protonation reactions;The mechanism for the Zn/H+ reaction is;H2/Pd SurfaceReactions H2/Pd or Pt can be used by heterogeneous H- transfer on the metal surface and then reaction with the nitro compound;Sulphur ReagentsNaSH or Na2S x or (NH4)2S2 can be used and possibly precede by SET reactions;Metal hydridesReagents like LiAIH4, but not usually NaBH4, reduce the nitro group by hydride, H-, transfer. The product will depend on the nature of the reducing agent, but the end point is ultimately an amine.Summary▪N SP2 hybridised and strongly electron withdrawing▪H acidic▪Anion reacts with E+, RBr RCHO, Henry reaction etc.▪Soft anion soft undergoes Michael additions▪Group reduced by:▪Metal/H+ (electron source)▪H-, (NaBH4 or LiAlH4)▪H2/Pd or Ni (R)Nitroso CompoundsStructureThe nitrogen is trigonal planar with a bond angle of ª125°. Nitroso compounds tend to dimerise in the following way;Electronic EffectsNitroso groups are strongly electron withdrawing, like the nitro group, but the situation is complicated by the dimerisation reaction.SpectroscopyI.R.The n max for the N=O stretch in the monomer is 1560 cm-1, in the dimer the n max for the N-O stretch is 1200 cm-1.NMRFor a CH protons, adjacent to the group, the chemical shift, d, = 4.0, due to electron withdrawing effect.SynthesisAromaticsThe synthesis of aromatic nitroso compounds can achieved by nitrosation with NO+, form HNO2, on strongly activated, electron rich, aromatics like ArNH2 and ArOH;They can also be produced from nitro compounds by reduction to the hydroxylamine then followed by oxidation;The nitroso compound comes out of aqueous solution, due to its non hydrophilic nature, and so avoids further oxidation, this is a very general method and can be used for a verity of compounds. The direct reduction from NO2-R to NO-R is not a generally feasible process though a photochemical method is known, see nitro group section.AliphaticsThe synthesis of aliphatic nitroso compounds can achieved by nitrosation of active, acidic, methylene compounds under acidic conditions, H+/NOCl, N2O3 or N2O4;Under basic conditions, C5H11ONO/NaOEt;Under neutral conditions enol silyl ether /NOCl;Another method of synthesis is by Markovnikov addition of NOX (X=Cl, NO2, NO3) to olefins.Tertiary AliphaticsTo synthesis nitroso compounds with tertiary alkyls another method has to be employed;ReactionsAddition and CondensationAs the nitrosyl group is strongly electron withdrawing and more similar to the C=O than the NO2 group There is polarisation of the N=O bond and so behaves as a weak C=O. It undergoes addition of nucleophiles and condensation with primary amines and the anions of active methylene compounds, e.g malonates, b ketoesters;The best method for preparation of secondary hydroxylamines is by addition of a Grignard reagent to a nitroso group and carrying out an acidic work up;The production of a nitrone can be seen in the following reaction;The hetero Diels-Alder reaction is also possible;ReductionReduction occurs as for NO2 groups with metals, metal hydrides, hydrogen/ catalyst.OxidationOxidation is readily brought about with peracids inter alia, this is not possible for nitro groups.Radical Addition-Spin TrappingMonomeric nitroso compounds are used to detect transient free radicals, mainly carbon centred radicals, by 'trapping' them as stable nitroxide radicals. These can be detected and assayed in an EPR spectrometer, this is the electron equivalent of the NMR spectrometer. EPR stands for Electron Paramagnetic Resonance. This allows the intermediacy of such otherwise undetectable transients to be proven and is therefore a valuable mechanistic probe.If the following thermal decomposition of benzoyl peroxide, a radical initiation reaction, is to be monitored;The phenyl radical would be undetectable by EPR but by addition of a tertiary nitrosyl the more stable nitroxide is produced which is observable;Summary▪N SP2 hybridised and electron withdrawing▪ON group like carbonyls undergoes addition with RMgX, condenses with RNH2 and 'active methllene', e.g malonate anion▪When a-H present, readily isomerises to oxime▪Very rapid addition of radicals R across N=O bond to give stable nitroxide radicals。

第03章 硝化和亚硝化

第03章 硝化和亚硝化

6.3 硝化机理及特征 6.3.1 硝化活性质点和反应机理
主要的硝化剂有不同活性硝酸、混酸、硝酸盐和硫酸、硝 酸和醋酸或醋酐的混合物。 已证实:多数硝化剂硝化反应的活性质点是NO2+(硝基阳 离子)。 当硝酸中水分增加,硝化和氧化速度均降低。但前者降低 更多,氧化副反应增加。
在稀硝酸中,硝化活性质点不是NO2+,而是硝酸中所 含微量HNO2离解生成的NO+。 在乙酐或乙酸中硝化是NO2+— CH3COOH或NO2+。
6.5.2
设S和N表示混酸中硫酸和硝酸的质量百分数,ф表示
硝酸比,则混酸含水量=100-S-N; 硝化生成水=N/ф×18/63=2N/7ф; 则脱水值公式如下: 6.5.2.2 硝化活性因数 Factor of Nitration Activity (F.N.A.) 废酸计算含量( F.N.A.)指混酸硝化终了时,废酸中硫酸 的计算含量(质量分数)若以100份混酸为计算基准,则 当Ф≤1
例如,利用二氯乙烷溶剂,可分离1,5或1,8-二硝基萘 或二硝基蒽醌。利用环丁砜,1-氯苯,甲苯,不同组分的 混酸和不同浓度的硝酸,均可比较好的分离1,5-或1,8 -二硝基蒽醌。
6.7
其它硝化方法
6.7.1 硝酸硝化 6.7.2 酸酐硝化 6.7.3 置换硝化
6.8
重要实例
6.8.1 邻、对硝基氯苯 6.8.2 1-硝基蒽醌 6.8.3 2-二乙氧基-4-硝基-N-苯甲酰苯胺
第03章 硝化和亚硝化
Nitration and Nitrosation 概 述 主要硝化方法 硝化机理及特征 硝化影响因素 混酸硝化 硝化异构产物的分离 硝基苯的生产 其他硝化实例 亚硝化
6.1 概述 6.1.1 硝化定义

还原胺化

还原胺化

一.还原胺化还原胺化主要有一般化合物的还原法及直接的还原胺化法。

1.C-N化合物还原法硝基化合物、亚硝基化合物、肟、腈、酰胺、偶氮化合物、氧化偶氮化合物、氢化偶氮化合物等均可经还原得到胺类。

(1).硝基及亚硝基的还原硝基和亚硝基化合物的还原较易进行,主要有化学还原法和催化加氢还原法。

化学还原法根据催化剂的不同,又分为铁屑还原,含硫化合物的还原,碱性介质中的锌粉还原等。

铁屑还原法的适用范围较广,凡能与铁泥分离的芳胺皆可采用此法,其还原过程包括还原反应、还原产物的分离与精制、芳胺废水与铁泥处理等几个基本步骤。

对于容易随水蒸气蒸出的芳胺如苯胺、邻(对)甲苯胺、邻(对)氯苯胺等都可采用水蒸气蒸馏法将产物与铁泥分离;对于易溶于水且可蒸馏的芳胺如间(对)苯二胺、2,4-二氨基甲苯等,可用过滤法先除去铁泥,再浓缩滤液,进行真空蒸馏,得到芳胺;能溶于热水的芳胺如邻苯二胺、邻氨基苯酚、对氨基苯酚等,用热过滤法与铁泥分离,冷却滤液即可析出产物;对含有磺基或羧基等水溶性基团的芳胺,如1-氨基萘-8-磺酸(周位酸)、1-氨基萘-5-磺酸等,可将还原产物中和至碱性,使氨基磺酸溶解,滤去铁泥,再用酸化或盐析法析出产品,难溶于水而挥发性又小的芳胺,例如1-萘胺,在还原后用溶剂将芳胺从铁泥中萃取出来。

铁屑还原法中产生大量含胺废水,必须进行处理、回收。

例如在硝基苯用铁屑还原过程中会产生大量含苯胺废水(约含4%苯胺),一部分可加入到还原锅中循环使用,其余的要先用硝基苯萃取。

萃取后含苯胺的硝基苯可作为还原的原料使用;废水中的苯胺和硝基苯的含量分别降为0.2%和0.1%以下。

此后还必须经过生化处理,才可排放。

铁泥的利用途径之一是制铁红颜料。

含硫化合物的还原主要包括硫化碱类,如硫化钠、硫氢化铵、多硫化铵,这类反应称为齐宁反应(Zinin),该反应比较缓和,可使多硝基化合物中的硝基选择性的部分还原,或只还原硝基偶氮化合物中的硝基,而保留偶氮基,并应用于从硝基化合物获得的不溶于水的胺类。

硝化反应顺序口诀

硝化反应顺序口诀

硝化反应顺序口诀
硝化反应是一种重要的有机合成方法,它利用硝酸和有机物之间的取代反应,将有机物转化为硝基化合物。

在硝化反应中,硝基化合物与硝酸根离子(NO3-)形成的同时,还会生成一氧化氮(NO)气体。

硝化反应具有很高的反应性和危险性,因此需要遵循一定的规则和措施来确保实验的安全和成功。

硝化反应的顺序口诀是一个十分重要的诀窍,它可以帮助我们了解硝化反应中各个步骤的先后顺序,从而更好地进行实验。

这个口诀包括以下内容:
1.硝化
这是硝化反应的最基本形式,它涉及到硝酸和有机物之间的取代反应。

在这个过程中,硝酸根离子(NO3-)取代了有机物中的一个氢原子,形成了一个硝基化合物。

2.硝酸
这个步骤涉及到硝酸的准备和加入。

硝酸可以通过与有机物混合来制备,也可以通过加入盐酸来制备。

无论是哪种制备方法,都需要确保硝酸的纯度和浓度,以保证实验的顺利进行。

3.硝基化合物
这个步骤涉及到硝基化合物的生成。

在这个过程中,硝酸根离子(NO3-)取代了有机物中的一个氢原子,形成了一个硝基化合物。

硝基化合物可以分为两类:亚硝基化合物和硝基化合物。

4.一氧化氮(NO)
这个步骤涉及到一氧化氮(NO)气体的生成。

在这个过程中,亚硝基化合物和硝酸根离子(NO3-)发生反应,产生了一氧化氮(NO)气体。

一氧化氮(NO)气体具有很高的毒性和危险性,因此需要特别注意实验的安全和卫生。

硝化反应顺序口诀为我们提供了一个指导硝化反应进行的重要信息,它可以帮助我们了解和遵循硝化反应的顺序和步骤,以确保实验的安全和成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nitro Alkanes and Nitro ArenesStructureThe nitrogen is trigonal planar with a bond angles of 120°, there are two resonance forms so implying that the two oxygens are equivalent;Electronic EffectsThese are strongly electron withdrawing both inductively, -I, and mesomerically, by resonance, -R. This means that both the C-N s bond and the p system are strongly polarised, C d+-NO2d-.Due to the -I inductive effect of the s bond the pKa values of nitro group containing compounds can also be affected;Ph-NO2, this substituent is ortho, para directing due to the -R resonance effect of the p bond. The -I will also still operate but is less obvious here.SpectroscopyI.R.The n max for the N=O stretch is 1500-1600 cm-1, compared to the C=O stretch at 1650-1800 cm-1.NMRFor a CH protons, adjacent to the group, the chemical shift, d, = 4.3, due to electron withdrawing effect;U.V .The nitro group causes a pronounced shift of l max to longer wavelengths when conjugated to unsaturated p systems, a bathochromic shift. This is why nitro compounds are often yellow.Synthesis of Nitro-CompoundsAliphatic nitro compounds are synthesised by;Gas Phase Nitration of AlkanesThis commercial free radical process involves the NO2 radical;Electrophilic Nitration of Enolate AnionsThe use of the enolate active methylenes forms a stable product due to the chelation of the counter ion;Nitrate SN2 displacement of alkyl halidesTwo products, a nitro compound and a nitrite ester, are produced due to the sodium nitrate acting as an ambident nucleophile, either a N or O nucleophile;The use of silver nitrate produces only the nitro compound as it is not an ambident nucleophile.Oxidation with PeracidsNitro compounds can be produced by oxidised of amine by peracids;Aromatic Nitro CompoundsThese are synthesised by electrophilic aromatic substitution with NO2+ ions;ReactionsAs the nitro group is strongly electron withdrawing and shows affinity with the C=O group. Thus addition across the N=O is possible and reduction is easy.a Anionsa anions are easily formed with base and stabilised by resonance as nitronate anions, c.f. C=O enolate formation;The protons on nitro methane, MeNO2, have a pKa of 10.2, c.f. MeCOCH2CO2Et pKa 11. So in order to remove the a protons on nitro alkane an appropriate base in required.As the nitronate ion is delocalised it is a soft nucleophile and show usual reactivities of stabilised, soft, carbanions.AlkylationHenry ReactionThis reaction is analogous to the Aldol reaction;If R' is aryl the mechanism of elimination is;If R' is alkyl the mechanism of elimination is;Michael AdditionsThe Michael addition is a conjugate addition as the double bond is the soft centre of the ester, the carbonyl carbon being the hard centre. It proceeds by the following mechanism;Ambident NucleophilesNitronate anions themselves can act as ambident nucleophiles with either attack from the C, a soft nucleophile, or from the O, hard nucleophile. These will attack soft or hard electrophiles respectively;This ambident behaviour can be seen in the Nef reaction;O-alkylation is Possible with a hard alkylating agent like Meerwen's Bact, this is a Me+ source;The ambident nature of the nitro group makes it a very versatile reagent.ReductionGeneralIn principle the reduction of nitro compounds should follow the path;The reduction of nitroso groups is generally more easily achieved but the nitro group can be reduced in a number of different ways;PhotochemicallyMetal/H+ ReactionsMetals, such as Fe, Zn, Sn can be used with H+ to reduce the nitro group by a sequence of single electron transfer (SET)/protonation reactions;The mechanism for the Zn/H+ reaction is;H2/Pd SurfaceReactions H2/Pd or Pt can be used by heterogeneous H- transfer on the metal surface and then reaction with the nitro compound;Sulphur ReagentsNaSH or Na2S x or (NH4)2S2 can be used and possibly precede by SET reactions;Metal hydridesReagents like LiAIH4, but not usually NaBH4, reduce the nitro group by hydride, H-, transfer. The product will depend on the nature of the reducing agent, but the end point is ultimately an amine.Summary▪N SP2 hybridised and strongly electron withdrawing▪H acidic▪Anion reacts with E+, RBr RCHO, Henry reaction etc.▪Soft anion soft undergoes Michael additions▪Group reduced by:▪Metal/H+ (electron source)▪H-, (NaBH4 or LiAlH4)▪H2/Pd or Ni (R)Nitroso CompoundsStructureThe nitrogen is trigonal planar with a bond angle of ª125°. Nitroso compounds tend to dimerise in the following way;Electronic EffectsNitroso groups are strongly electron withdrawing, like the nitro group, but the situation is complicated by the dimerisation reaction.SpectroscopyI.R.The n max for the N=O stretch in the monomer is 1560 cm-1, in the dimer the n max for the N-O stretch is 1200 cm-1.NMRFor a CH protons, adjacent to the group, the chemical shift, d, = 4.0, due to electron withdrawing effect.SynthesisAromaticsThe synthesis of aromatic nitroso compounds can achieved by nitrosation with NO+, form HNO2, on strongly activated, electron rich, aromatics like ArNH2 and ArOH;They can also be produced from nitro compounds by reduction to the hydroxylamine then followed by oxidation;The nitroso compound comes out of aqueous solution, due to its non hydrophilic nature, and so avoids further oxidation, this is a very general method and can be used for a verity of compounds. The direct reduction from NO2-R to NO-R is not a generally feasible process though a photochemical method is known, see nitro group section.AliphaticsThe synthesis of aliphatic nitroso compounds can achieved by nitrosation of active, acidic, methylene compounds under acidic conditions, H+/NOCl, N2O3 or N2O4;Under basic conditions, C5H11ONO/NaOEt;Under neutral conditions enol silyl ether /NOCl;Another method of synthesis is by Markovnikov addition of NOX (X=Cl, NO2, NO3) to olefins.Tertiary AliphaticsTo synthesis nitroso compounds with tertiary alkyls another method has to be employed;ReactionsAddition and CondensationAs the nitrosyl group is strongly electron withdrawing and more similar to the C=O than the NO2 group There is polarisation of the N=O bond and so behaves as a weak C=O. It undergoes addition of nucleophiles and condensation with primary amines and the anions of active methylene compounds, e.g malonates, b ketoesters;The best method for preparation of secondary hydroxylamines is by addition of a Grignard reagent to a nitroso group and carrying out an acidic work up;The production of a nitrone can be seen in the following reaction;The hetero Diels-Alder reaction is also possible;ReductionReduction occurs as for NO2 groups with metals, metal hydrides, hydrogen/ catalyst.OxidationOxidation is readily brought about with peracids inter alia, this is not possible for nitro groups.Radical Addition-Spin TrappingMonomeric nitroso compounds are used to detect transient free radicals, mainly carbon centred radicals, by 'trapping' them as stable nitroxide radicals. These can be detected and assayed in an EPR spectrometer, this is the electron equivalent of the NMR spectrometer. EPR stands for Electron Paramagnetic Resonance. This allows the intermediacy of such otherwise undetectable transients to be proven and is therefore a valuable mechanistic probe.If the following thermal decomposition of benzoyl peroxide, a radical initiation reaction, is to be monitored;The phenyl radical would be undetectable by EPR but by addition of a tertiary nitrosyl the more stable nitroxide is produced which is observable;Summary▪N SP2 hybridised and electron withdrawing▪ON group like carbonyls undergoes addition with RMgX, condenses with RNH2 and 'active methllene', e.g malonate anion▪When a-H present, readily isomerises to oxime▪Very rapid addition of radicals R across N=O bond to give stable nitroxide radicals。

相关文档
最新文档