(完整版)概率论知识点总结
概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。
样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。
2.概率分布概率分布描述了随机变量可能取值的概率情况。
概率分布分为离散分布和连续分布两种。
常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。
概率密度函数和累积分布函数是描述连续分布的重要工具。
3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。
随机变量分为离散随机变量和连续随机变量。
离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。
4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。
数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。
5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。
大数定律包括弱大数定律和强大数定律两种。
弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。
6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。
中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。
中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。
以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。
随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。
概率论复习知识点总结

? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),
概率论知识点整理及习题答案

概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为或。
A B ⊇B A ⊆相等关系:若且,则称事件A 与事件B 相等,记为A =B 。
A B ⊇B A ⊆事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为。
B A B A =-互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A +B 。
B A ⋃对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为。
对立事件的性质:A 。
Ω=⋃Φ=⋂B A B A ,事件运算律:设A ,B ,C 为事件,则有(1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律): B A B A ⋂=⋃BA B A ⋃=⋂第二节 事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时⋃⋃⋃⋃n A A A 21++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P 概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时n A A A ⋃⋃⋃ 21)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃ 当AB=Φ时P(A∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)(2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则P(B)=∑P()P(B|)n A A A ,,,21 i A i A 贝叶斯公式:设是一个完备事件组,则n A A A ,,,21 ∑==)|()()|()()()()|(j j i i i i A B P A P A B P A P B P B A P B A P 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则与B ,A 与,与均相互独立A B A B 总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。
样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。
事件是样本空间的一个子集,表示随机试验的一些结果。
事件的概率描述了该事件发生的可能性有多大。
2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。
3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。
4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。
6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。
概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。
排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。
2. 事件的独立性在概率论中,独立性是一个重要的概念。
事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。
在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。
3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。
随机变量可分为离散型和连续型两种。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论知识点总结

概率论知识点总结概率论是数学中的一个重要分支,主要研究随机现象的规律性和概率分布。
在现实生活中,概率论广泛应用于统计学、金融、工程、生物学等领域。
下面将对概率论中的一些重要知识点进行总结。
一、基本概念1. 样本空间:随机试验所有可能结果的集合。
2. 随机事件:样本空间中的一个子集。
3. 概率:随机事件发生的可能性大小,用P(A)表示。
4. 事件的互斥与对立:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。
二、概率的性质1. 非负性:概率值始终大于等于0。
2. 规范性:样本空间的概率为1。
3. 可数可加性:如果事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。
4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B)。
三、条件概率1. 定义:在事件B发生的条件下,事件A发生的概率。
2. 计算公式:P(A|B) = P(A∩B) / P(B)。
3. 乘法公式:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)。
四、独立事件1. 定义:事件A发生与否不受事件B发生与否的影响。
2. 判别条件:P(A∩B) = P(A) * P(B)。
五、全概率公式与贝叶斯定理1. 全概率公式:设事件B1、B2、...、Bn为样本空间的一个划分,即B1∪B2∪...∪Bn = S,且P(Bi) > 0,有P(A) = ∑P(A|Bi) * P(Bi)。
2. 贝叶斯定理:在全概率公式的基础上,可以得到P(Bi|A) = P(A|Bi) * P(Bi) / ∑P(A|Bi) * P(Bi)。
六、随机变量与概率分布1. 随机变量:将数学状态与随机事件的结果联系起来的变量。
2. 离散型随机变量与连续型随机变量。
3. 概率分布:描述随机变量各个取值的概率情况。
4. 均匀分布、正态分布、泊松分布等。
七、大数定律与中心极限定理1. 大数定律:随着试验次数的增加,样本均值趋于总体均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为或。
A B ⊇B A ⊆相等关系:若且,则称事件A 与事件B 相等,记为A =B 。
A B ⊇B A ⊆事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为。
B A B A =-互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A +B 。
B A ⋃对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为。
对立事件的性质:A 。
Ω=⋃Φ=⋂B A B A ,事件运算律:设A ,B ,C 为事件,则有(1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律): B A B A ⋂=⋃BA B A ⋃=⋂第二节 事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时⋃⋃⋃⋃n A A A 21++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P 概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时n A A A ⋃⋃⋃ 21)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃ 当AB=Φ时P(A∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)(2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则P(B)=∑P()P(B|)n A A A ,,,21 i A i A 贝叶斯公式:设是一个完备事件组,则n A A A ,,,21 ∑==)|()()|()()()()|(j j i i i i A B P A P A B P A P B P B A P B A P 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则与B ,A 与,与均相互独立A B A B 总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用, 应牢固掌握。
3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。
第二章 一维随机变量及其分布第二节 分布函数分布函数:设X 是一个随机变量,x 为一个任意实数,称函数为X 的分}{)(x X P x F ≤=布函数。
如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间内的概率],(x -∞分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节 离散型随机变量离散型随机变量的分布律:设(k=1,2,…)是离散型随机变量X 所取的一切可能值,称k x 为离散型随机变量X 的分布律,也称概率分布.k k p x X P ==}{当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。
分布律的性质:(1);(2)10≤≤k p 1=∑kp离散型随机变量的概率计算:(1)已知随机变量X 的分布律,求X 的分布函数;∑≤=≤=xx kk xP x X P x F )(}{)((2)已知随机变量X 的分布律, 求任意随机事件的概率;(3)已知随机变量X 的分布函数,求X 的分布律)0()(}{--==k k k x F x F x X P 三种常用离散型随机变量的分布:1.(0-1)分布:参数为p 的分布律为p X P p X P -====1}0{,}1{2.二项分布:参数为n ,p 的分布律为,。
例kn kkn p p C k X P --==)1(}{n k ,,2,1,0 =如n 重独立重复实验中,事件A 发生的概率为p ,记X 为这n 次实验中事件A 发生的次数,则X ~B (n ,p )3.泊松分布:参数为λ的分布率为,。
例如记X 为某段λλ-==e k k X P k!}{ ,2,1,0=k 事件内电话交换机接到的呼叫次数,则X ~P (λ)第四节 连续型随机变量连续型随机变量概率密度f(x)的性质(1)f(x)≥0(2),1)(=⎰+∞∞-dx x f 0)(}{===⎰aadx x f a X P (3)⎰=≤≤=≤<=<≤=<<badxx f b X a P b X a P b X a P b X a P )(}{}{}{}{(4)⎰∞-='=xdxx f x F x F x f )()(),()(连续型随机变量的概率计算:(1)已知随机变量X 的密度函数,求X 的分布函数;⎰∞-=xdxx f x F )()((2)已知随机变量X 的分布函数,求X 的密度函数;)()(x F x f '=(3)已知随机变量X 的密度函数, 求随机事件的概率;⎰=<<badxx f b X a P )(}{(4)已知随机变量X 的分布函数,求随机事件的概率;)()(}{a F b F b X a P -=<<三种重要的连续型分布:1.均匀分布:密度函数,记为 X ~U[a ,b].⎪⎩⎪⎨⎧≤≤-=elseb x a ab x f 01)(2. 指数分布:密度函数,记为X ~E (λ)⎩⎨⎧≤>=-00)(x x e x f xλλ3. 正态分布:密度函数 ,记为222)(21)(σμσπ--=x ex f ),(~2σμN X N (0,1)称为标准正态分布.标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布,然后再计算概率.()()()(}{σμσμ-Φ--Φ=-=<<a b a F b F b X a P 第五节 随机变量函数的分布离散型:在分布律的表格中直接求出;连续型:寻找分布函数间的关系,再求导得到密度函数间的关系;注意分段函数情况可能需要讨论,得到的结果也可能是分段函数。
))(()}({})({}{)(y G F y G X P y X g P y Y P y F Y =≤=≤=≤=第三章 多维随机变量及其分布第一节 二维随机变量的联合分布函数联合分布函数,表示随机点落在以(x ,y )为顶点的左下无},{),(y Y x X P y x F ≤≤=穷矩形区域内的概率。
联合分布函数的性质:(1)分别关于x 和y 单调不减;(2)分别关于x 和y 右连续;(3)F (-∞ , y ) = 0,F ( x ,-∞ ) =0,F(-∞,-∞) = 0F ( +∞ ,+∞ ) = 1第二节 二维离散型随机变量联合分布律:ij j i p y Y x X P ===},{联合分布律的性质:;0≥ij p 1=∑∑ijijp第三节 二维连续性随机变量联合密度:⎰⎰∞-∞-=yxduv u f dv y x F ),(),(联合密度的性质:;;0),(≥y x f 1),(2=⎰⎰R dxdy y x f ⎰⎰=∈Ddxdyy x f D y x P ),(}),{(第四节 边缘分布二维离散型随机变量的边缘分布律:在表格边缘,对应概率相加求出;二维连续性随机变量的边缘密度:先求出边缘分布函数,在求导求出边缘密度第六节 随机变量的独立性独立性判断:(1)若取值互不影响,可认为相互独立;Y X ,(2)根据独立性定义判断)()(),(y F x F y x F Y X = 离散型可用ji ij p p p ∙∙=连续型可用)()(),(y f x f y x f Y X =独立性的应用:(1)判断独立性;(2)已知独立性,由边缘分布确定联合分布第四章 随机变量的数字特征离散型随机变量数学期望的计算,∑=kk kp xEX ∑=kkk p x g X g E )())((连续型随机变量数学期望的计算,⎰=dx x xf EX )(⎰=dxx f x g X g E )()())((方差的计算:,2)(EX X E DX -=)()(22X E X E DX -=数学期望的性质(1)E (C ) = C(2)E (CX ) = CE (X )(3)E (X + Y ) = E (X ) + E (Y )(4)当 X ,Y 独立时,E (X Y ) = E (X )E (Y )方差的性质(1)D (C) = 0(2)D (CX ) = D(X)2C (3)若 X ,Y 相互独立,则D ( X ± Y ) = D ( X ) + D (Y )常见分布的数学期望和方差两点分布,二项分布,泊松分布,均匀分布,正态分布,指数分布。