转速测量的方法

合集下载

你了解转速测量的方法有哪些

你了解转速测量的方法有哪些

你了解转速测量的方法有哪些转速测量是指用于测量旋转物体的转速或角速度的技术方法。

转速测量在多个领域中都有应用,例如机械工程、汽车工程、航空航天工程、电力系统以及实验室研究等。

下面是一些常用的转速测量方法:1.接触式转速测量方法:-机械接触式测速器:例如机械式测速表、机械式转速计等。

这些测速器通过与旋转物体直接接触,利用测速表盘或指针的转动来显示转速。

-磁电式接触式测速器:例如霍尔元件转速传感器。

这些测速器利用旋转物体上的磁铁或磁性标记,通过磁电感应原理将转速转换为电信号输出。

-光电接触式测速器:例如光电编码器。

这些测速器使用光电转换原理,通过旋转物体上的光栅或光轮,将转速转换为光脉冲信号输出。

2.非接触式转速测量方法:-光学测量方法:例如激光测速仪、光栅测速仪等。

这些测速仪利用光学传感技术,通过测量旋转物体上的光栅或标记点的位移或速度,间接计算出转速。

-声学测量方法:例如超声波传感器、声纳传感器等。

这些测速传感器利用声音的传播速度和频率来测量旋转物体的转速。

-电磁测量方法:例如感应电动机测速法。

这种方法利用旋转物体上的导体通过磁场感应产生的感应电动势来测量转速。

-震动测量方法:例如加速度计。

这些测速器通过测量旋转物体上的振动信号来计算转速。

3.数字转速测量方法:-频率计:通过统计旋转物体上标记点通过光电传感器或磁电传感器时产生的频率来计算转速。

-计数器:通过计算单位时间内旋转物体上的标记点通过光电传感器或磁电传感器的次数来计算转速。

-相位测量方法:通过测量标记点通过光电传感器或磁电传感器所产生的信号的相位差来计算转速。

上述转速测量方法各有其特点和适用范围。

在实际应用中需要根据具体情况选择适合的测量方法。

同时,还需要注意测量精度、响应速度、适用转速范围、环境要求等因素的考虑。

测量电机转速的四种方法

测量电机转速的四种方法

测量电机转速的四种方法
1、光反射法
即在电机转动部分画一条白线,用一束坚强的光进行照射,使用光电元件检测反光,形成脉冲信号,在一定时间内对脉冲进行计数,就可以换算出电机转速。

2、磁电法
即在电机转动部分固定一块磁铁,在磁铁运动轨迹的圆周外缘设一线圈,电机转动时线圈会产生感应脉冲电压,在一定时间内对脉冲进行计数,就可以换算出电机转速。

3、光栅法
即在电机转动轴上固定一圆盘,圆盘上可有通光槽,在圆盘两侧设置发光元件和受光元件,电机转动时,受光元件周期性受到光照,产生电脉冲,在一定时间内对脉冲进行计数,就可以换算出电机转速。

4、霍尔开关检测法
即在电机转动部分固定一块磁铁,在磁铁运动轨迹的圆周外缘设一霍尔开关,电机转动时霍尔开关周期性感应磁力线,产生脉冲电压,在一定时间内对脉冲进行计数,就可以换算出电机转速。

测电机的转速:要求精度不高的用霍尔传感器。

工作原理:利用圆周率测速。

为达到旋转平衡,用三个磁铁,两个磁铁之间是120度,然后用单极霍尔开关,霍尔开关效应三次,即代表旋转一圈,要测速只需计霍尔开关次数就行。

要求精度高的可以用编码器,可以把电机转一圈分解出上万个脉冲,计算脉冲周期就能得到转速。

总结测量转速的三种方法

总结测量转速的三种方法

测量转速的三种方法20 年月日A4打印/ 可编辑ICS 32.020T40团体标准T/CSAE XX-2019电动汽车一体化电驱动总成测评规范Test and assessment specifications for integrated electric drive systemof electric vehicles(征求意见稿)在提交反馈意见时,请将您知道的该标准所涉必要专利信息连同支持性文件一并附上。

目次1范围 22规范性引用文件23术语和定义23.1一体化电驱动总成 23.2高压控制模块 23.3变速器模块24测试条件和要求34.1试验环境条件 34.2仪器仪表 34.3测试设备要求 34.4测试准备 34.5测试项目错误!未定义书签。

5试验方法 35.1一般性试验35.1.1外观及质量35.1.2密封性45.1.3绝缘电阻 45.1.4耐电压45.1.5接地电阻 45.2性能试验 45.2.1动态密封 45.2.2输入输出特性 55.2.3差速可靠性85.2.4拖曳力矩95.3安全性试验105.3.1极限温升105.3.2超速试验115.4环境适应性试验115.4.1温湿度试验115.4.2机械负荷试验125.4.3化学负荷试验125.4.4流动混合气体腐蚀125.4.5盐雾试验125.4.6 IP防护等级测试125.5 EMC测试135.5.1传导发射135.5.2辐射发射135.5.3辐射抗扰度(电波暗室法、大电流注入法)135.5.4磁场抗扰度135.5.5手持发射机抗扰度135.5.6沿电源线的瞬态传导抗扰度135.5.7静电放电135.6 NVH测试145.7可靠性测试145.7.1试验工况要求145.7.2 试验要求145.7.3评价标准145.7.4 冷却回路脉动可靠性14前言本标准按照GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写》给出的规则起草。

(完整版)转速测量方法

(完整版)转速测量方法

转速测量方法与转速仪表转速测量在国民经济的各个领域,都是必不可少的。

本文就转速测量方法以及实施检测的仪表,做一简单的阐述。

希望给工作中需要转速测量仪表,和在转速测量或相关领域进行研究开发的人员提供一些参考意见。

关键词:速度线速度角速度转速误差和精度采样时间虚拟仪表主题:考察转速测量方法演变,从演变的轨迹对转速测量有一个比较全面的了解,着重介绍智能转速表的检测方法和实施检测的仪表。

内容提要:•转速检测仪表的分类•电子式转速表•转速测量的方法•结束语•附录一、转速检测仪表的分类:1.离心式转速表,利用离心力与拉力的平衡来指示转速。

离心式转速表是最传统的转速测量工具,是利用离心力原理的机械式转速表;测量精度一般在1~2级,一般就地安装。

一只优良的离心式转速表不但有准确直观的特点,还具备可靠耐用的优点。

但是结构比较复杂。

2.磁性转速表,利用旋转磁场,在金属罩帽上产生旋转力,利用旋转力与游丝力的平衡来指示转速。

磁性转速表,是成功利用磁力的一个典范,是利用磁力原理的机械式转速表;一般就地安装,用软轴可以短距离异地安装。

磁性转速表,因结构较简单,目前较普遍用于摩托车和汽车以及其它机械设备。

异地安装时软轴易损坏。

3.电动式转速表,由小型交流发电机、电缆、电动机和磁性表头组成。

小型交流发电机产生交流电,交流电通过电缆输送,驱动小型交流电动机,小型交流电动机的转速与被测轴的转速一致。

磁性转速表头与小型交流电动机同轴连接在一起,磁性表头指示的转速自然就是被测轴的转速;电动式转速表,异地安装非常方便,抗振性能好,广泛运用于柴油机和船舶设备。

4.磁电式转速表,磁电传感器加电流表,异地安装非常方便。

5.闪光式转速表,利用视觉暂留的原理。

闪光式转速表,除了检测转速(往复速度)外,还可以观测循环往复运动物体的静像,对了解机械设备的工作状态,是一必不可少的观测工具。

6.电子式转速表,电子技术的不断进步,使这一类转速表有了突飞猛进的发展。

转速测量

转速测量

电机转速测试原理及方法1.转速测量原理数字测速法按照其原理可分为三大类:一类是用单位时间内测得的物体旋转角度来计算速度,例如在单位时间内,累计转速传感器发出的个脉冲,即为该单位时间内的速度。

这种以测量频率来实现测速的方法,称为测频法,即M 法;另一类是在给定的角位移距离内,通过测量转过这一角位移的时间来实现测速,称为测周法,即T 法。

例如转过给定的角位移△θ,传感器便发出一个电脉冲周期,以晶振产生的标准脉冲来度量这一周期时间,经换算便可得转速。

以上两种方法的优缺点是M 法一般用于高速测量,转速过低时,测量误差较大,同时检测装置对转速的分辨能力也较差;而T 法则一般用于低速测量,速度越低,测量精度越高,在高速时误差较大。

结合以上二种方法的优点,可得到第三种测速方法——M/T 测速法。

“M/T 法”综合了“M 法”和“T 法”的优点。

如图所示:在上图中列出了3种常用的基于光电编码器测速法原理图,假定时钟频率为s f ,光电编码器在前轮每转一周产生脉冲数为P 。

1M 和2M 从分别是对在相同时间内编码器脉冲和时钟脉冲进行计数的计数值。

5647666666666555555d fddd2.下面介绍几种编码器测速方法(1)“M 法”测速通过测量一段固定时间间隔内的编码器脉冲数来计算转速。

如图所示;设在固定时间T 内测得的编码器脉冲数为1M ,则用1M 除以T(即T M 1)得到单位时间内编码器产生的脉冲数,用它再除以P ,则得到的1M /(T ×P)表示单位时间内前轮转动的周数,最后再乘以60(s)就得到前轮每分钟转动的周数,从而实现计算转速的目的。

用公式表示为PT M 160n =根据以上分析,可知这种测速方法的准确性主要由1M 决定,并且在转速较高时也1M 较大,其相对误差较小,故适合于高速场合测试。

(2)“T 法”测速通过测量编码器两个相邻脉冲的时间间隔来计算转速,则用2M 除以f 得到1个编码脉冲所占用的时间,其倒数(即:2f M )为单位时间内编码器产生的脉冲数,与“M 法”测速类似,即得转速计算公式2f 60n PM =这种测速方法的准确性主要由2M 决定,并且在转速较低时,1个编码器脉冲持续时间较长,2M 从也相对较大,其相对误差较小,故适合于低速场合。

水泵测试中几种常用转速测量方法的探讨

水泵测试中几种常用转速测量方法的探讨

水泵测试中几种常用转速测量方法的探讨水泵测试中转速是一个重要参数,直接影响到水泵的性能评价和维修保养。

传统的转速测量方法是采用磁感转速传感器或光电测速仪等装置进行转速检测。

这些传统的测量方法通常需要特殊的装置和专业人员操作,测量精度和效率都受到一定的局限。

近年来,随着计算机技术和传感器技术的发展,一些新的转速测量方法逐渐被广泛应用到水泵的测试中。

本文就目前比较常用的几种方法进行探讨,包括:声音震动传感器法、机械划痕法、光学三角函数法等。

一、声音震动传感器法声音震动传感器法是利用声、振信号传感器进行转速测量的方法,该方法适用于非常规形状的水泵,如螺旋叶片泵、涡流泵等。

本方法利用水泵运转时产生的声、振波信号进行测量,并利用信号的频率特征反推出水泵的转速。

这种方法简便易行,不需要接触性测量,且检测精度高,可以测量一些传统测量方法难以测量的水泵。

但是该方法受现场环境噪声、水泵的运转状态等因素的影响较大,因此需要进行预处理和背景噪声滤波等复杂处理过程。

二、机械划痕法机械划痕法是通过在水泵轴上开凿一组等距的机械划痕,并通过划痕的出现和消失来计算转速的方法。

该方法具有安全、可靠、测量范围广的特点。

但需要在水泵轴上开凿划痕,其安全性和环保性需要特别注意。

三、光学三角函数法光学三角函数法是利用摄像头拍摄水泵运转时的叶轮运动轮廓,并根据轮廓形状求解叶轮与摄像头之间的夹角,进而计算水泵转速的方法。

该方法不需要对水泵进行接触性测量,测量范围广,且可通过软件进行自动处理和计算。

但该方法对于光线强度和摄像头画质有一定要求,同时需要保证摄像头与叶轮之间的距离不变,否则会影响测量精度。

综上所述,随着计算机技术和传感器技术的发展,越来越多的新方法被应用到水泵测试中。

这些新方法不仅简便易行,还可以准确测量一些传统测量方法难以测量的水泵,但每种方法都有其适用范围和限制条件,需要根据实际情况进行选择和应用。

转速测量方法范文

转速测量方法范文

转速测量方法范文转速测量方法是用于测量旋转物体的转速的一种方法。

转速是指旋转物体单位时间内旋转的圈数或角度。

转速测量对于许多领域的工作都非常重要,例如机械工程、电机工程、航空航天等。

下面将介绍几种常用的转速测量方法。

1.数据采集器测量法:这是一种常用的转速测量方法,通过将转速传感器与数据采集器连接,将转速传感器输出的电信号转换为数字信号,并通过数据采集器将转速数据记录下来。

数据采集器可以采集高速转速甚至测量不易接触到的物体的转速,具有精度高、操作简单的优点。

2.光电测量法:光电测量法利用光电传感器对转速进行测量。

常用的光电传感器有反射式和透明式两种。

反射式光电传感器通过测量物体上反射的光信号来确定转速,透明式光电传感器则通过测量物体从光源中通过的光的变化来确定转速。

光电测量法具有测量范围广、响应速度快的优点,但在特殊环境下,如强光或低温环境下可能会受到干扰。

3.磁电测量法:磁电测量法是通过磁电传感器来测量转速。

常用的磁电传感器有霍尔元件和磁阻元件两种。

霍尔元件是一种基于霍尔效应的传感器,通过测量在磁场中沿着其通道空间产生的电势差来确定转速。

磁阻元件则是通过测量磁场对元件电阻的影响来确定转速。

磁电测量法具有抗干扰能力强、测量精度高的优点,适用于工作环境复杂的情况。

4.高频测量法:高频测量法是一种利用高频信号来进行转速测量的方法。

这种方法通过测量旋转物体产生的高频信号的周期或频率来确定转速。

常见的高频测量法有频率计、计数器等。

高频测量法具有响应速度快、测量范围广的优点,适用于高速转速的测量。

以上介绍了几种常用的转速测量方法。

在实际应用中,选用合适的转速测量方法要考虑转速范围、测量精度、工作环境等因素。

不同的测量方法有各自的特点和适用范围,可以根据实际需求选择合适的方法进行转速测量。

测转速原理

测转速原理

测转速原理测转速是指利用各种传感器或仪器设备来测量机械设备或物体的转速。

测转速的原理是通过测量单位时间内旋转的圈数或角度来计算出物体的转速,常用的测转速方法有光电式、电磁式和振动式等。

光电式测转速原理是利用光电传感器来检测物体上的反光标记,当反光标记通过光电传感器时,光电传感器会产生脉冲信号,通过计算脉冲信号的频率和数量就可以得出物体的转速。

这种方法适用于转速较高且要求精度较高的场合,如发动机、风力发电机等。

电磁式测转速原理是利用感应电机或霍尔传感器来检测物体上的铁芯或磁铁,当铁芯或磁铁通过感应电机或霍尔传感器时,会产生感应电流或信号,通过计算感应电流或信号的频率和数量就可以得出物体的转速。

这种方法适用于转速较低且要求成本较低的场合,如风扇、电机等。

振动式测转速原理是利用加速度传感器或振动传感器来检测物体的振动频率,通过计算振动频率就可以得出物体的转速。

这种方法适用于转速较高且要求实时监测的场合,如飞机发动机、高速列车等。

总的来说,测转速的原理是利用不同的传感器或仪器设备来检测物体的旋转运动,并通过信号处理和数据分析来得出物体的转速。

不同的测转速方法适用于不同的场合,可以根据具体的需求选择合适的测转速原理和设备。

在实际应用中,测转速的原理需要结合具体的工程技术要求和实际情况来进行选择和设计,同时还需要考虑信号的稳定性、精度和实时性等因素。

通过合理的测转速原理和设备选择,可以实现对物体转速的准确监测和控制,为工程技术和生产操作提供重要的数据支持。

综上所述,测转速原理是利用传感器或仪器设备来检测物体的转速,通过信号处理和数据分析来得出转速信息。

不同的测转速方法适用于不同的场合,需要根据具体需求选择合适的测转速原理和设备,以实现对物体转速的准确监测和控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转速测量的方法
∙F/V转换
电子类转速测量仪表,由转速传感器和表头(显示器)组成。

目前常用的转速传感器,大多输出脉冲信号,只要通过频率电流转换就能与电压电流输入型的指针表和数字表匹配,或直接送PLC;频率电流转换的方法有阻容积分法、电荷泵法和专用集成电路法,前两种方法在磁电转速表中也有运用。

专用集成电路大都数是阻容积分法、电荷泵法的综合。

目前常用的专用集成电路,有LM331、AD654和VF32等,转换精度在0.1%以上;但在低频时,这种转换就无能为力。

采用单片机或FPGA,做F/D和D/A转换,转换精度在0.5~0.05%之间,量程从0~2Hz到0~20KHz,频率低于10Hz时反映时间也变长。

关于F/V转换,请参考相应芯片介绍和应用资料,本文不做赘述。

∙频率运算
在显示精度、可靠性、成本和使用灵活性上有一定要求时,就可直接采用脉冲频率运算型转速表。

频率运算方法,有定时计数法(测频法)、定数计时法(测周法)和同步计数计时法。

定时计数法(测频法)在测量上有±1的误差,低速时误差较大;定数计时法(测周法)也有±1个时间单位的误差,在高速时,误差也很大。

同步计数计时法综合了上述两种方法的优点,在整个测量范围都达到了很高的精度,万分之五以上的测量转速仪表基本都是这种方法。

下面以XJP-10B
为例,介绍定时计数法(测频法)、定数计时法(测周法)和同步计数计时法。

早期的XJP-10B转速数字显示仪,采用CMOS数字集成电路。

其原理可用如下三个框图表示:
框图一测频原理
框图一告诉我们,被测信号通过放大整形进入加法计数器;晶体振荡器的频率信号通过分频产生秒(或分钟)信号,在计数显示控制器中生成寄存脉冲和清零脉冲。

寄存脉冲将加法计数器的BCD码送入寄存器,通过译码驱动,LED数码管显示一秒(或分钟)内的计数值,直到下一次寄存脉冲的到来;紧接着清零,进行下一轮计数、寄存(译码显示);如此,不间断测频。

如果我们考察一下这些信号的时序,不难发觉这种定时计数测量方法的缺陷是:被计数脉冲有多一或少一的误差。

如果被测频率为10000Hz,多一或少一的误差,相对来讲只不过万分之一;如果被测频率为2Hz,多一或少一的误差,相对来讲就达到了百分之五十,不难看出频率越低,误差越大,而且还有一点,把一秒变成一分钟,误差就变小了。

低频时,如不延长采样时间,要提高精度就要采用测周的方法,框图二正是说明这种方法。

框图二测周原理
将框图二与框图一进行比较,我们不难发觉:上述二者的差别在于晶体振荡器与被测信号的位置作了互换,象是代数上的分子分母的颠倒,也正是物理上的频率和周期互为倒数,细心的读者可以体会到,学科之间的内在联系无处不在。

测周的误差:与测频相似,是多一个或少一个晶体振荡器脉冲,也就是多一个或少一个时基脉冲,晶体振荡器脉冲频率准确度越高误差越小,晶体振荡器脉冲频率越高误差也越小,被测频率越高误差越大;因此测量高频时,对被测信号进行分频,确实是提高测周精度的好方法。

在周期过长时,还可通过计数器,借助计时器来测量转速。

下面的框图表示了计数器的工作原理。

框图三计数器原理
现在我们可以看出,XJP-10B转速数字显示仪,在CMOS数字集成电路的条件下,已是一款十分完备的转速测量工具,这台仪器的设计者是田同裕先生,与之同期的类似产品还有XJP-02A转速数字显示仪(设计者童敏杰先生,改进者姓名略)。

早期的XJP-10B转速数字显示仪,在今天看来有哪些不足呢?周期和频率都不能等同转速,频率与转速存在倍数关系,通过时基频率的分频(采样时间的倍乘),基本满足了大都数用户的需要,测周则需要用户自己换算成转速。

在今天的电子技术条件下,解决这些问题用单片机或FPGA都比较方便。

那么今天的设计者怎样设计新的XJP-10B转速数字显示仪呢?下面仍然以XJP-10B转速数字显示仪为例,介绍同步计数计时法。

同步计数计时法
同步计数计时法,是随着单片机的普及而得到普及运用。

同步计数计时法是怎样综合前两种方法的优点的呢?我们还是用时序来分析。

定时计数时序
时序图一时序图二
时序图一:计时和计数脉冲不同步;时序图二:计时和计数脉冲同步。

但不管计时和计数脉冲同步与否,都有多一少一的误差。

同理,定数计时也有多一少一的
误差。

同步计数计时时序图
当定时器与被测脉冲同步计数时,为避免被测脉冲计数多一少一的误差,将定时作延时调整,等待被测脉冲计数完整;与此同时,取时间基准脉冲计数值。

这样脉冲计数N为零误差,时间基准脉冲计数T有多一少一的误差。

当时间基准脉冲源(晶振)误差小于十万分之一时,误差源主要是时间基准脉冲计数多一少一引起。

频率f=N/T,假定定时为1秒,时间基准脉冲周期为100μS,T=10000+ΔT
f=N/(10000+ΔT),
误差Δf/f=[N/(10000+ΔT)-N/(10000+ΔT±1)]/[N/(10000+ΔT)]
=1-(10000+ΔT±1)/(10000+ΔT)
=±1/(10000+ΔT)
可见误差小于万分之一,随着晶振频率的提高误差减小。

当采用单片机进行计数和运算时,还有中断不及时引起的误差。

关于误差的分析本文不再做深入探讨。

频率与转速的关系:
f=P*v/60
f表示频率,P表示每旋转一周产生的脉冲个数,v表示转速亦即每分钟旋转的转数。

T=1/f
新的XJP-10B转速数字显示仪,由于采用了单片机技术,和同步计数计时法,使得测频、测速、测周、计数变得精确,而且非常简单;只要轻触仪表面板控制键,就能在4种功能间切换。

由于系数可任意设置,使得仪表与传感器配
套,不受输出脉冲数的限制。

并且该仪表还有扩展的RS232接口,能与配套的虚拟仪表动态显示频率、转速(速度)、和计数值。

四、结束语:转速仪表结构简单化,品种多样化与系列化,进一步要向人性化发展
随着电子技术发展,单片机技术和大规模可编程数字逻辑电路的普及,为转速仪表结构简单化提供了技术基础。

智能芯片的运用,使同一仪表硬件,具有多种不同功能的软件,为多样化系列化带来了便利。

智能仪表的软件,可为不同需求量身定做,使得智能仪表又具个性化的特点。

目前,智能化转速数字显示仪表,有通用的SQY01T系列转速数字显示仪,SZC系列电站用转速数字显示仪,SKY系列透平膨胀机智能数字显示仪,以及各种多功能转速仪表,如ZS-1双路转速表、以及显示差速、速比的ZS-2转速表,带方向显示的SQYC转速表,可远传的CS-1转速表等。

有了设计人员不断汲取新知识,不断运用新器件,不断开拓新思路,才有这些创新的仪表。

智能仪表,要向人性化发展。

仪表在满足使用的同时,也要为使用仪表的人,带来使用上的方便和舒适。

把这种理念不断融入设计和产品,造就成功的仪表。

本文以此为结束语,期与仪表人共勉。

方案1:接触式测量
这种测量方式一般适用中、低转速的测量。

传感器与被测旋转轴,通过弹性联轴器连接,传感器安装固定时,要求出轴与被测旋转轴尽量保持同一条直线,在较高速时尤其严格。

这种测速方式一般选用的传感器有光电、磁电和霍尔等式样,一般测速范围在0~4000转/分。

测速时每周脉冲数在100以下(如SGB-4A光电转速传感器)。

在转速低于1转/分时,可选用光电编码器(如SGDBM-01光电编码器),每周脉冲数可高达2000以上。

这种接触式测量在6000转/分~几十万转/分就不能满足要求,我们一般可选用以下几种非接触式测量方式。

最直接的方法是在转轴上安装一个霍尔元件,测量单位时间里的脉冲数字就可以得到转速。

另外如果是步进电机,可以从控制电路里取出计数脉冲,如果是其他类型的电机可以取出和转速对应的模拟量,不
太精确而已。

相关文档
最新文档