大学物理考试深刻复知识题
《大学物理》期末考试复习题(振动与波)

)
(A) 2 ;
答案:(D)
(B)
m1 m2
2
;
(C)
m2 m1
2
;
(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2
;
(B)
2 2
A 2 ;
(C)
3 2
A 2
;
(D)
3 2
A 2
。
一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.
惠州学院考试-大学物理复习题(1)(附答案)

大学物理复习题11(2)一、填空题1、单位质量的质点,其运动学方程为k t j t i t r 3452++= m ,则质点对坐标原点的力矩=M40t k - 24t i ,轨道方程 x 2/25 = y/4 =z 2/9 ,受力大小 8j F=ma ,速度矢量 5i +8t j +3k ,质点对坐标原点的角动量 r*v=12t 2i -20t 2k2、热力学第二定律的开尔文表述是 不可能制成一种循环动作的热机,它只从一个单一温度的热源吸收热量,并使其全部变为有用功,从而不引起其他变化。
。
3、高斯面上各点的场强E ,是所有在场的 电荷 共同产生。
4、任何两条电力线 不相交 .说明静电场中每一点的场强是惟一的。
(电力线既是电场线)5、导体静电平衡时,导体内部任一点的场强为 零 。
6、对同一薄膜而言,在同一处,透射光干涉若为 增强 ,则反射光干涉为削弱。
二、选择题1、在静电场中,没有电力线的区域内( B )。
A. 电场强度E 不为0,电势U 不同B. 电场强度E 为0,电势U 相同C. 电场强度E 为0,电势U 为0D. 电场强度E不为0,电势U相同2、一带电粒子垂直射入磁场后,运动轨迹是半径R的圆周,若要使轨道半径变为2R,则磁感应强度应变为(A)A. /2B.C.D.3、一瓶氦气和一瓶氧气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(C)。
A温度相同、压强相同 B 温度相同,但氦气的压强小于氧气的压强C温度相同,但氦气的压强大于氧气的压强D温度、压强都不同4、在常温下有1mol的氦气和1mol的二氧化碳各一瓶,若将它们升高相同的温度,则(D)。
A 氦气和二氧化碳的内能增量相同B 不能确定C 氦气比二氧化碳的内能增量大D 二氧化碳比氦气的内能增量大5、关于静电场,下列说法正确的是(C)。
A 电场和检验电荷同时存在、同时消失;B 由E=F/q知道:电场强度与检验电荷成反比;C 电场的存在与检验电荷无关;D 电场是检验电荷和源电荷共同产生的。
大学物理期末考试复习

O
7.如图,导体棒AB在均匀磁场B中绕通过C点的垂 直于棒长且沿磁场方向的轴 OO’转动(角速度 与 B同 方向),BC的长度为棒长的1/3,则 (A) A点比B点电势高. (B) A点与B点电势相等. (C) A点比B点电势低. (D) 有稳恒电流从A点流向B点.
边缘电势高于转轴所在 B F
e = Bl2/2
2、一运动电荷q,质量为m,进入均匀磁场中
(A) 其动能改变,动量不变. (C) 其动能不变,动量改变. (B) 其动能和动量都改变. (D) 其动能、动量都不变.
2
在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
M1 / M2等于
(A)1 (B)2 (C)4 (D)2 x y z (ct )
18、边长为a的的正方形薄板静止于惯性系K的XOY平 面内,且两边分别与X、Y轴平行,今有惯性系K’ 以0.8C(C为真空中光速)的速度相对于K系沿X轴 作匀速直线运动,则K’测得薄板面积: (A)a2;(B)0.6a2 ;(C)0.8a2 ;(D)a2/0.6 . 答案: 解释: a ' l
答案: 解释:
2
C 2 1 k (B) k C 2 k ( k 2) (D) k 1
2
即:
mc km0c m0 km0 2 2 1 v / c
m km0
解之得:
C 2 v k 1 k
二、填空题 1 .一质点带有电荷q,以速度u在半径为R的圆周 上作匀速圆周运动,该带电质点在轨道中心产生 2 u q / 4 R 的磁感应强度B = ;该带电质点轨道 运动的磁矩Pm= IS u qR / 2 。
大学物理2期末考试复习题

11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理考试试题复习资料

Am 1m 2BO A r Q 1 Q 2 R 1R 2 OP l Bbav α 重考复习参考题(自动化专业)一、 选择题。
1.如图所示,S 1和S 2是两个半径相同的球面。
P 1和P 2是两球面上的对应点,当点电荷q 1、q 2、q 3从图一的分布状态变为图二的分布状态时,则:[ D ] (A) 1212p p S S E d s=E d s ,E E ⋅⋅=⎰⎰ (B) 1212p p S S E d s=E d s ,E E ⋅⋅≠⎰⎰(C) 1212p p S S E d s E d s ,E =E ⋅≠⋅⎰⎰(D) 1212p p S S E d s E d s ,E E ⋅≠⋅≠⎰⎰2.如图所示,在半径为R1的金属球表面紧贴一个外半径为R2、电容率为ε的介质球壳(不带电),球壳外为真空,P 为介质球壳内一点,距球心O 点的距离为r 。
当金属球带上电量为Q 的电荷、且以无穷远处为电势零点,则P 点的场强大小和电势分别为:[ C ](A) 22Q QEp=,Up=4r 4R πεπε(B)20002Q Q QEp=,Up=4r 4r 4R +πεπεπε (C)2202Q Q 11Q Ep=,Up=4r 4r R 4R ⎛⎫-+⎪πεπεπε⎝⎭ (D)200102Q Q QEp=,Up=4r 4R 4R +πεπεπε3.如图所示,L 1、L 2是两个半径为R 的圆周,电流I 1≠I 2,P 1、P 2为两个圆周上的对应点。
当电流I 1和I 2的位置从图(一)状态变化到图(二)状态时,则:[ B ] (A)1212p p L L B dl B dl ,B B ⋅=⋅≠⎰⎰(B) 1212p p L L B dl B dl ,B B ⋅≠⋅≠⎰⎰(C) 1212p p L L B dl B dl ,B B ⋅=⋅=⎰⎰(D) 1212p p LL B dl B dl ,B B ⋅≠⋅=⎰⎰4.如图所示,AB 是一根无限长载流直导线,通有电流I1,C 、D 是两个材料和尺寸相同的正方形金属线圈,两金属线圈C 、D 与直线AB 共面。
大学物理复习题及解答

大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。
A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。
2.下列表述中正确的是( )。
A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。
3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。
4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。
A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。
5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。
A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。
6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。
大学物理学期末考试复习题及参考答案-高起本

《大学物理学》复习题一、填空题1.一物体在某瞬间以速度v从某点开始运动,在t∆时间内,经一长度为s的路径后,又回到出发点,此时速度为-v,则在这段时间内,物体的平均加速度是_________。
υ水平射入沙土中。
设子弹所受阻力与速度反向,2.质量为m的子弹以速度大小与速度成正比,比例系数为k,忽略子弹的重力。
则子弹射入沙土后,速度随时间变化的函数式为__________。
3. 质量为M的木块静止在光滑的水平桌面上,质量为m、速度为v0的子弹水平的射入木块,并陷在木块内与木块一起运动。
则子弹相对木块静止后,子弹与木块共同运动的速度v=________,在这个过程中,子弹施与木块的冲量I=_________。
4. 在系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫_________________过程。
5.温度为T的热平衡态下,自由度为i的物质分子的每个自由度都具有的平均动能为6.位移电流和传导电流的共同点是_________________________________________。
7.在无限长载流导线附近有一个闭合球面S,当S面向导线靠近时,穿过S 面的磁通量Φm将;面上各点的磁感应强度的大小将(填:增大、不变或变小)。
8. 真空中,有一个长直螺线管,长为l,截面积为S,线圈匝数线密度为n,则其自感系数L 为________。
9.波长nm 600=λ的单色光垂直照射到牛顿环装置上,第二级明纹与第五级明纹所对应的空气膜厚度之差为______nm 。
10.有一单缝,宽a =0.2mm ,缝后放一焦距为50cm 的会聚透镜,用平行绿光λ=546nm 垂直照射单缝,则位于透镜焦面处的屏幕上的中央明纹宽度为______mm 。
11.在x ,y 面内有一运动质点其运动方程为10cos510sin5r i j t t =+,则t 时刻其速度______________。
大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度22/a m s =-,则1秒后质点的速度( D )(A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B )(A)2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R tπ,0 3.如下图,湖中有一小船,有人用绳绕过岸上肯定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( c )(A)匀加速运动,0cos v v θ=(B)匀减速运动,0cos v v θ= (C)变加速运动,0cos v v θ= (D)变减速运动,0cos v v θ= (E)匀速直线运动,0v v =4. 以下五种运动形式中,a保持不变的运动是( D )(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )(A) (B) (C) (D1.一物体作如下图的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平方向成30°角。
则物体在P点的切向加速度a τ= -0.5g ,轨道的曲率半径ρ=2v²/√3g 。
2. 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走,如人相对于岸静止,则1V 、2V 和3V 的关系是:v1+v2+v3=0____。
3.加速度矢量可分解为法向加速度和切向加速度两个重量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。
1.如下图,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物aC A BaC A B a C A B a C A B体刚好不会被雨水淋. 解:雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α,即 12(sin cos )l v v h θθ=+.2.质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点加速度的大小;(2)t 为何值时,加速度在数值上等于b .解:(1)bt v ts v -==0d d 则 240222)(Rbt v b a a a n -+=+=τ (2)由题意应有 2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b ∴当bv t 0=时,b a = 二章 1.一个质量为m 的物体以初速度0v 从地面斜向上抛出,抛射角为θ,假设不计空气阻力,当物体落地时,其动量增量的大小和方向为( c )(A)增量为0, (B)θsin 20mv ,竖直向上;(C)θsin 20mv ,竖直向下; (D)θcos 20mv ,水平;2. 质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如下图.当它由静止开始下滑到球面上B 点时,它的加速度的大小为( d )(A))cos 1(2θ-=g a (B)θsin g a = (C)g a =(D)θθ2222sin )cos 1(4g g a +-=.3.有两个倾角不同,高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则(d )(A)物块到达斜面底端时的动量相 (B)物块到达斜面底端时的动能相等 (C)物块和斜面(以及地球)组成的系统,机械能不守恒(D)物块和斜面组成的系统水平方向上动量守恒.4. 一炮弹由于特别原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计) ( a )(A) 比原来更远 (B) 比原来更近(C) 仍和原来一样远 (D) 条件缺乏,不能判定.5. 水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率( b )(A)不得小于Rg μ (B)不得大于Rg μ (C)必须等于Rg μ (D)应由汽车质量决定1. 如下图,竖直放置的轻弹簧的倔强系数为k ,一质量为m 的物体从离弹簧h 高处自由下落,则物体的最大动能为kg m mgh 222+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率trd d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量⎰⎰=-==aym y B x x y B S B 0232322d )(2d 2ααΦ∴ v y B t y y B t m 21212d d d d ααε-=-=Φ-=∵ ay v 22=∴ 212y a v =则ααεaByy a yBi 8222121-=-= i ε实际方向沿ODC .题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε即 MN MeN εε= 又∵⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε 所以MeN ε沿NeM 方向,大小为ba b a Iv -+ln20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln20πμ 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε 10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln0πμ 题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a → 10-13 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求: (1)ab 两端的电势差; (2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴ ⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Ia r r IaS B bbS μμΦ⎰⎰==⋅=∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为πμlL 0=Inaad -. 解: 如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H 10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )_则 ⎰⎰===RR m I R rr I r r w W 00204320π16π4d d 2μμπ。