椭圆的离心率的问题(原创)
椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略离心率是高中“圆锥曲线”的一个重要几何性质,是三种圆锥曲线统一定义的桥梁和纽带,是研究圆锥曲线其他性质的基础,它是一个比值椭圆的离心率是刻画椭圆“扁圆”程度的基本量之一.在我们的教材中直接给出了离心率的定义,并没有明确解释为什么把这个比值作为椭圆的离心率.如果教师在教学中只是告诉学生这是“人为规定”,学生没有经历概念的产生和发展过程,就很难理解概念的本质,因此在运用概念解题时无从下手.本节课就是希望通过数学文化背景深入认识椭圆的离心率,从而更好地解决和椭圆离心率有关的问题.一、离心率定义的内涵在教材中焦距与长轴长的比值定义为椭圆的离心率.在教学中,许多学生会有这样的疑问:也可以刻画椭圆的扁圆程度,为什么不用它们定义椭圆的离心率?”其实作为椭圆的离心率更有优势,我们知道椭圆是平面上到两个定点F1,F2距离的和为常数2a的动点的轨迹(其中|F1F2|=2c,且2a>2c),此定义中涉及的参数是a和c,为了和椭圆的定义保持一致,所以用表示椭圆的离心率;另外,椭圆的第二定义是“到定点的距离与到定直线的距离的比值为常数的动点的轨迹”,而这个常数恰好是即椭圆的离心率.其实说椭圆的离心率是“人为规定”也未尝不可,因为在天文学中把天体运行轨道的离心率也叫作偏心率,描述的是某一天体椭圆轨道与理想圆形的偏离程度.天文学家发现太阳系中,行星是围绕着以太阳为焦点的椭圆形轨道运行的,所以行星和太阳之间的距离不是恒定的,其中离太阳最近的距离为a-c,离太阳最远的距离为a+c,也就是说偏心率就是衡量行星偏离太阳的程度,所以用表示椭圆的偏心率更符合客观实际.二、椭圆离心率取值范围的几种求法求椭圆离心率的取值范围是高考经常考查的热点问题之一,这类题涉及解析几何、平面几何、代数等多个知识点,综合性强、方法灵活,解题关键是构造关于a,c或e的不等式,下面用几个实例通过构造不等式求椭圆离心率的取值范围.1.利用椭圆的范围构造不等式例1 设椭圆的左、右焦点分别为F1,F2,若椭圆上存在点P,使得∠F1PF2=90°,求椭圆离心率e的取值范围.解:设点P的坐标为(x,y),点F1的坐标为(-c,0),点F2的坐标为(c,0),则有因为∠F1PF2=90°,得则即(x+c)(x-c)+y2=0,整理得x2+y2=c2,将其与椭圆方程联立,消去y,可得由椭圆上点的坐标的范围可知,0≤x2<a2,解得c2≥b2,即所以2.利用二次方程判别式构造不等式以上题为例.解:由椭圆的定义可知|PF1|+|PF2|=2a,所以有+2|PF1|·|PF2|=4a2,又因为∠F1PF2=90°,所以=4c2,由此可得|PF1|·|PF2|=2(a2-c2),所以|PF1|,|PF2|可以看作二次方程x2-2ax+2(a2-c2)=0的两实根.所以Δ=4a2-8(a2-c2)≥0,整理得所以3.利用焦半径的取值范围构造不等式例2 已知椭圆的左、右焦点分别为F1,F2,椭圆上存在一点P,使得线段PF1的中垂线经过焦点F2,则椭圆离心率e的取值范围是______.图1解:如图1,因为线段PF1的中垂线经过焦点F2,所以|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.所以|PF2|=2c≥a-c,所以a≤3c,所以即4.利用均值不等式构造不等式例3 设F1,F2是椭圆的两个焦点,若椭圆上任意一点M都满足∠F1MF2为锐角,则椭圆离心率的取值范围是( ).解:因为又因为∠F1MF2为锐角,所以又因为-4c2=(|MF1|+|MF2|)2-2|MF1||MF2|-4c2>0,所以|MF1||MF2|<2a2-2c2,由均值不等式得所以a2<2a2-2c2,解得所以图25.利用椭圆中重要结论构造不等式以上题为例.解:如图2,当M移动到椭圆的短轴的端点B时,∠F1MF2最大.由已知可知,∠F1BF2为锐角,即∠F1BO<45°,在Rt△F1BO中,所以6.利用题设中的已知条件构造不等式例4 已知椭圆的右焦点为F,短轴的一个端点为M,直线l:5x-12y=0交椭圆于A,B两点,若|AF|+|BF|=6,点M到直线l的距离不小于则该椭圆E的离心率的取值范围是( ).图3解:如图3所示,设F1为椭圆的左焦点,连接AF1,BF1,则四边形AFBF1为平行四边形,所以6=|AF|+|BF|=|AF1|+|AF|=2a,所以a=3.取M(0,b),因为点M到直线l的距离不小于所以解得b≥1,所以又因为0<e<1,所以椭圆E的离心率的取值范围是故选A.在新一轮课改的实施过程中,作为数学教师,需要在平时的教学中,适时地引导学生探究出问题的本源,只有这样深入才能使学生更容易掌握解决问题的方法.而椭圆离心率取值范围的解法灵活多样,综合性强,需要我们认真分析题意,探究问题本源,才能找到最佳突破口,从而准确、快速地解决问题.参考文献:[1]王侠.椭圆离心率的深入认知及基本求法[J].中小学数学,2013(4).[2]黄贻淦.如何建立不等式求离心率的范围[J].数理化解题研究,2012(2).[3]林风,林善柱.数学概念教学要重视其生成过程——“椭圆离心率及其应用”的教学思考[J].中学数学教学参考(上),2017(12).*基金项目:本文系2018年度甘肃省教育科学“十三五”规划重点课题“基于核心素养下的数学史融入高中数学教学的实践”(课题编号:GS[2018]GHB3863)的阶段性成果之一.。
椭圆的离心率问题

椭圆和双曲线中的离心率问题1. 已知12F F 、是椭圆222210)x y a b a b+=>>(的左右焦点,过1F 的直线与椭圆相交于A B 、两点,若220,,AB AF AB AF ⋅==则椭圆的离心率为( )A.B. -C. 1D. 12.若一个椭圆长轴的长度,短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) 4.5A3.5B 2.5C 1.5D3.设P 是以12F F 、为焦点的椭圆222210)x y a b a b +=>>(上的一点,且120PF PF ⋅=,121tan 2PF F ∠=,则该椭圆的离心率是( )A B 1.3C 1.2D4. 已知椭圆E 的左、右焦点分别为12F F 、,过2F 且斜率为2的直线交椭圆E 于P Q 、两点,若12PF F ∆为直角三角形,则椭圆E 的离心率为( )3A 2.3B 3C 1.3D5. 已知直线y x =与椭圆222210)x y a b a b+=>>(的两个交点在x 轴上的射影恰好是椭圆的两个焦点,则椭圆的离心率为( )A B C 1.2D6. 椭圆222210)x y a b a b +=>>(的左焦点为F ,(,0),(0,)A a B b -是两个顶点,如果F 到直线AB ,那么椭圆的离心率为( )A B 1.2C 4.5D7. 过椭圆222210)x y a b a b +=>>(的左焦点1F 做x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=︒,则椭圆的离心率为( )2A .3B 1.2C 1.3D8. 已知椭圆222210)x y a b a b+=>>(的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥ 轴,直线AB 交y 轴于点P ,若2AP PB =,则椭圆的离心率是( )A B 1.3C 1.2D9.椭圆222210)x y a b a b +=>>(的左顶点为A ,左、右焦点为12F F 、,D 是它短轴的一个端点,若122DF DA DF =+,则该椭圆的离心率为( )1.2A 1.3B 1.4C 1.5D10. 已知12F F 、是椭圆C 222210)x y a b a b +=>>(的左右焦点,P 为直线32a x =上一点,12F PF ∆是底角为30︒的等腰三角形,则椭圆C 的离心率为( )1.2A2.3B3.4C4.5D22. 已知F 1,F 2是椭圆C 的左右焦点,点P 在椭圆上,且满足122PF PF =,1230PF F ∠=︒,则椭圆的离心率为____ 23.在平面直角坐标系xoy 中,设椭圆222210)x y a b a b+=>>(的焦距为2c,以点O 为圆心,a 为半径作圆M ,若过点2(,0)a P c作圆M 的两条切线互相垂直,则该椭圆的离心率为________. 24.过椭圆222210)x y a b a b+=>>(的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若AM MB =,则该椭圆的离心率为_____________.25.已知12F F 、为椭圆22121x y k k +=++的左、右焦点,过焦点1F 的直线交椭圆于A B 、两点,若2ABF ∆的周长为8,则椭圆的离心率为____________.二.求离心率取值范围问题.33.已知两定点2A(-,0) 和 2B (,0),动点P x y (,)在直线 :3l y x =+ 上移动,椭圆C 以A B 、为焦点且经过点P ,求椭圆C 的离心率的最大值.为( )A B C D 34.已知12F F 、是椭圆C 222210)x y a b a b+=>>(的左右焦点,过1F 且垂直于x 轴的直线交椭圆C 于A B 、两点,若2ABF ∆为钝角三角形,则椭圆C 的离心率e 的取值范围是( ).0A() .01)B ( .1,1)C 1,1)D35.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的范围是223,4b b ⎡⎤⎣⎦,则这个椭圆的离心率的取值范围是( ).A ⎣⎦ .B ⎣⎦ .C ⎣⎦ .D ⎣⎦40.已知椭圆222210)x y a b a b+=>>(的左右焦点分别为12(,0)F c F c (-,0)、,若椭圆上存在点P (异于长轴端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆的离心率e 的取值范围是__________.41.已知12F F 、是椭圆的两个焦点,P 为椭圆上一点,12=120F PF ∠︒,则该椭圆的离心率e 的取值范围是_______42.已知12(,0)F c F c (-,0)、为椭圆22221x y a b+=的两个焦点,P 为椭圆上一点且212PF PF c ⋅=,则此椭圆离心率的取值范围是__________.43.已知12F F 、是椭圆222210)x y a b a b +=>>(的左右焦点,若在直线2a x c=上存在点P ,使得线段1PF 的中垂线过2F ,则椭圆的离心率e 的取值范围是__________.44.已知12F F 、是椭圆222210)x y a b a b+=>>(的左右焦点,M 是椭圆上一点,且满足 120F M F M ∙=,则离心率e 的取值范围是__________.40.( -1,1) 41. )1⎣ .42. ⎣⎦. 43. )1⎣. 44)1⎣+1). 46. )5⎣答案: 1-5 ABAAB 6-10 CBDBC 11-15 DDAAB 16-20 DADBB 21 A22. .23. 2.24. .25. 12.26.29. 5.30.2. 31. 2 32. 5 33-37 BAACB.38.39 B B.40.( -1,1)41. )1⎣.42. 2⎣⎦,.43. )1⎣.44)12⎣+1).46. )5⎣。
求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。
一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。
二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。
椭圆离心率问题

一、椭恻离心率的1.运川几何图形中线段的几何意义。
基础题目:如图• 0为椭圆的中心,F为焦点• A为顶点,准线L交0A于B. P、Q在椭恻上• PD丄L于D.QFIAD于F,设椭圆的离心率为e.则(!)*晋卞②^罟禺算④*+|吕厂、I F0 I⑤ *1757评:AQP为椭圆上的点•根据椭圆的第一定义得,V I A0 I =a, I OF I =c,・••有⑤:Tl AO I =aU BO I =辛.••有③。
题目1:椭圆务+^l(a>b>0)的两焦点为F, . F2 •以F1F2为边作正三角形.若椭圆恰好平分正三角形的两边.则椭圆的离心率e思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2的中点B.连接8F_把已知条件放在椭圆内•构造△RBF2分析三角形的^^^边长及关系。
解:V I F1F2 I =2c I BF1 I =c I BFz I =©C c-K/3c=2a Ae= yjs-l*2 u2变形椭圆农+h=lSb>0)的两儘点为F1、F2 •点P在椭圆上,使△OPF1为正三角形•求椭恻离心解:连接 PF2测 I OF2 I = I OFJ = I OP I ,ZF I PF2 =90^ 图形如上图,y2变形2:椭圆农+^i(a>b>0)的两焦点为F 八Fz . AB 为椭恻的顶点.P 是椭圆上一点•且PF 】丄X 轴.tP•■TP Fl I = — I Fa Fl I =2c I OB I =b I OA I =a "AB •■- I F X' I ■夕 又"b=毎疋•'•a2=5c2 e=¥ 点评:以上题目,构造焦点三角形・通过#边的几何总义及关系,推寻有关a 与C 的方程式,推导离心率。
一、运用正余弦定理解决图形中的三角形y2 \i2题目2:椭圆+^l(a>b>0), A 是左顶点.F 是右焦点.B 是短轴的一个顶点.ZA8F=90" ■求ePF2 〃 AB,求椭圆离心率解: PF2根据和比性质:I FiP I + I PF2 I sinFiFzP+sin PF1F22c ZPFiFa =75 * Z PF2Fi=15「 5in9(r V e* sin75“ +5inl5' " 3点评:在焦点三角形中・使用第一定义和正弦定理可知X2 v2变形 h 椭圆+^l(a>b>O)rrj 两焦点为 Fl (-C. 0)、F2 (c,0), P 是椭圆上一点,且ZFiPF ; =60 .求 e 的取值范ra解 S I AO I =3 I OF I =C I BF I =a I AB I 而 a^b^+a^ =(a+c)2 =$2+2合c+c2 aJ :2・ac=0 两边同除以 aPe^+e-l=0 e=—e - '-护(舍去)变形:椭+^l{a>b>0). e=2号E A 是左顶点,F 是右焦点.B 是短轴的一个顶点,求ZABF 点评: 此题是上一题的条件与结论的互换•解题中分析各边.由余弦定理解决角的问題。
椭圆离心率求值和最值问题

福建泉州外国语中学 林贵清
本题是2016年全国 III卷理科第11题,这是 一道求离心率的值
思路一:可充分运用平 面几何中的三角形相似 知识求解;
思路二:利用斜率相等的知识 解决问题;
思路三:利用三点共线的知识 解决问题;
思路四:利用向量三点共线的 知识解决问题;
规律方法总结
m2 c2
16 3
m c
43 3
, 当且仅当 n
m 2
时,等号成立.故选
A.
利用余弦定理结合基本不等式求解
法三 在 PF1F2 中,由余弦定理得
4c2
m2
n2
2
m n 2
m2
n2
m2 4
n2
3m2 4
m2 , c2
16 3
m c
43 3
x 3时,f (x)有最大值f ( 3) 3 4 3 4 3 . 33
利用正弦定理求解
法五 在 PF1F2 中,
设
PF2 F1
,Q
m
n,
F2 PF1
3
,
(
3பைடு நூலகம்
,
2
3
),
由正弦定理得
m 4c m 4 3 sin 4 3 ,
sin 3 c 3
• 求离心率的本质就是探究 a, c 之间的数量关系,知道 a,b, c 中任意两者间的
等量关系或不等关系便可求解出 e 的值或范围;
• 常用的方法:定义法、方程、不等式法、平面知识、三点共线等
(完整版)椭圆离心率高考练习题

椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C. D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B.C. D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B. C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A.B. C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C. D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A. B. C.D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A.B.C. D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C.D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B. C.D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C. D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A .B .C .D .解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e >.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b ,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A .B .C .D .解解:∵表示焦点在x 轴上且离心率小于,答:∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x 轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A .B .C .D .解解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,答:F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值范围为[]故选:A4.斜率为的直线l 与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A .B .C .D .解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c ,﹣c)(c ,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C :=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A .B .C .D .解解:设|PF2|=x,答:∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I ,且有(其中λ为实数),椭圆C的离心率e=()A .B .C .D .解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为 G (,),∵,∴IG∥x轴,∴I 的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I 的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是()A .B .C .D .解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A .B.2﹣C.2(2﹣)D .解解:如图,答:在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c∴MF2=4c,MF1=2 cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P 满足,则椭圆C的离心率e的取值范围是()A .B .C .D .或解答:解:∵椭圆C上的点P 满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e 的取值范围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A .B .C .D .解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是 e ∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P ,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C .D .解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的范围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A .B .C .D .解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C :+=1(a>b>0)的左焦点为F,若F 关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A .B .C .D .一l解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则解答:,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A .B .C .D .解答:解:F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,设F 1(﹣c ,0),F 2(c ,0),(c >0),P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|, 可得2c=2,即ac=b 2=a 2﹣c 2.可得e 2+e ﹣1=0. 解得e=.故选:D . 15.已知椭圆(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( ) A . B . C . D .解答: 解:由题意作图如右图,l 1,l 2是椭圆的准线,设点Q (x 0,y 0),∵2|PF 1|=3|QF 1|,∴点P (﹣c ﹣x 0,﹣y 0); 又∵|PF 1|=|MP|,|QF 1|=|QA|, ∴2|MP|=3|QA|, 又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+,∴3(x 0+)=2(﹣c ﹣x 0+),解得,x 0=﹣,∵|PF 2|=|F 1F 2|, ∴(c+x 0+)=2c ; 将x 0=﹣代入化简可得,3a 2+5c 2﹣8ac=0, 即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C :的左、右焦点分别为F1,F2,O为坐标原点,M为y 轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A .B .C .D .解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A .B .C .D .解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+co s∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)解答:解:由已知P (,y),得F1P的中点Q 的坐标为(),∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F 为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A .B .C .D .﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c ,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C :=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C 的离心率的取值范围是.故选:C.21.在平面直角坐标系xOy 中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C :+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C :+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e ∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P 满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]解答:解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A .B .C .D .解答:解:设P(x0,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A .B .C .D .解答:解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a 有最小值,对应的离心率e 有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k <,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)解解:如图所示:|AF2|=a+c,|BF2|=,答:∴k=tan∠BAF2=,又∵0<k <,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B 使得∠BPA=,则椭圆C1的离心率的取值范围是()A .B .C .D .解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP 中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值范围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A .B .C .D .解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。
关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧【摘要】高中数学中,离心率题型是一个常见但也容易出错的题目。
本文将介绍关于高中数学离心率题型的解法技巧。
在我们将介绍离心率的定义和背景知识。
在我们将详细讲解离心率的性质、解题步骤,并举例说明常见的题型。
我们会提醒大家在解题时需要注意的事项,并进行实战演练。
在我们将总结本文的内容,并探讨离心率在实际生活中的拓展应用,以及如何进一步提升解题能力。
通过本文的学习,读者将能够更加熟练地解决高中数学中关于离心率的题目。
【关键词】高中数学、离心率、题型、解法、有效技巧、引言、定义与性质、解题步骤、常见题型举例、注意事项、实战演练、结论、总结、拓展应用、思考提升。
1. 引言1.1 介绍高中数学中的离心率题型是一种常见而重要的题型,涉及到椭圆、双曲线和抛物线等几何图形的特性和性质。
理解和掌握离心率的计算方法对于解题十分重要,而有效的解决技巧可以帮助学生提高解题效率,提升数学成绩。
在本文中,我们将介绍关于高中数学离心率题型的解题技巧,希望能够为学生们在学习和应试过程中提供指导和帮助。
在接下来的我们将详细介绍离心率的定义和性质,解题步骤以及常见题型举例,同时给出一些注意事项和实战演练,希望能够帮助学生们全面深入地理解和掌握离心率这一重要的数学知识。
通过不断的学习和练习,我们相信每位学生都能够在离心率题型上取得更好的成绩。
1.2 背景知识高中数学中,离心率是一个重要且常见的概念。
在几何学和代数学中,离心率通常用来描述椭圆、双曲线和抛物线等二次曲线的形状。
理解离心率的概念对于解决与二次曲线相关的数学问题非常重要。
离心率的定义是一个数值,用来衡量一个二次曲线的“扁平”程度。
在椭圆和双曲线中,离心率的取值范围是0到1,越接近1表示曲线越扁平;在抛物线中,离心率为1,表示曲线为对称。
在解决与离心率相关的数学题目时,首先要掌握离心率的定义及其性质。
需要了解解题的基本步骤,包括求解离心率、判断曲线类型、求解焦点、导线等。
椭圆中的离心率最值问题

椭圆中的离心率最值问题作者:柯淑芳来源:《高中生学习·高二版》2016年第03期椭圆中的离心率最值问题是解析几何中的重点和难点,往往借助于图形的性质、椭圆的范围、正余弦函数的有界性、均值不等式等来构造关于a,b,c的不等式,从而达到求解的目的. 本文主要研究如何利用椭圆焦点三角形中的角求解椭圆中的离心率最值问题.首先给出一些关于椭圆焦点三角形的相关概念和性质如下:椭圆上任意一点P与两焦点所构成的三角形,称为焦点三角形.性质1 若[F1,F2]是椭圆[x2a2+y2b2=1(a>b>0)]的两个焦点,[P]是椭圆上一点,且[∠F1PF2=θ],则[SΔF1PF2=b2tanθ2].[P][F1][F2][x][y][θ] [O]证明设[PF1=m],[PF2=n],由余弦定理得[m2+n2-2mncosθ=F1F22=4c2,]由椭圆定义得[m+n=2a,]由上得:[mn=2(a2-c2)1+cosθ=2b21+cosθ],[∴][SΔF1PF2=12mnsinθ=b2sinθ1+cosθ=b2tanθ2].性质2 已知椭圆方程为[x2a2+y2b2=1(a>b>0),]两焦点分别为[F1,F2,]设焦点三角形[PF1F2]中[∠F1PF2=θ,]则[cosθ≥1-2e2](当且仅当动点为短轴端点时取等号).证明在[△F1PF2]中,由余弦定理可知[cos∠F1PF2=PF12+PF22-F1F222PF1∙PF2][=(PF1+PF2)2-2PF1∙PF2-4c22PF1∙PF2][=2a2-2c2PF1∙PF2-1≥2a2-2c2PF1+PF222-1][=2a2-2c2a2-1=1-2e2].性质3 已知[B]为椭圆短轴的端点,[F1,F2]为椭圆的两个焦点,[O]为坐标原点.①[sin∠F1BO=ca=e],②[P]为椭圆上任意一点,当[P]位于短轴端点时[∠F1PF2]达到最大值即[∠F1BF2≥∠F1PF2].[P][B][F1][F2][x][y][θ] [O]例1 [F1,F2]为椭圆[x2a2+y2b2=1(a>b>0)]的左右焦点,若椭圆上存在点[P],使得[∠F1PF2=π2],求椭圆离心率[e]的取值范围.解法一设[B]为椭圆短轴上的一个端点,则[∠F1BF2≥∠F1PF2=π2].所以,[∠F1BO≥π4].所以,[sin∠F1BO=ca=e≥22].又因为[0解法二利用余弦定理,∵[∠F1BF2≥90°],∴[cos∠F1BF2=a2+a2-4c22a2≤0],即[a2≤2c2],∴[e=ca≥22],∴[e∈22,1].解法三由焦点三角形的性质可知[S△F1PF2=b2tan45°],∴[b2≤S△F1PF2=12∙2c∙b=bc],即[b≤c],∴[b2≤c2],∴[a2-c2≤c2],∴[e∈22,1].解法四由焦半径公式得[PF1=a+ex0],[PF2=a-ex0],由勾股定理得[(a+ex0)2+(a-ex0)2=4c2],即[x02=2a2-a2c2≥0],∴[e=ca≥22],∴[e∈22,1].解法五利用均值不等式,设[PF1=m,PF2=n],∴[m2+n2=4c2],又[2a=m+n],∴[4a2=m2+n2+2mn≤2(m2+n2)=8c2],即[a2≤2c2],∴[e=c a≥22],∴[e∈22,1] .点评在这五种解题方法中,主要从两个方向构造不等式最终得到椭圆离心率的最值,一个是角度(如解法一、二、三),另一个是长度(如解法四和五). 显然,用长度构造计算量稍大些;用角度构造,特别是利用焦点三角形的性质直接计算简单方便得多.下面看看利用椭圆焦点三角形的角度求离心率最值的应用.例2 已知椭圆[x2a2+y2b2=1(a>b>0)]的两焦点分别为[F1,F2,]若椭圆上存在一点[P,]使得[∠F1PF2=120°,]求椭圆的离心率[e]的取值范围.解析由椭圆焦点三角形性质可知[cos120°≥1-2e2,] 即[-12≥1-2e2],于是得到[e]的取值范围是[32,1].例3 [F1,F2]为椭圆[x2a2+y2b2=1(a>b>0)]的左右焦点,[P]是椭圆上一点,且[SΔPF1F2=33b2],求椭圆离心率[e]的取值范围.解析由焦点三角形的性质得[SΔPF1F2=b2×tan12∠F1PF2],可以得到[∠F1PF2=π3],∴[cosπ3≥1-2e2],即[12≥1-2e2],∴[e∈12,1].总之,利用椭圆焦点三角形中的角求椭圆中的离心率最值可以更加简便,为我们节省了解题的时间,而归根到底椭圆焦点三角形的角的特殊性质还是抓住课本——椭圆的定义[PF1+PF2=2a][2a>F1F2],再结合正余弦定理或勾股定理,由边的关系找出a与c的关系,从而求出离心率的最值或取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反馈练习
x 1、设M点是椭圆 、上一点, 2 b
2
F1、F2为椭圆的左右焦点,如果 为椭圆的左右焦点, ∠MF1F2=750, ∠MF1F2=150,求此 求此 椭圆的离心率
例2、设M点是椭圆 、 点是椭圆
x a
2 2
y + = 1上一 2 b
2
为椭圆的左右焦点, 点,F1、F2为椭圆的左右焦点,如果 ∠F1MF2=900,求此椭圆的 离心率的
1 3
。
4、若某个椭圆的长轴、短轴、焦距依次成等差数列, 、若某个椭圆的长轴、短轴、焦距依次成等差数列, 3 则其离心率e=__________ 则其离心率 5
5、以椭圆的焦距为直径并过两焦点的圆,交椭圆于 、以椭圆的焦距为直径并过两焦点的圆, 四个不同的点, 四个不同的点,顺次连接这四个点和两个焦点恰好组 成一个正六边形, 成一个正六边形,那么这个椭圆的离心率 Y
Y M
范围
F1
O
F2
X
问题的关键是寻 找a、c的不等关 、 的不等关 系
1、从等式中找不等式:先找a、c的等 、从等式中找不等式:先找 、 的等 量关系,再利用基本不等式(放缩) 量关系,再利用基本不等式(放缩)或 椭圆的x、 的范围找到 的范围找到a、 的不等式 的不等式。 椭圆的 、y的范围找到 、c的不等式。 2、直接找a、c的不等关系,包括与 的 、直接找 、 的不等关系 包括与b的 的不等关系, 不等关系。 不等关系。 反馈练习 2 2 x y 1、设椭圆 a 2 + b 2 = 1( a > b > 0 )上有点P使 、 上有点 使 ∠OPA=900(A为长轴的右焦点,O为 为长轴的右焦点, 为 为长轴的右焦点 坐标原点),求离心率的范围。 坐标原点),求离心率的范围。 ),求离心率的范围
3− 。 1
F1
O
F2
X
x2 y2 + = 1 的离心率为 6、若椭圆 、 k +8 9
1 则k= 2
例题讲解 例1、如图所示椭圆的中心在原点,焦 、如图所示椭圆的中心在原点, 轴上, 、 是椭圆的顶点 是椭圆的顶点, 点F1、F2在x轴上,A、B是椭圆的顶点, 轴上 P是椭圆上的一点,且PF1⊥x轴, 是椭圆上的一点, 是椭圆上的一点 轴 PF2∥AB,求此椭圆的离心率; ,求此椭圆的离心率;
椭圆的离心率的问题
2011、11、11 、 、
1、若椭圆的焦距长等于它的短轴长,则其离心率 、若椭圆的焦距长等于它的短轴长, 为
2 2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角 、 形,则其离心率为
1 2
。
3、若椭圆的 的两个焦点把长轴分成三等分,则其 、 的两个焦点把长轴分成三等分, 离心率为
作业 1、已知椭圆两焦点为F1、F2,A为椭圆 、已知椭圆两焦点为 为椭圆 上一点, 上一点,且AF1⊥AF2,∠AF2F1=600 求 此椭圆的离心率; 此椭圆的离心率;
x a
2
2、椭圆 2 、 的左 焦点( , ), ),A( , )、 )、B( , ) 焦点(-c,0), (-a,0)、 (0,b) 是椭圆的两个顶点,如果F 到直线AB 是椭圆的两个顶点,如果 1到直线 b 求椭圆的离心率; 的距离是 7 ,求椭圆的离心率;
P F1 Y B A F2
X
感悟: 感悟: 1、在求离心率时,一般寻找a、c 、在求离心率时,一般寻找 、 的等量关系; 的等量关系; c 2、除了用 2=a2-c2外还可用 e= 、除了用b a 的代换,通过方程思想求e 的代换,通过方程思想求e 3、在椭圆中涉及焦点三角形的问 、 题的时候,要充分利用椭圆的定义、 题的时候,要充分利用椭圆的定义、 正弦定理、 正弦定理、余弦定理和相似全等三 角形等知识
y + = 1( a > b > 0 ) 2 b
2