熔断器组合开关

合集下载

负荷开关--熔断器组合电器选用中的技术问题

负荷开关--熔断器组合电器选用中的技术问题

负荷开关--熔断器组合电器选用中的技术问题负荷开关--熔断器组合电器选用中的技术问题近年来,在10kV配电变压器的保护和控制开关的选用中,由于负荷开关-熔断器组合电器与断路器相比具有结构简单、操作维护方便、造价低、运行可靠等优点,从而使组合电器获得广泛的应用。

在实际应用中,如何正确选用组合电器,负荷开关、熔断器与变压器如何合理选配参数,是关系到能否发挥组合电器作用,保证系统安全运行的关键问题。

1转移电流的校验由于组合电器的三相熔断器熔体熔化具有时间差,三相熔断器中有一相首先断开后,撞击器动作,此时可能出现另两相熔断器尚未熄弧开断,而撞击器出击形成由负荷开关切断故障电流的现象,即原本由熔断器承担的开断任务转移给负荷开关承担。

因此转移电流是指熔断器与负荷开关转换职能时的三相对称电流。

低于该值时,首开相电流由熔断器开断,其他两相电流由负荷开关开断。

大于该值时,三相电流仅由熔断器开断。

转移电流是我们在选用组合电器时应注意的一个重要指标,假如选用不当,负荷开关所能承受的转移电流不足够,将无力承担开断两相短路电流的任务而引起开关的爆炸。

负荷开关通常分为一般型和频繁型两种,以空气为绝缘介质的产气式和压气式负荷开关为一般型,真空和SF6负荷开关为频繁型,不同的负荷开关,转移电流的指标各不相同,一般型负荷开关的转移电流在800~1000A左右,频繁型可达1500~3150A。

配电变压器的容量不同,相应的转移电流也不相同,实际的转移电流可由变压器容量进行估算。

一般S9-800/10型配变的转移电流为978A。

按照转移电流的定义及结合负荷开关的开断时间和特性,负荷开关转移电流要避开最大短路电流,控制在最大短路电流的70%以内,即实际转移电流约为978×70%=685A。

在分析国产负荷开关和熔断器技术系数的基础上,考虑到产品的离散性,按照转移电流的验算结果,以我市的经验,容量在800kV A以内的变压器,可选用以空气绝缘的一般型负荷开关,容量在800~1250kV A范围内的变压器,一般选用真空或SF6绝缘的频繁型负荷开关。

10kV负荷开关_熔断器组合电器设计的典型问题

10kV负荷开关_熔断器组合电器设计的典型问题

42· 2013年第8期设计研发Research &Reviews或油中试验时的温升确定的,而熔断器用于组合电器柜中时,熔断器的安装方式不同导致熔断件外部环境条件改变,实际通流能力也会不同。

熔断器在组合电器柜中常见的安装方式有两种:一种是把熔断器安装在一个三相封闭的箱体内;另一种是把单只熔断器封闭在绝缘树脂浇注的熔断器筒内。

这两种情况选用熔断器时均要降容使用,特别是第二种。

因此,组合电器柜的额定电流值的确定要对配用的最大额定电流值的熔断件标称的额定电流降容一定比例,并由负荷开关-熔断器组合电器柜的温升试验确定。

熔断器额定电流的选择与变压器容量有关,具体参见下表。

10 kV负荷开关-熔断器组合电器设计的典型问题负荷开关-熔断器组合电器的设计需要根据实际使用场合确定额定电流、实际转移电流、额定转移电流、交接电流和额定短路开断电流等关键参数,本文主要论述了10 kV负荷开关-熔断器组合电器设计中这些关键参数如何确定,为产品的研制提供指导。

▲ 王海燕研发部部长负荷开关-熔断器组合电器由于结构简单、造价低以及保护特性好等优点,尤其是对容量在1 250 kV ·A 及以下的变压器的保护比用断路器更为有效,因而得到了广泛应用。

本文就负荷开关-熔断器组合电器设计过程中几个典型问题进行分析探讨。

1 额定电流组合电器柜的额定电流为在规定的正常使用条件下长期正常工作时能耐受的电流。

其电流值与所选熔断器有关,一般小于熔断器标称的额定电流。

熔断器标称的额定电流是生产厂家参照单个熔断件在空气中■ 王海燕 李绍军 潘明 何周/平高集团有限公司关键词:变压器/器身/夹件/槽钢结构/吊螺杆额定电压/kV变压器额定容量/kV·A1001251602002503154005006308001 00012161620/252531.540506380100125241010161616252531.5404050表 熔断器额定电流与变压器额定容量配合Research & Reviews设计研发2 转移电流组合电器柜的转移电流是指熔断器与负荷开关转换开断职能时的三相对称电流值。

负荷开关熔断器组合电器的保护

负荷开关熔断器组合电器的保护

负荷开关熔断器组合电器的保护(经验总结)民用建筑的10/0.4kV变电所设计中,对于变压器容量不大的情况下,高压侧经常采用负荷开关-熔断器组合电器作为保护,那么多大容量以上的变压器就不能采用这种保护方式呢?以及采用这种保护方式会有什么其他的问题?下面是对变电器高压侧采用负荷开关、熔断器保护的简单分析,希望大家对负荷开关熔断器组合电器的保护加深下了解,不恰当之处敬请指正,谢谢!(1)采用负荷开关-熔断器组合电器(配有撞击器)负荷开关-熔断器组合电器分为以下两种:■一种是由一组三极负荷开关及配有撞击器的三只熔断器组成,任一只撞击器的动作都会引起负荷开关三极全部自动分闸;■一种是由配有脱扣器的三极负荷开关和三只熔断器组成,由过电流脱扣器触发联动负荷开关的自动分闸。

对于这类安装有撞击器或过电流脱扣器的负荷开关,应该进行转移电流和交接电流的检验。

下面来谈谈负荷开关+熔断器组合电器的转移电流和交接电流。

1)负荷开关-熔断器组合电器的转移电流依据国标GB16926-2009《高压交流负荷开关-熔断器组合电器》对转移电流的定义为:在熔断器与负荷开关转换开断职能时的三相对称电流值。

在出现三相短路故障时,故障电流会使熔断器件最快的一相熔化,成为首开极,熔断器的撞击器动作使负荷开关分闸,其余两极承受87%的故障电流,该故障电流由负荷开关开断,或者被剩下的两相熔断器开断。

也就是说,当预期短路电流低于转移电流时,首先开断极的电流由熔断器开断,而后两相电流由负荷开关开断;当预期短路电流高于转移电流时,三相短路电流均由熔断器开断。

2)额定转移电流和实际转移电流的确定额定转移电流(I tn)是组合电气中负荷开关能够开断转移电流的最大均方根值(有效值)。

额定转移电流(I tn)由制造厂家提供,以施耐德SM6中压开关柜为例,其额定转移电流为1750A(三次开断能力)。

实际转移电流(I ts),制造厂家往往未能提供,则需根据变压器容量和所采用的熔断器规格来计算确定,依据国标GB16926-2009《高压交流负荷开关-熔断器组合电器》,实际转移电流可以确定为:熔断器的最小时间-电流特性上弧前时间等于0.9To的电流值。

HR3系列熔断器式刀开关

HR3系列熔断器式刀开关
320
265
280
53
90
104
43
222
16
注:FC尺寸为连杆打到90°的位置
表7
型号
外形及安装尺寸
A
B
C
D
E
FC
HC
G
M
HR3-100/34
250
200
210
170
60
87
43
48
8
HR3-200/34
270
205
230
70
53
47
10
HR3-400/34
290
225
250
80
53
48
12
HR3-600/34
1.海拔高度不超过1000米;
2.周围介质温度不高于+40℃不低于-3℃;
3.空气相对温度不大于85%(相当于+20±5℃时);
4.安装垂直度不大于5°;
5.振幅不大于0.5mm,频率不大于600次/分的振动;
6.在无爆炸危险的介质中,且介质中无足以腐蚀金属和破坏绝缘的气体及导电尘埃的地方。
结构特征
9.熔断器式刀开关必须作定期检修,消除可能发生故障的事故苗子。
10.断器刀开关的槽形导轨必须经常保持清洁,防止积污后操作不灵活。
订货须知
订购熔断器式刀开关时必须说明:
1.熔断器式刀开关的型式;
2.熔断器式刀开关的额定电流;
3.熔体的额定电流:
4.极数;
5.数量;
订购举例:HR3-200/31熔断器式刀开关,正面侧方杠杆传动机构式,熔体额定电流150A,10副。
续表1
额定电流
(A)
三极

VF(R)-12中置固封式真空负荷开关-熔断器组合电器

VF(R)-12中置固封式真空负荷开关-熔断器组合电器

VF(R)-12中置固封式真空负荷开关-熔断器组合电器产品名称:VZF(R)-12中置固封式真空负荷开关-熔断器组合电器产品品牌:祝捷电气产品概述:VZF(R)-12型系列中置固封式真空负荷开关-熔断器组合电器(以下简称真空开关),是根据独特的设计概念并结合市场需求而研发的最新一代真空开关设备,它广泛应用于户内铠装式空气绝缘开关柜中。

VZF(R)-12@真空负荷开关¥VF(R)-12真空负荷开关,组合电器◆产品概述VZF(R)- 12型系列中置固封式真空负荷开关-熔断器组合电器(以下简称真空开关),是根据独特的设计概念并结合市场需求而研发的最新一代真空开关设备,它广泛应用于户内铠装式空气绝缘开关柜中。

它符合GB3804-2004 GB16926-1997等标准的规定。

在正常使用条件下,只要在真空开关的技术参数范围内,它就可以保证安全、可靠地运行于相应电压等级的电网中。

◆型号及其含义使用条件3.1 环境温度不高于+40℃,不低于—15℃(允许在-30℃时储运);3.2 海拔高度不超过1000m;3.2 相对温度:日平均值不大于95%,月平均值不大于90%,饱和蒸汽压日平均值不大于2.2×10 Mpa,平均值不大于1.8×10 MPa;3.4 地震热度不超过8度;3.5 没有火灾,爆炸危险,严重污秽,化学腐蚀以及剧烈震动的场所。

4. 技术参数4.1 主要规格及技术参数4.2 断路器装配调整后机械特性参数4.3 分合闸线圈参数4.4 储能电机采用永磁式单相直流电动机,操作电压允许采用交,直流电源其技术参数5. 产品外型尺寸6. 产品结构及特点6.1 真空灭弧室断路器配用中间封接式陶瓷或玻璃真空灭弧室,采用铜铬触头材料,杯状纵磁场触头结构,其触头的电磨损速率小,电寿命长,触头的耐压水平高,介质绝缘强度稳定,弧后恢复速度快,截流水平底,开段能力强。

6.2 总体结构断路器总体结构采用操动机构和灭弧室前后布置的形式,主导电回路部分为三相落地式结构,真空灭弧室纵向安装在一个管状的绝缘筒内,绝缘筒由环氧树脂采用 APG工艺浇注而成,因而它特别抗爬电。

组合电器(负荷开关—熔断器)的相关技术

组合电器(负荷开关—熔断器)的相关技术

组合电器(负荷开关—熔断器)的相关技术■负荷开关与熔断器的正确配合才可收到保护效果负荷开关与熔断器根本区别在于熔断器具有开断短路能力,而负荷开关只作为负荷电流的切换(当然也应具有一定的开断能力)。

通常认为,负荷开关合分工作电流,熔断器开断短路电流。

但是当出现故障时,由于三相电流不尽相同,以及熔断制造上的允许误差,不可避免出现三相熔断器之间的熔断时间差,即有首开相。

首开相切除故障后如果负荷开关不能及时分断负荷电流,则会造成产生转移电流和两相运行对受电设备损害。

带有撞击器(俗称撞针)的熔断器配合具有脱扣装置的负荷开关则可能决缺相运行问题。

当熔断器的熔件熔化时,熔断器内存的撞击器以一定的能量击出(通常为1.5焦耳),负荷开关脱扣装置在撞击器操作下立即三相断开。

据了解生产厂多采用四连杆机构,当开关合闸操作时,开关中合分闸弹簧同时储能,当四连杆机构过死点时,合闸弹簧的能量释放,开关作合闸操作,此时分闸弹簧的能量仍由半轴机构所保持,一旦撞击器出击,半轴解列,分闸弹簧的能量释放,开关作分闸操作。

因此,工程中应用一定要选择带撞针的熔断器和具有机械脱扣装置的负荷开关。

应该指出,工程中所用的熔断器多系后备熔断器,这种熔断器有一个最小开断电流,其值约为熔断器额定电流的2.5~3倍,当小于开断电流时,后备熔断器不能开断此电流,这就是它与全范围熔断器的区别。

全范围熔断吕在引起熔体熔化至额定开断电流(40KA)之间任何电流均能可靠断开,但其价格昂贵,一般不采用。

当故障电流小于后备熔断器的最小开断电流时,熔断器虽然不保证其开断,但熔件会熔断其后内存的撞击器会击出,撞击负荷开关开断。

例如额定电流为100A的熔断器最小开断电流约250~300A,在此电流区,熔断器不能开断,但熔件熔断撞针击出,撞击负荷开关跳闸开断此电流,如选用600A的负荷开关,则可可靠开断。

■撞击器操作与转移电流熔断器的通过电流与熔断时间呈反时限特性,简称安一秒特性,当出现过电流时,熔断器依其安一秒特性熔断。

熔断器隔离开关负荷开关

熔断器隔离开关负荷开关
于或小于额定电流下的工作状态。温度分布图如下图所示。
精选课件
2)过载电流下的工作状态 当熔断器超过一定数值的额定电流后,经一定时间,熔体
的温升将达到熔化的温度。这时的功率损耗为W=I2Rt。随着熔 体温度的升高,熔体的电阻也将增大:Rt=R0(1+Δt)。熔体温 度上升的物理过程如下图所示。
精选课件
熔断器、隔离开关、负荷开关
精选课件
一、熔断器
1.概论
熔断器是一种开断电器,由单个或多个专门设计的熔体 的协调的零部件组成,当电流超过给定值到足够时间,就断 开它所插入的电路而分断电流。熔断器承担着保护电气设备 和电网的重要任务,并且限制了不可避免的事故发生和确保 了用户供电。 按照保护对象的不同,分为三种:电力熔断器,电压互感器 保护用熔断器,电容器保护用熔断器
(4)采用冶金效应达到全范围保护的限流熔断器。它是在一般限流式 熔断器的带状银熔体的表面敷置低熔点金属小球(如锡珠)以构成冶金效 应点,这样可利用冶金效应使熔体在较小电流时熔断以开断低过载电流, 而利用一般限流式熔断器在大电流的限流作用开断大的短路电流。
精选课件
(2)技术参数 ①时间-电流特性:分为弧前时间-电流特性和熔断时
精选课件
在正常工作时,熔断体的熔管和下动触头间是用活 动关节锁紧,使动触头在静触头背面的弹簧的压力抵住 保持合闸位置。当电力系统发生短路电流或过载电流时, 熔断件迅速熔断,在熔断管内产生电弧,熔管内衬的产 气材料在电弧作用下产生大量气体,使熔管内形成很高 的压力,沿管内通道形成强烈的电弧纵吹,迅速从管内 喷出,在电流过零点时将电弧熄灭。熔断件熔断后,活 动关节释放,载熔件的动触头在静触头背面的弹簧压力 和载熔件自身的重量而迅速跌落,形成隔离间隙。

负荷开关_熔断器组合电器的继电保护

负荷开关_熔断器组合电器的继电保护
组合电器由通过熔断器与分励脱扣操作均能实现过载保护, 首先熔断器熔断触发撞击器动作, 是以损坏三只熔断器为代价, 一旦过载熔断器某相熔断就得全部更换,其次,由于熔断器分断 特性的分散性,长期严重过载会造成变压器绕组严重老化,甚至 内部短路故障。采用继电保护 + 分励脱扣操作就能控制严重过载 长时间运行对变压器的损坏,减少事故发生的概率,提高供电质 量,降低运行成本。因此,应推广使用具有分励脱扣的组合电器。 参考文献: 【1】王季梅.高压交流负荷开关.北京:机械工业出版社,1997.11. 【2】GB16926- 1997.交流高压负荷开关—熔断器组合电气.
4 结论
负荷开关开断工作电流,熔断器开断短路电流,但在短路与 工作电流之间存在一个过电流区域,在该区域,负荷开关与熔断 器恰当的配合,再加上适当的继电保护,参照熔断器制造厂提的 时间—电流特性曲线,在熔断器熔化之前并留有一定裕度将负载 切除,可以实现无需损坏熔断器能达到过载保护的目的,而熔断 器仅作为短路保护是较好的运行方式。
57
2 负荷开关—熔断器组合电器的特点
组合电器在工作时,有以下几种清况: 组合电器工作在额定电流内,负载由负荷开关电动脱扣器或 手动操作,使之开断负荷电流。 过负荷电流大于负荷开关熔断器的额定电流,小于熔断器的 最小熔断电流,这时熔断器可能动作,但尚不能熄弧,熔断器的撞 击器触发,使负荷开关动作,三相电流由负荷开关开断。 严重过负荷,熔断器首先一相熔断,撞击器动作使负荷开关 分闸,其第二相、第三相熔断器还未来得及熔断。因此其余两相过 电流必须由负荷开关来开断它。 严重三相或两相短路,熔断器熔断并在半波内全部熄弧,撞 击器使负荷开关脱扣,负荷开关无电流开断。 在组合电器中,当熔断器在某一短路电流值某一相首先熔断 时,(由于短路电流在某一时刻,总是某相电流最大以及熔断器特 性差异),其余两相熔断器还未熔断,此时的短路电流便转移到由 负荷开关来分断,这个电流便是转移电流。即组合电器存在转移 电流。它是指在熔断器与负荷开关转换开断职能时的三相对称电 流值。当低于该值时,首开极电流由熔断器熔断,而后两相电流就 由负荷开关开断;大于该值时,三相电流仅由熔断器开断,因此额 定转电流最大值所对应的转移电流就是组合电器的额定转移 电流。 对于电气脱扣方式的组合电器有两个过流保护装置,即负荷 开关的脱扣器和熔断器的撞击器,其时间—电流特性交点所对应 的电流值,叫做交接电流,交接交流取决于脱扣器触发的负荷开 关分闸时间和熔断器的时间—电流特性。交接电流值为一过电流 值,小于这一值时,熔断器把开断电流的任务交给脱扣器触发的 负荷开关承担。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MIB / MKP 18/07/2001
Fuse : 无需维护 在配电回路发生故障后, 仅需更换熔体,其保护特 性和更换前一样
断路器 : 技术特性会随时间变化 为保持其特性需经常维护 断路器会报废 …close
MIB / MKP 18/07/2001
熔断器组合开关
结论
熔断器比断路器更安全 熔断器的选择性更好
熔断器具有更好的短路保护特性 当故障频率不是很高时,断路器的使用方便性不明显
熔断器组合开关
4. 选择性
上游保护 熔断器的选择性更好
K > 2 ?? k=1.6
取决于产品; 只能使用相同的品牌
下游
MIB / MKP 18/07/2001
熔断器组合开关
5. 可靠性
MTBF :
断路器具有更多的零件
MIB / MKP 18/07/2001
熔断器组合开关
5. 可靠性
时间
安全性
最低
经济点
电缆截面
MIB / MKP 18/07/2001
Hale Waihona Puke 熔断器组合开关2. 方便性
几率
10000
10
1
M
MIB / MKP 18/07/2001
熔断器组合开关
3. 短路保护
时间 (s)
NH L
熔断器比绝大多数断路器 有更高的分断能力
kA
MIB / MKP 18/07/2001
熔断器组合开关
3. 短路保护
条件短路电流
I(kA)
100kA(rms)
70kA
50kA 37kA 30kA
50kA(rms)
T(ms)
短路时被熔断器限制的电流 (400A gG 熔断器)
MIB / MKP 18/07/2001
熔断器组合开关
3. 短路保护
分断能力 / 电压
(kA)
当电压升高时断路器分断能力降低
L H N
U (V)
MIB / MKP 18/07/2001
熔断器组合开关
4. 选择性
时间 (s)
K = 1.6
(CEI 269 )
电流
MIB / MKP 18/07/2001
熔断器组合开关
4. 选择性
gG 熔断器
X 1.6
250A
X 1.6
160A
63A
100A
32A
25A
MIB / MKP 18/07/2001
熔断器组合开关 熔断器保护
电气设备需求 1. 过载保护 2. 使用方便 3. 短路保护 4. 选择性 5. 可靠性 6. 经济性
MIB / MKP 18/07/2001
熔断器组合开关
1. 过载保护
时间
断路器
电流
MIB / MKP 18/07/2001
熔断器组合开关
1. 过载保护
电缆经济尺寸
价格
MIB / MKP 18/07/2001
熔断器组合开关
适配性
1 类: 故障后在重新启动设备前需更换接触器 2 类: 故障后无元件损坏,仅触点有轻微熔化 (并且这种熔化可用工具去处除)
2 类适配性的优点:缩短停电时间
MIB / MKP 18/07/2001
熔断器组合开关
2类适配性
有熔断器保护的故障电流比有其他 保护设备,如断路器的故障电流低 可以使用更小的接触器 热继电器可以识别缺相故障并使接 触器断开(大约4秒内)
MIB / MKP 18/07/2001
熔断器组合开关
单相故障 : 公共配电
如果一相发生故障, 只有这一相断开 第2和第3相仍能工作,只有1/3的设备断电
MIB / MKP 18/07/2001
熔断器组合开关
熔断器保护, 结论
不影响相互关系 :
- 特性及价格 - 安全性和经济性 - 选择性和 重叠性

MIB / MKP 18/07/2001
熔断器组合开关
5. 可靠性
故障安全保护和灭弧
短路故障时在熔管内释放能量
无离子气体喷出.
MIB / MKP 18/07/2001
熔断器组合开关
6. 经济性
特性 / 价格
价格
特性
MIB / MKP 18/07/2001
熔断器组合开关
6. 经济性
维护方便
相关文档
最新文档