用公式法解一元二次方程教案
公式法解一元二次方程教学设计

公式法解一元二次方程教学设计1. 引言大家好,今天我们要聊聊如何用公式法解一元二次方程。
可能有人会觉得,这个公式看起来复杂得让人头疼,不过别担心,我们一起来慢慢搞清楚。
掌握了这个方法,解题就像吃饭一样简单了!2. 什么是公式法2.1 公式法的介绍公式法就是一种解一元二次方程的固定方法。
用公式来解题,就像是用标准化的工具来做手工,一下子问题就迎刃而解了。
公式法的核心就是这个公式:[ x = frac{b pm sqrt{b^2 4ac}}{2a} ]。
这个公式听起来是不是有点“高大上”?但别急,我们一步步来,慢慢了解它的秘密。
2.2 公式法的背景为什么要用公式法呢?这就得从一元二次方程的基本形式说起了。
任何一元二次方程都可以写成 ( ax^2 + bx + c = 0 )。
通过公式法,我们能直接找到方程的解,省时省力,非常实用。
3. 公式法的步骤3.1 步骤一:识别方程的系数首先,确定方程中的系数 (a), (b), 和 (c)。
这些系数分别是二次项、一次项和常数项的系数。
比如,方程 (2x^2 + 3x 2 = 0) 中, (a = 2),(b = 3),(c = 2)。
这一步就像是准备材料,材料准备齐全了,接下来的操作才能顺利进行。
3.2 步骤二:计算判别式接着,我们需要计算判别式 (b^2 4ac)。
这个判别式是公式法的核心,它帮助我们判断方程有多少个实数解。
比如,判别式的值是正数,说明方程有两个不同的实数解;如果是零,那方程有一个重复解;如果是负数,则方程没有实数解。
就像是看天气预报,判别式告诉我们“天”是否晴朗。
3.3 步骤三:代入公式求解最后,把计算出来的判别式代入公式:[ x = frac{b pm sqrt{b^2 4ac}}{2a} ]。
在这一步,我们要分两种情况来计算“(pm)”,就是“加”和“减”两种情况。
计算完之后,就能得到方程的两个解了。
这一步就像是用具体的工具完成了最后的作品展示。
《用公式法求解一元二次方程》示范公开课教学设计【北师大版九年级数学上册】(第2课时)

第二章 一元二次方程2.3 用公式法求解一元二次方程第2课时 教学设计一、教学目标1.经历列一元二次方程解决简单实际问题的过程,体会模型思想,增强应用意识和能力.2.推导求根公式、判别方程根的情况的过程中,强化推理技能训练,进一步发展演绎推理能力.二、教学重点及难点重点:一元二次方程求根公式的应用.难点:一元二次方程求根公式的应用.三、教学用具多媒体课件,计算器.四、相关资源《一元二次方程求根公式》动画.五、教学过程【复习引入】学生活动:用公式法解下列方程:(1)2x 2-5x +2=0;(2)2x 2=1-3x .解:(1)因为a =2,b =-5,c =2,所以Δ=b 2-4ac =(-5)2-4×2×2=25-16=9>0.所以x =(5)22--±⨯=54, 即x 1=2,x 2=12. (2)方程化为2x 2+3x -1=0,其中a =2,b =3,c =-1.所以Δ=b 2-4ac =32-4×2×(-1)=9+8=17>0.所以x即x 1x 2总结用公式法解一元二次方程的一般步骤:(学生总结,老师点评):(1)把方程化为一般形式,确定a,b,c的值;(2)求出b2-4ac的值;(3)当b2-4ac≥0时,把a,b,c及b2-4ac的值代入求根公式,求出x1,x2.设计意图:通过复习引入,让学生回忆用公式法解一元二次方程的一般步骤,为本节课的学习做好铺垫.【探究新知】例在一块长16 m、宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半.你能给出设计方案吗?小明的设计方案如图1所示,其中花园四周小路的宽度都相等.通过解方程,他得到小路的宽为2 m或12 m.小亮的设计方案如图2所示,其中花园每个角上的扇形都相同.(1)你认为小明的结果对吗?为什么?(2)你能帮小亮求出图中的x吗?(3)你还有其他设计方案吗?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后教师给出规范解题过程.解:(1)小明的结果不正确;正确解法:设小路的宽度为x m.根据题意列方程,得1(162)(122)12162x x --=⨯⨯.整理,得x 2-14x +24=0.解得x 1=2,x 2=12.小路的宽12 m 符合所列方程,但荒地的宽为12 m ,因而小路的宽不可能是12 m ,因此x =12不是实际问题的解,应舍去.而小路的宽2 m 符合这个实际问题,所以小路的宽应是2 m .(2)在小亮的设计方案中,4个相同扇形的面积之和恰好为一个圆的面积,且其半径为x m ,根据题意,得21π12162x =⨯⨯.解得96 5.5πx =±±≈.所以图中的x 约为5.5. (3)设计方案是多种多样的,下面给出几种仅供参考:注意:一元二次方程有两个根,这些根虽然都满足所列的一元二次方程,但未必符号实际问题.因此,解完一元二次方程之后,要按题意检验这些根是不是实际问题的解.设计意图:通过引导学生分析、探究,培养学生分析问题、解决问题的意识和能力.【典例精析】对于例2中的花园设计问题,小颖的设计方案如图所示,你能帮她求出图中的x 吗?解:根据题意列方程,得1(16)(12)16122x x --=⨯⨯.整理,得x 2-28x +96=0. 解得x 1=4,x 2=24(不合题意,舍去).所以图中的x 为4.【课堂练习】1.在一幅长90 cm 、宽40 cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?师生活动:教师出示问题,找学生代表回答.2.如图,圆柱的高为15 cm ,全面积(也称表面积)为200π cm 2,那么圆柱底面半径为多少?3.如图所示,要建一个面积为150 m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为a m,另三边用竹篱笆围成,已知竹篱笆总长为35 m,且要求全部用完.(1)求鸡场的长与宽各为多少米?(2)题中的墙长为a m对题目的解起着怎样的作用?师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.金色纸边的宽应该是5 cm.2.圆柱底面半径为5 cm.3.解:(1)设鸡场的宽为x m,则长为(35-2x)m.依题意可列方程为x(35-2x)=150.整理,得2x2-35x+150=0.解方程,得x1=10,x2=7.5.当x=10时,35-2x=15;当x=7.5时,35-2x=20.答:当鸡场的宽为10 m时,长为15 m;当鸡场的宽为7.5 m时,长为20 m.(2)由(1)解得的结果可知:题中墙长a m对题目的解起着严格的限制作用.当a<15时,上述问题无解;当15≤a<20时,上述问题只有一个解,即可建宽为10 m,长为15 m的一种鸡场;当a≥20时,上述问题有两个解.设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结本节课我们主要复习了:1.用公式法求解一元二次方程.2.列一元二次方程解决简单实际问题.注意:在利用一元二次方程解决实际问题时,要检验所得的一元二次方程的解是不是实际问题的解.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过总结使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.3 用公式法求解一元二次方程(2)1.用公式法求解一元二次方程.2.列一元二次方程解决简单实际问题.。
《公式法解一元二次方程》教案2

《公式法解一元二次方程》教案2 安福县城关中学曹经富一、温故知新(学生活动)1.用配方法解下列方程(1)6x2-7x+1=0 (2)2x2-8x-9=0(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2-76x=-16配方,得:x2-76x+(712)2=-16+(712)2(x-712)2=25144x-712=±512x1=512+712=7512+=1x2=-512+712=7512-=16(2)二次项系数化为1得x2-4x-92=0;移项x2-4x=92;配方x2-4x+22=92+4;(x-2)2=172,x-2或x;解得x1,x2=2.总结用配方法解一元二次方程的步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.教师演示课件,给出题目.学生根据所学知识解答问题.【设计意图】复习用配方法解一元二次方程,归纳总结配方法解一元二次方程的一般步骤,为下面的学习做好铺垫.引导学生思考,前面方程中系数都是具体数字,我们是否可以把系数换成字母形式,根据上面的解题步骤一直推下去?从而激发了学生的兴趣.二、探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1x2分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(2b a )2=-c a +(2b a )2 即(x +2b a)2=2244b ac a -,∵b 2-4ac ≥0且4a 2>0,∴2244b ac a -≥0直接开平方,得:x +2b a=即x x 1x 2 由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x =2b a-就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.在学生归纳的基础上,老师完善以下几点:(1)当240b ac ->时, 20(0)ax bx c a ++=≠有两个不相等的实数根1x =,2x =; (2)当240b ac -=时, 20(0)ax bx c a ++=≠有两个相等的实数根 122b x x a==-; (3)当240b ac -<时, 20(0)ax bx c a ++=≠无实数根.【设计意图】先由学生独立完成,有困难时通过小组交流与探究解决,由于形式是一元二次方程的一般形式,得出一元二次方程的求根公式与根的判别式.三、学以致用例1.用公式法解下列方程(1)2x 2-4x -1=0 (2)5x +2=3x 2(3)4x 2-x +116=0 (4)4x 2-3x +1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0∴方程有两个不相等的实数根.x =(4)422242--±==⨯∴x 1=x 2 (2)将方程化为一般形式3x 2-5x -2=0a =3,b =-5,c =-2b 2-4ac =(-5)2-4×3×(-2)=49>0∴方程有两个不相等的实数根.x 576±= x 1=2,x 2=-13(3)a =4,b =-1,c =116b 2-4ac =(-1)2-4×4×116=0 ∴方程有两个相等的实数根.∴x 1= x 2= 18= (4)a =4,b =-3,c =1b 2-4ac =(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.例2.不解方程,判定方程根的情况(1)16x 2+8x =-3 (2)9x 2+6x +1=0(3)2x 2-9x +8=0 (4)x 2-7x -18=0分析:不解方程,判定根的情况,只需用b -4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x +3=0a =16,b =8,c =3,b 2-4ac =64-4×16×3=-128<0所以,方程没有实数根.(2)a =9,b =6,c =1,b 2-4ac =36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.例3.某养鸡厂的矩形鸡舍靠墙.现在有材料可以制作竹篱笆20米,若欲围成42平方米的鸡舍,鸡舍的长和宽应是多少?能围成52平方米的鸡舍吗,若可以求出长和宽,若不能说明理由.解:(1)设鸡舍的长为x米,则宽为202x-米,由题意得:x×202x-=42,解得:x1=14(14>10,故舍去),x2=6(此时宽大于长,舍去). 即可得鸡舍的长为6m,宽为7米.(2)由题意得:x×202x-=52,整理得:x2-20x+104=0,△=400-4×104<0,所以方程无解.故不可能围成面积为52平方米的矩形鸡舍.学生活动:学生首先独立思考,自主探索,然后交流教师活动:在学生解决问题的过程中,适时让学生讨论解决遇到的问题.【设计意图】通过解几个具体的问题,检查学生对知识的掌握情况,发挥学生的主体作用,引导学生探究利用公式法解一元二次方程的一般方法,进一步体会一元二次方程的根与24b ac-的关系.四、小结评价1.回顾与思考(1)本节课你学习了哪些知识?(2)本节课你掌握了哪些数学方法?(3)本节课你最大的体验是什么?2.评价:本节课从以下几个方面进行教学评价:1)反映学生数学学习的成就和进步.2)诊断学生在学习中存在的困难,及时调整和改善教学过程.【设计意图】以“回顾与思考”的方式让学生总结本节课的收获,增强学生归纳总结能力. 通过评价全面了解学生数学学习的历程,帮助学生认识到自己在解题策略、思维或习惯上的长处和不足;使学生形成对数学积极的态度、情感和价值观,帮助学生认识自我,树立信心.课后作业1.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程﹣4x 2+3=5x ,下列叙述正确的是( )A .a =﹣4,b =5,c =3B .a =﹣4,b =﹣5,c =3C .a =4,b =5,c =3D .a =4,b =﹣5,c =﹣32.方程x 2﹣3x ﹣5=0的根的情况是( )A 、只有一个实数根B 、有两个不相等的实根C 、有两个相等的实数根D 、没有实数根3.方程x 2+x ﹣1=0的根是( )A .1﹣5B .152-+C .﹣1+5D .152-± 4.下列方程有实数根的是( )A 、2501x x +=-B 、12x -=-C 、x 2﹣x +1=0D 、2x 2+x ﹣1=05.已知直角三角形的三个边长为a 、b 、c ,∠C=90°,那么关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0的根的情况是( )A 、无实数根B 、有两个相等的实数根C 、有两个不相等的实根D 、不能确定6.已知一元二次方程2x 2﹣3x =1,则b 2﹣4ac =7.方程ax 2+bx +c =0(a ≠0)的判别式是 ,求根公式是8.一元二次方程x 2﹣x +4=0的解是9.用公式法解方程2x 2﹣7x +1=0,其中b 2﹣4ac = ,x 1= ,x 2=10.一元二次方程a 2﹣4a ﹣7=0的解为11.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是12.解方程:(1)5x (x -3)=6-2x ; (2)3y 2+1=23y ; (3)(x -a )2=1-2a +a 2(a 是常数)13.解方程x 2=4x +2时,有一位同学解答如下:解:∵a =1,b =4,c =2,b 2﹣4ac =42﹣4×1×2=8,∴x 24b b ac -±-48222-=-±即:即x 1=22-+x 2=22-分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.14.(1)解下列方程:①x 2﹣2x ﹣2=0;②2x 2+3x ﹣1=0;③2x 2﹣4x +1=0;④x 2+6x +3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.参考答案1.B2.B3.D4.D5.B 解:∵直角三角形的三个边长为a 、b 、c ,∠C=90°, ∴c 2=a 2+b 2①∴△=4b 2﹣4×(a +c )(c ﹣a )=4(a 2+b 2﹣c 2)=0,∴关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0有两个相等的实数根.故选B .6.177. b 2﹣4ac 24b b ac -±-8. 无实数解9. 41 7414+ 7414- 10. 2+ 11 2﹣11 11. k ≥94- 12.(1)3,25-;(2)3;(3)1,2a -1 13.解:有错误.没有把x 2=4x +2变成一般式,b 、c 的值是错的.正确的解题过程如下:x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =24b b ac -±-=424262±=-±. 即:x 1=2+6,x 2=2﹣6.14.解:(1)①解方程x 2﹣2x ﹣2=0①,∵a =1,b =﹣2,c =﹣2,∴x =242b b ac a -±-=212132±=±, ∴x 1=1+3,x 2=1-3.②解方程2x 2+3x ﹣l=0,∵a =2,b =3,c =﹣1,∴x =242b b ac a -±-=3174-±, ∴x 1=317-+=,x 2=317--=. ③解方程2x 2﹣4x +1=0,∵a =2,b =﹣4,c =1,∴x ===,x1=,x2=.④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(2)其中方程①③④的一次项系数为偶数2n(n是整数).一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.教学反思本节课在学生练习配方法的基础上,再讨论如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),就得到一元二次方程的求根公式,于是有了直接利用的公式,并引出用判别式确定一元二次方程的根的情况..利用求根公式解一元二次方程的一般步骤:1、化成一般形式2、找出a,b,c的相应的数值3、判别式是否大于等于04、当判别式的数值符合条件,可以利用公式求根.学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.主要的有:1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号2、求根公式本身就很难,形式复杂,代入数值后出错很多.通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:1、让学生自主探究,交流合作,由浅入深,由易到难,让学生解决问题的能力得以提高,这是这节课中的一大亮点,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高.2、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智.3、总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大.需要改进的方面,课堂中的布局有待提高,以后应最大限度的发挥学生的主体作用.。
公式法解一元二次方程---教案

《公式法解一元二次方程》教案一、教学内容解析1.具体内容:《公式法解一元二次方程》这个内容在人教版教材中对应的是九年级上册第一章第三节《公式法》.本节主要研究一元二次方程的公式解法,一元二次方程的求根公式是用配方法得到的,可以说,公式法是配方法的一般化和程式化,利用求根公式可以更为便捷地解一元二次方程.本节课的教学内容包括以下三个方面:①承接上节内容,提出用配方法求解方程ax2+bx+c=0(a≠0)的问题,进而推导求根公式;②用公式法求解一元二次方程,同时体会用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程;③通过对b2-4ac的讨论,得出根的判别式与方程根的情况之间的关系.《课标》中对本节课的要求是能用公式法解数字系数的一元二次方程,会用一元二次方程个根的判别式判别方程是否有实数根和两个实数根是否相等.2.教育价值:在思想方法上,求根公式的推导运用了配方法,其基本思想是降次,通过配方法转化为可直接开方的形式,推导过程中还涉及分类讨论的思想.数学思想方法凝聚着数学的精髓和灵魂,尽管学生走上社会后,数学知识似乎渐渐淡忘了,但留存的应是那种铭刻在心头的数学思想、数学思维方式.从运算的角度看,公式包含了初中阶段所学过的全部六种代数运算:加、减、乘、除、乘方、开方,体现了公式的和谐统一.各级运算的顺序自动决定了一元二次方程的解题顺序.开平方运算不是总能进行的,要根据判别式的符号来判断方程是否有实数根,如果有实数根,则由三个系数来确定.通过运算可以完美地解决根的存在性、根的个数、根的求法三个问题,可以说是“万能”求根公式.它向我们展示了抽象性、一般性和简洁性等数学的美和魅力.3.与相关内容的联系:方程是初中数学的核心概念,在初中数学中占有重要的地位.在学习一元二次方程之前学生已经学会了解一元一次方程、二元一次方程和分式方程等,积累了一定的解方程的经验,体会到解分式方程时需要通过去分母将分式方程转化为整式方程,渗透了转化的数学思想,为研究一元二次方程的解法奠定了基础.,同时一元二次方程的“公式法”是在学习了直接开方法和配方法之后必须掌握的另一种解一元二次方程的方法,是配方法的一般化和程式化,利用它可以更便捷地解一元二次方程.另外,一元二次方程的解法为高中阶段学习二元二次方程组和一元高次方程的解法提供了方法的引领,发挥着重要的作用.从知识的发展来看,学生通过一元二次方程的学习,不仅是对已经学过的实数、整式、二次根式等知识的巩固,也为今后学习二次函数以及高中阶段的算法等知识奠定基础,起到了承上启下的作用.二、教学目标1.经历一元二次方程的求根公式的推导过程,领悟其基本思想(降次化归)与基本方法(配方法);2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况,能够运用公式法求解一元二次方程(数字系数);3.通过推导求根公式,加强推理技能训练,发展逻辑思维能力和善于发现问题的思维素质.三、学生学情分析学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;学生原有的认知结构中已有的知识是直接开平方法解一元一次方程以及用配方法解数字系数的一元二次方程,学生通过直接开平方法、配方法解一元二次方程的学习,对于降次化归的理论依据(开平方)以及基本思路(将一元二次方程转化为两个一元一次方程)已比较熟悉.这节课可以借助学生已有的配方经验,从具体到抽象,得到一元二次方程一般形式的解,即求根公式.但是九年级学生的思维水平处于具体形象思维向抽象思维过渡阶段,对于一般形式的一元二次方程求解过程以及公式法求解一元二次方程本质的理解仍然存在一定的困难.具体体现在以下几个方面:1.学生独自运用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式的过程会遇到困难.2.在用配方法进行公式推导时,忽视对b 2-4ac 取值的讨论是学生的易错点,也是难点,此讨论又是分类思想的渗透,判别式的应用也在此得以体现.3.对 2244-2a ac b a b x ±=+的化简也会存在问题,有些学生会对由2244-2a ac b a b x ±=+到aac b a b x 2422-±=+的变化不理解. 4.用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程,只要确定系数a 、b 、c 的值,代入公式就能求出方程的根,学生对这个本质的理解会存在困难.四、教学策略分析策略1——课前通过用配方法解数字系数的一元二次方程,回忆用配方法解一元二次方程的一般步骤,为本节课中的用配方法推导一元二次方程的求根公式奠定理论基础,同时为了降低学生解字母系数的一元二次方程的难度,将推导的过程分为两个环节,第一环节以填空题的形式,让学生明确二次项系数化为1、移项、配方等过程,掌握每一步的具体做法以及变形的依据.第二环节则采用小组讨论和全班共同探索的方式进行,这样就解决了学生独立推导求根公式所面临着种种困难的问题.策略2——当推导到22a 4ac 4-b )a 2b (=+2x 这一步时,通过设计问题串引发学生的思考,逐步意识到只有当配方的结果是一个非负数时才能进行开方运算,于是针对22a 4ac4-b 展开进一步的探讨,渗透分类讨论的数学思想,此环节采用小组交流的方式进行,避免了学生独立思考时思维的局限性.策略3——对2244-2a ac b a b x ±=+ 进行化简时可能会出现两种情况,一部分学生会误认为2244a acb -的化简结果就是a 2ac 4-b 2,没有考虑到4a 2开方的结果是a 2,缺少分类讨论的思想;还有一部分是对aac b a b x 2422-±=+不会化简,为了突破这个难点,在教学设计时采用采用多媒体课件及板书的结合,以填空的形式引发学生的思考,∵a ≠0,当a >0时2244-2a ac b a b x ±=+ ,当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有2244-2a ac b a b x ±=+ ,这样也就解决了学生在推导公式过程中的又一个难题.策略4——为了强化学生对用公式法求解一元二次方程本质的理解,在教学活动中不是直接告诉学生这个过程就是代数式求值的过程,而是通过具体的例题展示和练习让学生自己经历先确定系数a 、b 、c ,再判断b 2-4ac ,最后代入公式求解一元二次方程的过程,亲身感受到用公式法求解一元二次方程本质就是一个代数式求值的过程.另外,为了便于学生理解,教学环节中又设计了一个程序图来表示用公式法解一元二次方程的步骤,更能直观形象地反映这一本质,同时揭示了“神器”的奥秘,引申出高中阶段要学习的算法知识,体现了知识的前后联系.五、教学过程第一环节情境引入活动内容:数学竞赛,比一比看谁做的又快又准.用配方法解下列方程:(1)2x2-3x+1=0; (2)3x2-6x+4=0.找男生代表和女生代表到前面板演,其余同学在题单上运算.设计意图:与本节课有实质性联系的内容是前一节的配方法,以此为新知识的生长点呈现练习题:用配方法解两个上述方程,即激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.使学生认识到每一个数字系数的一元二次方程都可以用配方法来求解,同时体验到配方法的局限性.由此产生疑难和困惑,感悟到具体的配方法已经不够了.思考:(1)回忆用配方法解一元二次方程的基本思路是什么?体现了哪种数学思想?设计意图:通过提问,一方面加深对学生数学思想方法的渗透,另一方面,与本节课公式法解一元二次方程的本质形成对比,增强学生对知识的理解和掌握.(2)用配方法解一元二次方程的一般步骤有哪些?设计意图:复习用配方法解一元二次方程的步骤为后面用配方法推导一元二次方程的求根公式做铺垫.(3)所有的一元二次方程都能用配方法求解吗?你喜欢配方法吗?为什么?(4)能否有更简便和更一般的方法求一元二次方程的根呢? 出示 “计算神器”,指出只要知道a 、b 、c 就能很快判断出方程根的情况,并且很快计算出方程的根.用“计算神器”计算上面两个一元二次方程,并让学生随机说出一个一元二次方程,进行求解.设计意图:借助“计算神器”,一方面激发学生学习数学的兴趣,调动积极性;另一方面,使学生初步感受到一元二次方程的根的情况就是由系数a 、b 、c 决定的.特别是计算神器的原理又是高中阶段的算法的程序图,这样处理体现知识的前后联系.第二环节 新知探究活动1:推导求根公式.用配方法解一元二次方程:ax 2+bx +c =0(a ≠0)学生阅读题单上小亮同学的用配方法解方程ax 2+bx +c =0(a ≠0)时的一部分过程,请将横线上的部分补充完整,并指出每一步的依据.解:∵a ≠0∴方程两边都除以a 得0ac x a b x 2=++ ,得 ac x a b x 2-=+ 配方,得 222ac x a b x ) () (+-=++ 即: 2x )____(+=思考:(1)按照配方法的步骤,下一步应该做什么呢?(2)现在能直接两边开平方吗?如果能开平方,写出开平方后的结果,如果不能,说明理由.(学生小组内讨论)(3)什么情况下 04422≥-a ac b? 引导学生分析∵ a ≠0∴ 4a 2>0 要使04422≥-aac b 只要 b 2-4ac ≥0即可.当b 2-4ac ≥0时,两边开平方取“±” 得:2244-2a ac b a b x ±=+ (4)如何2244-2a ac b a b x ±=+对进行化简呢? (学生先独立思考再小组交流讨论)PPT 呈现:对2244-2a ac b a b x ±=+化简结果进行分析∵a ≠0当a >0时aac b a b x 2422-±=+ 当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有aac b a b x 2422-±=+ 最后得出aac b b x 242-±-=设计意图:由于用配方法推导求根公式是本节课的一个难点,为了突破这个难点,于是将公式的推导过程分为两个部分,第一部分,只要学生知道配方法的步骤及每一步对应的依据就能很快完成推导过程,但是后一部分对开方的条件的判断以及对2244a ac b ab x -±=+的化简结果的讨论都是本节课上学生的困难所在,于是采用多媒体课件及板书的结合,以填空的形式引发学生的思考,大大降低了推导公式的难度,达到让学生跳一跳就能摘到桃子的效果.(5)如果b 2-4ac <0时,会出现什么问题?归纳:我们把a ac b b x 242-±-=称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.设计意图:理解一元二次方程求根公式中各字母代表的意义及条件,理解公式的结构特征,突出数学问题的本质.活动2:典例示范.例:用公式法解方程:2x 2-3x +1=0 .板书示范 解:这里 a =2, b =-3, c =1.b 2-4ac =(-3)2-4×2×1=1>0.413221)3(±=⨯±--=x ,即,11=x , 212=x . 思考:例题与第一环节中的第(1)题对比,哪种解法更简捷? 设计意图:回到情境中的练习,运用求根公式解方程2x 2-7x +3=0,使学生体会到求根公式的优越性,感悟从特殊到一般、发现提出问题的方法.请模仿例题完成下面的做一做做一做:用公式法解下列方程(1)2x2-22x+1=0 ;(2)5x²-3x=x+1 ; (3)x2+17=8x .思考:(1)第(2)题与第一环节中的第(2)题对比,哪种解法更简捷?(2)通过例题与练习题的学习,请思考用公式法求解一元二次方程的一般步骤有哪些?(3)观察这三道题,你还有什么发现?归纳:对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,一元二次方程实数根;当b2-4ac=0时,一元二次方程实数根;当b2-4ac<0时,一元二次方程实数根.一元二次方程ax2+bx+c=0(a≠0)的根的情况由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ来表示.设计意图:通过解方程使学生进一步体会求根公式的实质是代数式求值的过程,并归纳用求根公式解一元二次方程的基本思路.使学生运用求根公式解方程的同时,体验判别式与根的个数的关系,特别是判别式小于0时直接得到无实数根而不用代入求根公式,概括出在用求根公式解一元二次方程时可以先确定判别式的值代入求根公式,从而丰富和优化学生的认知结构.第三环节 巩固应用1.判断下列方程根的情况:(1)x 2+5x +6=0 (2)9x ²+12x+4=0设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度.第四环节 感悟收获谈谈本节课的收获和体会?你还有哪些问题?学生发言,互相补充,教师点评完善. 既要关注知识的整理与归纳,更要关注本节课研究问题的过程以及运用的数学思想方法.设计意图:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,引导学生建立知识之间的内在联系,概括本节课的核心知识及运用的数学思想和研究方法,旨在使学生生成组织良好的数学认知结构网络.另外,用程序图表示用公式法解一元二次方程的步骤,揭开神器的秘密,学生的好奇心得到满足.第五环节 当堂检测1.一元二次方程y 2+3y -4=0的根的情况为( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定2.已知关于x 的一元二次方程x ²+2x +a =0有两个相等的实数根,则a 的值是( ) A. 1 B. -1 C. 41 D. 413.用公式法解方程4x2+9=12x设计意图:紧扣目标点设计达标测评题,全面了解学生学习水平,及时发现学生认识中存在的问题,给予有效指导,保证当堂落实.第六环节布置作业必做题:习题2.5 知识技能第1、2、3题选做题:尝试用不同种方法解一元二次方程2x²-3x+1=0,通过解答过程谈一谈每种解法的优势与不足.六、教学反思本节课的设计目标明确,重点突出,课前以数学竞赛(用配方法解一元二次方程)引入,调动了学生学习数学的积极性,同时激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.公式的推导过程本来是本节课的难点所在,课前设计的各种为了突破难点的策略都发挥了极大的作用,学生在问题的引导下,同伴的互助下很顺利地推导出了一元二次方程的求根公式.公式的训练、落实有效,对判别式的归纳从特殊到一般思路很清晰,归纳也条理.在整个课堂教学活动中,不仅关注数学知识与能力的发展,同时也重视数学思想方法的渗透;不仅有学生独立思考解决问题的环节,同时也关注了学生之间的合作交流,培养了学生之间的合作精神,不仅注重了对学生基础知识和基本技能的评价,同时又注重了对学生情感态度的评价.。
初中数学_用公式法解一元二次方程教学设计学情分析教材分析课后反思

《用公式法解一元二次方程》之教学设计教材:义务教育教科书(五四制)数学八年级(下)课题用公式法解一元二次方程(1)教学目标 1.通过经历探索一元二次方程求根公式的推导过程,培养理性精神。
2.会用公式法解简单的数字系数的一元二次方程,培养缜密严谨的思维品质。
3.在公式推导中了解根的判别式、根与系数的关系,增强概括性、严密性、思想性的数学素养。
教学重点 1.一元二次方程求根公式的推导过程。
2.用公式法解一元二次方程。
教学重点一元二次方程求根公式的推导过程。
教学过程一、情境激趣课前热身【活动1】--教师1.在对比配方法解一元二次方程解法的同时给学生呈现一个一元二次方程的工具,只要输入一元二次方程的二次项系数,一次项系数和常数项就可以直接得到方程的根。
引发学生思考:这个解方程的工具奥妙在哪里,就在我们学的这节课的内容里。
【活动1】--学生学生兴趣盎然,自编方程,尝试计算器的奥妙与神奇。
【活动1】--设计意图通过神奇的计算器,激发学生研究学习本节课的热情。
二、复习回顾 提出问题【活动2】--教师2.请用配方法解下列方程思考:通过解方程,(1)比较三个方程的根有什么不同。
(2)是什么导致了根的不同?(3)如何不解方程就能判断出根的不同?【活动2】--学生学生三人上黑板每人一道,其余学生在练习本上。
一生通过自己解的方程带领大家复习配方法解一元二次方程的步骤。
观察所解三个方程的根的情况,发现有两个相同实根、两个不同实数根 没有实数根 ,系数发生了变化,根就发生了变化。
从配方右边的结果可以看出根的不同。
【活动2】--设计意图通过解方程,(1)回顾用配方法解一元二次方程的步骤,为推导求根公式做方法的铺垫。
(2)发现根的特点的不同,探求系数不同,导致根的不同。
(3)启发从配方的结果,结合平方根的定义,发现根的不同,为求根公式推导过程中,对 的讨论,做好铺垫。
三、自主探究 排难解惑【活动3】--教师096)1(2=++x x x x 312)2(2=+0463)3(2=+-x x3.数字系数能够用配方法解决,换成字母系数,我们还能用配方法解决吗?ax2 +bx + c = 0 (a≠0)引导学生返回到开始所解三个方程,观察这三部分,引导发现配方后的右边其实是有三种情况的,而这三种情况决定了后续根的情况。
《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。
《公式法解一元二次方程》教案3

《公式法解一元二次方程》教案3安福县城关中学曹经富教学设计说明:根据教材的特点,把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.(1)教材分析“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华.(2)学情分析学生的知识技能基础:学生已经学习了一元一次方程、二元一次方程、一次函数以及二次根式的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力.学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.教学目标1.理解一元二次方程求根公式的推导过程和判别式,培养数学推理的严密性和逻辑性以及由特殊到一般的数学思想.2. 能够根据方程的各项系数,判断出方程的根的情况,并能正确、熟练的使用求根公式解一元二次方程.3.结合用公式法解一元二次方程的练习,培养快速准确的运算能力和运用公式解决实际问题的能力.4.体验到所有的一元二次方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识.教学重点、难点教学重点:正确、熟练地使用一元二次方程的求根公式解一元二次方程,提高学生的综合运算能力.关键是由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形式展开,利用学生已有的知识,通过自学让学生主动参与到教学活动中来,让学生处于主导地位.通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识.教学难点:正确地推导出一元二次方程的求根公式,理解b2-4ac判别式对一元二次方程根的影响和应用.关键是在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式和灵活运用根的判别式课时设计一课时.教学策略整节课以“复习回顾——自学提要——分析探究——学以致用——总结升华”为主线,使学生亲身体验求根公式的探索过程,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.教学过程一 复习回顾1、一元二次方程 的一般形式是 .2、方程2410x -+= 的二次项系数是 ,一次项系数是 ,常数项是 .3、若方程(x —1)2= -9,则此方程 .4、用配方法解下列方程(1)6x 2-7x +1=0 (2)2x 2-8x -9=0答案:1. ax 2+bx +c =0(a≠0) 2.4 - 1 3.无实数解4.(1)移项,得:6x 2-7x =-1 二次项系数化为1,得:x 2-76x =-16配方,得:x 2-76x +(712)2=-16+(712)2即 (x -712)2=25144,x -712=±512x 1=512+712=7512+=1 x 2=-512+712=7512-=16(2)二次项系数化为1得x 2-4x -92=0; 移项x 2-4x =92;配方x 2-4x +22=92+4;(x -2)2=172,x -2或x ;解得x 1,x 2=【设计意图】复习一般式的化简以及系数的区分,为公式法的推导铺垫,其次利用所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备.二 自学指导阅读课本,并思考:1、用配方法解一元二次方程ax 2+bx +c =0(a ≠0)2、什么叫做根的判别式?3、满足什么条件时一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的数根?两个相等的实数根?没有实数根?4、什么是求根公式?5、用公式法解一元二次方程的一般步骤有几步?答案:1.解:20ax bx c ++=方程两边都除以a ,得:20b c x x a a ++= 配方,得:222()()22b b c b x x a a a a++=-+,即:2224()24b b ac x a a -+=当24b ac -≥0时,开平方得:2b x a +=所以方程的解是:x = 当24b ac -<0时,方程无实数根.2.一元二次方程的根的判别式一元二次方程20ax bx c ++=(a ≠0)的根的情况由24b ac -来确定,我们把24b ac -叫做一元二次方程20ax bx c ++=(a ≠0)的根的判别式,通常用符号“△”表示,即△=24b ac -.3.一般地,方程20ax bx c ++=(a ≠0).当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.反过来,有当方程有两个不相等的实数根时,△>0;当方程有两个相等的实数根时,△=0;当方程没有实数根时, △<0.注意:一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围.4. 一元二次方程20ax bx c ++=(a ≠0)的求根公式为:x =(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法称为公式法.5.用公式法解一元二次方程的一般步骤是:①首先把一元二次方程化为一般形式;②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -的值代入求根公式即可求解.当24b ac -<0时,此时方程无实数解.【设计意图】通过相关问题的自学与小组合作交流探讨,使学生认识到有的一元二次方程是没有实数根的,学生会很自然的产生为什么有的一元二次方程没有实数根的疑问,教师适时引导学生一元二次方程的根与一元二次方程什么有关系问题,从而激发学生的求知欲望. 让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.三. 分析探究【设计意图】学生对于字母的一元二次方程的一般形式用配方法解决有难度,教师可进行适当引导与点拨、提示,培养学生独立思考的能力和推导能力.四 学以致用例1:不解方程,判定方程根的情况(1)16x 2+8x =-3 (2)9x 2+6x +1=0(3)2x 2-9x +8=0 (4)x 2-7x -18=0分析:不解方程,判定根的情况,只需用b 2-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x +3=0这里a =16,b =8,c =3,b 2-4ac =64-4×16×3=-128<0所以,方程没有实数根.(2)a =9,b =6,c =1,b 2-4ac =36-36=0,∴方程有两个相等的实数根.(3)a =2,b =-9,c =8b 2-4ac =(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a =1,b =-7,c =-18b 2-4ac =(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.例2.用公式法解下列方程(1)2x 2-4x -1=0 (2)5x +2=3x 2(3)4x 2-x +116=0 (4)4x 2-3x +1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0∴方程有两个不相等的实数根.x =(4)422242--±==⨯∴x 1x 2 (2)将方程化为一般形式3x 2-5x -2=0a =3,b =-5,c =-2b 2-4ac =(-5)2-4×3×(-2)=49>0∴方程有两个不相等的实数根.x =(5)57236--±±=⨯ x 1=2,x 2=-13(3)a =4,b =-1,c =116b 2-4ac =(-1)2-4×4×116=0 ∴方程有两个相等的实数根.∴x 1= x 2= (1)1248--±=⨯ (4)a =4,b =-3,c =1b 2-4ac =(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.例3.某养鸡厂的矩形鸡舍靠墙.现在有材料可以制作竹篱笆20米,若欲围成42平方米的鸡舍,鸡舍的长和宽应是多少?能围成52平方米的鸡舍吗,若可以求出长和宽,若不能说明理由..解:(1)设鸡舍的长为x 米,则宽为202x -米, 由题意得:x ×202x -=42, 解得:x 1=14(14>10,故舍去),x 2=6(此时宽大于长,舍去).即可得鸡舍的长为6m ,宽为7米.(2)由题意得:x ×202x -=52, 整理得:x 2-20x +104=0,△=400-4×104<0,所以方程无解.故不可能围成面积为52平方米的矩形鸡舍.【设计意图】对求根公式解方程与应用作进一步深化,使不同层次的学生都有不同提高,进一步巩固本节课所学知识.五、总结升华1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明.3、若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况.【设计意图】采用学生小结教师补充的方式来概括本节课的知识.回答学生在学完本课后发现的未能解决的问题及创新性问题,给学生自由思考的空间.适当给以指导,培养学生归纳和语言表达能力,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.课后作业1.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程﹣4x 2+3=5x ,下列叙述正确的是( )A .a =﹣4,b =5,c =3B .a =﹣4,b =﹣5,c =3C .a =4,b =5,c =3D .a =4,b =﹣5,c =﹣32.方程x 2﹣3x ﹣5=0的根的情况是( )A 、只有一个实数根B 、有两个不相等的实根C 、有两个相等的实数根D 、没有实数根3.方程x 2+x ﹣1=0的根是( )A .1﹣5B .15-+C .﹣1+5D .15-± 4.下列方程有实数根的是( )A 、2501x x +=-B 、12x -=-C 、x 2﹣x +1=0D 、2x 2+x ﹣1=05.已知直角三角形的三个边长为a 、b 、c ,∠C=90°,那么关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0的根的情况是( )A 、无实数根B 、有两个相等的实数根C 、有两个不相等的实根D 、不能确定6.已知一元二次方程2x 2﹣3x =1,则b 2﹣4ac =7.方程ax 2+bx +c =0(a ≠0)的判别式是 ,求根公式是8.一元二次方程x 2﹣x +4=0的解是9.用公式法解方程2x 2﹣7x+1=0,其中b 2﹣4ac = ,x 1= ,x 2=10.一元二次方程a 2﹣4a ﹣7=0的解为11.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是12.解方程:(1)5x (x -3)=6-2x ; (2)3y 2+1=23y ; (3)(x -a )2=1-2a +a 2(a 是常数)13.解方程x 2=4x +2时,有一位同学解答如下:解:∵a =1,b =4,c =2,b 2﹣4ac =42﹣4×1×2=8,∴x 24b b ac -±-4822-±=-±即:即x 1=22-x 2=22-分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.14.(1)解下列方程:①x 2﹣2x ﹣2=0;②2x 2+3x ﹣1=0;③2x 2﹣4x +1=0;④x 2+6x +3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.参考答案1.B2.B3.D4.D5.B 解:∵直角三角形的三个边长为a 、b 、c ,∠C=90°, ∴c 2=a 2+b 2①∴△=4b 2﹣4×(a +c )(c ﹣a )=4(a 2+b 2﹣c 2)=0,∴关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0有两个相等的实数根.故选B.6.177. b 2﹣4ac8. 无实数解9. 4174-10. 2+ 2 11. k ≥94-12.(1)3,25-;(2)3;(3)1,2a -113.解:有错误.没有把x 2=4x +2变成一般式,b 、c 的值是错的.正确的解题过程如下:x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =2b a -=422=-即:x 1,x 2=2.14.解:(1)①解方程x 2﹣2x ﹣2=0①,∵a =1,b =﹣2,c =﹣2,∴x 212±=∴x 1x 2=1.②解方程2x 2+3x ﹣l=0,∵a =2,b =3,c =﹣1,∴x =2b a -∴x 1=34-=,x 2=34-=.③解方程2x 2﹣4x +1=0,∵a=2,b=﹣4,c=1,∴x===,x1=,x2=.④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(2)其中方程①③④的一次项系数为偶数2n(n是整数).一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.板书设计教学反思1.充分利用教材,在练习题与例题的编排上打破常规,通过设置自学提要—自学—探索—归纳—总结出公式法,再让学生用求根公式解决问题,深刻地体现了新教材的课改理念.2.在学习过程中,给学生留下了很大的思维空间,通过学生自主学习,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生.无论是公式的推导,还是公式的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼.3.在巩固新知识的阶段中,习题的编排上有梯度上,即注重了双基训练,又注重了能力的培养.使学生在掌握基础的前提下,循序渐进,步入公式的大家庭中.同时在探索升级中,进一步锻炼,培养了学生的猜想能力.。
一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用公式法解一元二次方
程教案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
优质课比赛教案
第23章
23.2 用公式法解一元二次方程
整体设计
教学分析
求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。
用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。
教学目标
知识与技能:
1、理解一元二次方程求根公式的推导过程
2、会用求根公式解简单系数的一元二次方程
过程与方法:
经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯
情感、态度与价值观
通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。
重点:
掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程
难点:
一元二次方程求根公式的推导过程
教学过程:
一、复习引入:
1、用配方法解下列方程:
(1)4x 2-12x-1=0;(2)3x 2+2x-3=0
2、用配方法解一元二次方程的步骤是什么?
说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。
3、你能用配方法解一般形式的一元二次方程ax 2+bx+c=0(a ≠0)吗?
二、问题探究:
问题1:你能用一般方法把一般形式的一元二次方程ax 2+bx+c=0(a ≠0)转化为(x+m)2=n 的形式吗?
说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让
学生分组讨论交流,达成共识,最后化成(x+a
b 2)2=2244a a
c b - ∵a ≠0,方程两边都除以a,得x 2+
0=+a c x a b 移项,得x 2+
a c x a
b -=
配方,得x 2+
22)2(-)2(a
b a
c a b x a b +=+
即(x+=2)2a b 2244a ac b -
问题2:当b 2_
4ac ≥0,且a ≠0时,2244a ac b -大于等于零吗?
教师让学生思考,分析,发表意见,得出结论:当b 2-4ac ≥0时,因为a ≠0,
说以4a 2
>0,从而得出04422≥-a ac b 问题3:在问题2的条件下,直接开平方你得到什么结论?
让学生讨论可得x+a
ac b a b 2422-±= 说明:若有必要可让学生讨论22224444a
ac b a ac b -±=-±为什么成立 问题4:由问题1,问题2,问题3,你能得出什么结论?
让学生讨论,交流,从中得出结论,当b 2-4ac ≥0时,一般形式的一元二次方
程ax 2+bx+c=0(a ≠0)的根为x+a ac b a b 2422-±=,即x=a
ac b b 242-±- 由以上研究结果得到了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式:x=04(2422≥--±-ac b a
ac b b ),这个公式就称为“求根公式”。
利用它解一元二次方程叫做公式法。
说明和建议:
(1)求根公式a
2ac 4-b b -x 2±=(b 2-4ac ≥0)是专指一元二次方程的求根公式,b 2-4ac ≥0是一元二次方程ax 2+bx+c=0(a ≠0)求根公式的重要条件。
(2)用公式法(求根公式)解一元二次方程,实际上就是给出a 、b 、c 的数值(或表示式),然后对代数式a
ac 24b b -2-±进行求值,由于这样的计算比较复杂,所以提醒学生计算时注意a 、b 、c 的符号。
三、 例题解析:
例1、解下列方程(教材例6)
(1)2x 2+x-6=0; (2)x 2+4x=2;
(3) 5x 2-4x-12=0; (4) 4x 2+4x+10=1-8x ;(5)x 2+5x+8=0
解:(1)这里a=2,b=1,c=-6
B 2-4ac=12-4x2x(-6)=1+48=49 说以x=4
7122491242±-=⨯±-=-±-a ac b b 即x 1=-2, x 2=2
3 (2)将方程化为一般形式,得x 2+4x-2=0
因为b 2-4ac=24 所以x=622
244±-=±- 即x 1=-2+6, x 2=-2-6
(3) 因为b 2-4ac=256
所以x=1016452256)4(±=⨯±--, 得x 1=-5
6 ,x 2=2 (4) 整理,得4x 2+12x+9=0
因为b 2-4ac=0 , 所以x=
8
012±- 即x 1=x 2=-23 (5)因为a=1 ,b=5 ,c=8
b 2-4ac=52-4x1x8=-7<0
所以方程无实数解
讲解要点:
(1)对于(2) ,(4) 首先要把方程化成一般形式
(2)提醒学生注意a.b.c 的符号,如(3)题中b=-4,公式中的-b应为-(-4)
(3)先计算b2-4ac的值,再代入分式求解
3
(4)对于第(4)题不要写成x=-
2
说明:当b2-4ac<0时,不用代入求根公式,直接写出方程无实数根即可
例2 、我们做一个小游戏:一组同学写出方程,另一组同学用公式法解方程,然后反过来,看哪一组同学表现最好。
四:归纳提升
你能总结一下用求根公式法解一元二次方程的步骤吗?
先让学生自己归纳,然后小组讨论,回答。
教师引导学生归纳如下:
(1)把方程整理成一般形式,进而确定a,b,c的值(包括符号);
(2)求出b2-4ac的值(若b2-4ac<0,方程无实数根);
(3)在b2-4ac 0的前提下,把a、b、c的值代入公式进行计算,最后写出方程的根;当 b2-4ac<0,直接写方程无实数根。
通过总结使学生规范解题格式,让学生体会数学课中的严谨的逻辑推理不仅在几何问题中大量存在,也更广泛应用于代数中;从而更好地体会到用公式法解一元二次方程的步骤。
五、巩固训练
1、教材练习(1)、(3);
2、教材习题23.2第4题(1)、(2)、(3)、(6)巩固练习
给出习题然后由学生自己去做。
由于没说用何种方法,有些人可能习惯配方,有些人想用公式法尝试,都可以从做题速度与准度去比较这几个题哪种方法更好。
让三个不同层次的学生上讲台板演,同时走下来看看下面的学生有何问题,及时纠正。
设计意图:⑴ 比较配方法与公式法,⑵ 发现对于这几道题公式法步骤较为简单,⑶ 熟悉公式法,强化解题格式, ⑷ 及时发现错误及时解决。
让学生自己去做,选取对同一个方程利用配方法解的和公式法解的,让学生从简捷性与准确性去比较这几个题用哪种方法更好,并在小组内交流解方程过程中的得失,从而让学生在比较中加深对两种方法的认识,熟练这两种方法的应用。
并在学生口述中得以验证这一点.
学生比较配方法与公式法发现对于这几道题而言公式法步骤较为简单,并在学生练习时展示中强化解题格式、及时发现错误、及时解决。
然后让学生进一步反思:什么情况下用公式法较为简便,什么情况下用配方法较为适宜二者之间有无本质区别在思维上你有什么收获 在解题细节上你又有哪些注意的地方你还有解一元二次方程的其它方法吗
六、课堂小结
采用学生小结教师补充的方式来概括本节课的知识
(1)•引导学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根, 推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程.
062=-+x x 094=--x x 0
10522=++x
(2)教师扩展:(方法归纳)求根公式是一元二次方程的专用公式,•只有在确定方程是一元二次方程时才能使用,同时,求根公式也适用于解任何一元二次方程,是常用而重要的一元二次方程的万能求根公式.
七、作业
课本习题23.2 3、4、5
板书设计
§23.2 公式法解一元二次方程
一、(回顾旧知识)三、例题
配方法的一般步骤四、练习
二、(讲授新课)五、(总结归纳)
推导求根公式用公式法解一元二次方程的步骤
后记
通过复习配方法使学生会对一元二次方程的定义及解法有一个熟悉的印象。
然后让学生用配方法推导一般形式ax2+bx+c=0(a≠0)的解,使学生的推理能力得到加强。
通过分层布置作业,基于学生基础较好,对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同的提高.。