《分式的加减-同分母、异分母分式加减》 word版 公开课一等奖教案
人教初中数学八上《分式的加减-同分母、异分母分式加减》教案 (公开课获奖)

分式的加减---同分母、异分母分式加减xx x 32教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. [师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30° 2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,DCA B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.E DC A B P教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
分式加减法市公开课获奖教案省名师优质课赛课一等奖教案

分式加减法教案一、教学目标:1. 理解分式的概念,并能够正确地读写分式;2. 掌握分式的加法和减法运算法则;3. 能够应用分式加减法解决实际问题。
二、教学内容:1. 分式的基本概念;2. 分式的读写方法;3. 分式的加法和减法运算方法;4. 分式加减法的应用。
三、教学步骤:步骤一:分式的基本概念1. 引入分式的概念,解释分式由分子和分母组成的特点;2. 给出几个实际例子,让学生观察并总结分子和分母的含义;3. 让学生通过举例子,说出一些分式的应用场景。
步骤二:分式的读写方法1. 教师示范读写分式的方法,并让学生模仿读写几个分式;2. 引导学生观察分式的读写规律,总结出正确的读写方法;3. 练习一些分式的读写。
步骤三:分式的加法和减法运算方法1. 引入分式的加法和减法运算,解释分式加减法的运算法则;2. 教师示范分式加减法的步骤,并让学生举例进行计算;3. 解释如何找到分式加减法的最简形式;4. 练习一些分式的加减法运算。
步骤四:分式加减法的应用1. 提供一些实际问题,要求学生用分式加减法进行求解;2. 引导学生分析问题,列出方程式,并运用分式加减法解决问题;3. 让学生分享解决问题的方法和答案。
四、教学重点与难点:1. 分式的加法和减法运算方法;2. 如何找到分式加减法的最简形式;3. 运用分式加减法解决实际问题。
五、教学拓展:1. 可以进行更复杂的分式加减法运算;2. 可以拓展到分式乘法和除法的运算。
六、教学评价:1. 利用课堂练习和小组讨论评价学生对分式加减法的掌握程度;2. 设计一些综合性的问题,检验学生运用分式加减法解决问题的能力。
七、教学反思:本节课的教学重点在于使学生掌握分式的加法和减法运算方法,并能够灵活运用分式解决实际问题。
通过合理的教学设计和适当的练习,学生能够掌握这一知识点,并能够理解分式运算的意义和应用。
在教学过程中,要注重培养学生的思维能力和解决问题的能力,引导学生积极思考,并提供适量的练习机会,帮助学生巩固所学知识。
公开课教案---分式的加减

分式的加减(异分母的分式相加减)一、复习:1.同分母分式加减法的法则:同分母的分式相加减, 不变, 相加减.b c a a ±= 2.计算:(1)b a a --a b a - (2)a 1+a21; 3.最简公分母的确定方法:(1)分母是单项式: a.系数取各系数的 ,b.字母取所有字母的 。
(2)分母是多项式: a.能分解因式的先 , b. 系数取各系数的 ,c. 取所有整式的 。
4.确定下列各分式的最简公分母:(1)21,,234y x x y xy; (2)11,33x x +-; (3)2235,2y xy x x y -+- 二、探索新知:(一).计算: (1) 4156+ = (2)2132-= (3)241a a -= (4)11a b+= (二)对比总结:异分母分数相加减,先 ,化为 的分数,然后再按同分母分数的加减法则进行运算。
异分母分式相加减,先 ,化为 的分式,然后再按同分母分式的加减法则进行运算。
b d a c±= (三).应用新知:1.化简:(1)221a b+ (2)21223x xy -2.化简:(1)31-x -- 31+x (2)412-a -21-a3.化简:(1)122a a --+ (2)2112444x x x -+++(四).巩固应用:(阅读下列运算过程,回答所提问题) 化简:2333311(1)(1)1x x x x x x x ---=---+-- A 33(1)(1)(1)(1)(1)x x x x x x --=-+-+- B 33(1)x x =--+ C26x =-- D(1)上述计算过程中,从哪一步开始出现错误?( )(2)从B 到C 是否正确? 。
若不正确,错误的原因是- 。
(3)请你原题旁边正确解答:(五).拓展延伸:化简:2142122+⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a(六).合作探究:1111a a +=-+ ,222211a a +=-+ ,444411a a +=-+ 。
数学八年级下册《分式的加减法》省优质课一等奖教案

5.3 分式的加减法(二)一、教学知识点:1、异分母的分式加减法的法则;2、分式的通分;3、异分母的分式加减法计算。
二、教学目标:通过异分母分式的加减运算和通分的过程,训练学生的分式运算能力。
三、教学重点:1、掌握异分母的通分方法;2、掌握异分母的分式加减运算。
四、教学难点:1、化异分母分式为同分母分式的过程;2、符号法则、去括号法则的应用。
五、教学方法:启发、探索相结合,一讲一练。
六、教具准备课件投影与黑板板书相结合。
七、教学过程:(一)、复习引入:(用8分钟)1、提问:问题1:同分母分式是怎样进行加减运算的?问题2:异分母分式是怎样进行加减运算的?问题3:确定最简公分母的方法与步骤是怎样的? 这3个问题在课件中解析。
(课件投影)(由学生到黑板写出答案)提问:确定最简公分母的方法是什么?(每点答案选一个学生回答) 答案:1、最简公分母的系数是各分母的系数的最小公倍数; 2、各分母中所含的相同字母或多项式取最低次幂;3、对于只在一些分母中含有的字母或多项式,连同它的指数一起当作最简公分母的一个因式。
22121xy a )答案:(()()()332-+x x ()()()223-+a a ()()24y x -(课件投影)(请学生到黑板写出答案)异分母的分式的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法.(二)、例题解析:(用12分钟)(课件投影)(与学生互动问答的形式解决)();123,124,1261:2222222223xy a ya xy a x a xy a y 解()()();333,)3)(3(32-++-+-x x x x x x ()()()()();222,2213-++-+a a a a a ()()()().3,5422y x y x y x ---注意:对于分母是能分解因式的多项式的,一般要先对分母分解因式。
(课件投影)(由学生板演,学生之间互查互纠,师生互动).(课件投影)(由学生板演,学生之间互查互纠,师生互动)(由学生板演,学生之间互查互纠). (三)、深化拓展:(6分钟)(课件投影)(由学生小组讨论解答).(四)、本节内容小结(2分钟)(课件投影)(提出问题,由学生抢答). (五)、课后作业习题5.5第1、2、3题八、课内小测(15分钟)(课前印好试题)1.计算:23124ab a+=________. 2.计算:2211(1)a a +=--________.3.化简11123x x x++等于( ) A .12x B .32x C .116x D .56x4.若222222m xy y x yx y x y x y--=+--+,则m =( ).A .yB .y 2C .xD .2x5.当分式2121111x x x ---+-的值等于零时,则x =( ). A .1 B .23C .-1D .36.计算:(1)2221244x x x x x x +----+. (2) 21222933m m m ++--+ (3) 211x x x --- (4) (23-x x -2+x x )·xx 42-7.先化简,再求值:26333a a a a a a +-+--,其中32a =.九、课后思考:若)1)(1(3-+-x x x =1+x A +1-x B ,求A 、B 的值.十、学生向老师提问:(2分钟)问。
《分式的加减》教案

《分式的加减》教案
[教学目标]
知道分式加、减运算的一般步骤,能熟练进行分式的加、减运算. 此外,通过对分式加、减运算法则的自主探索,增强学生用类比思想研究问题的意识、转化问题的能力和验证猜想的数学素养及以理服人的良好个性品质.
[教学过程]
1.情境创设
可以直接用问题引入课题:两个分式如何相加?两个分式怎样相减? 因为分式与分数加、减运算的法则相同,学生完全有能力类比分数的相应情况,自行得到分式加减运算的法则,无需另设情境.
2.探索活动
(1)同分母的分式怎样相加?怎样相减?如
??=-=+a
c a b a c a b (2)异分母的分式怎样相加?怎样相减?如??=-=+
d c a b d c a b (3)你能说明你的猜想是正确的吗?
探索活动(2)的目标不仅仅是运用类比的方法得出结论,还要让学生进一步学会用转化的思想,将未知的问题化归为已知问题的研究方法.
探索活动(3)并不要求每个教学班都进行,教师应根据学生的实际情况确定.设计此探索活动的目的是,探索“验证法则正确性”的方法,例如,给字母赋值计算的方法,培养学生养成验证猜想,以理服人的良好数学素养.
3.例题教学
例1是同分母分式的加、减运算,例2是异分母分式的加、减运算,两个例题的分母都是单项式或可以当作单项式处理的多项式,运算比较简单.需要说清的是“把分子相加、减”的意义及规范的书写格式.
例3是分母为多项式的异分母分式的加、减运算,通过分析引导学生寻找解题方向.此外,可就解题的每一步骤的目的和根据做一些说明,强调完整简捷的书写格式,不仅是表述的需要,同时也有助于提高解题能力:思路清晰,推
理有据,变形有法.
4.作业题
《学习手册》随堂练习题。
3分式的加减法【优质一等奖创新教案】

3分式的加减法【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅3.分式的加减法同分母分式的相加减教学内容:义务教育课程标准实验教科书(北师版)《数学》八年级(下册)第五章第3节课时安排:1课时学情分析:学生认知基础:学生在小学时已经学习过同分母分数加减及异分母分数加减的运算法则,并且经历过用字母表示现实情境中数量关系的过程。
由此类比分式的加减法,可以猜想分式的加减运算法则。
活动经验基础:在相关知识的学习过程中,学生经历过一些从实际问题建模的思想,因此本节课从实际问题入手,能够引起学生的有意记忆;同时,还与整式运算、分解因式等有密切联系,因此可以加强知识之间的纵向联系。
学习内容分析分式加减法的教学在教材中安排了两课时。
第一课时讲述同分母分式加减法的运算法则及其应用以及简单异分母分式相加减的运算。
第二节课则讲述异分母分式加减法的运算法则及分式的通分。
在此,我做了部分调整:讲授完同分母分式加减法的运算法则及其应用以后,把第二课时的异分母分式相加减的运算法则也放到本课时,让学生形成连贯的知识,且形成知识的对比记忆,并体会数学中的化归思想,教学目标:1、探究同分母分式加减法的运算法则及简单的异分母分式加减法的运算法则。
2、通过实际问题的提出,引导学生自己解决问题,采用类比的方法,帮助学生自己总结知识点。
3结合已有的学习经验,解决新问题,获得成就感以及克服困难的方法和勇气。
教学重点:同分母分式及简单的异分母分式加减法的运算法则。
教学难点:运用运算法则正确求解分式计算问题。
课堂教学结构:创设情境引出课题——类比思想总结法则——质疑讨论归纳法则——课堂小结布置作业教学过程:活动一创设情境引出课题1.P15问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P115[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.⒊师归纳:有关分式的加减运算,引出课题。
《 分式的加减》word版 公开课一等奖教案 (5)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!10.3分式的加减(2)授课时间: 年 月 日 总计课时: 教学目标:1、使学生在掌握分式的加减法法则的基础上,用法则进行分式的混合运算。
2、通过对分式的加减法的进一步学习,提高学生的计算能力和分式的应用能力。
3、在分式运算过程中培养学生具有一定代数化归的能力,培养学生乐于探究、合作交流的习惯,进一步培养学生“用数学的意识”。
教学重点:分式的加减法混合运算 教学难点:正确熟练进行分式的运算 课时数:2第二课时教学过程复备栏一.复习提问:1、分式的加减法的法则是什么?2、有理数的混合运算法则是什么?学生回答问题,教师及时纠正出现的错误。
引言:我们在上节学习了分式的加减法,这就是我们学习分式混合运算。
二.新课:在实际生活中我们会经常用到电,在电路中的并联和串联,对于并联电路总电阻与各分电阻之间有什么关系呢?学生回答。
在下面的问题就是一个与生活密切相关的实际问题。
例1、如图的电路中,已测定CAD 支路的电阻R1欧姆,又各CBD 支路的电阻R2比R1大50欧姆,根据电学定律可知总电阻R 与R1、R2满足关系式1R =1R1 +1R2试用含R 1的式子表示总电阻R 。
分析:学生已经学习了电学,可知关系式了1R =1R1 +1R2 +…+1Rn。
解:因为:1R =1R1 +1R2 = 1R1 +1R1+50=R1+50R1(R1+50) +R1R1(R1+50) =2R1+50R1(R1+50)即:1R =2R1+50R1(R1+50)所以R=R1(R1+50)2R1+50 =R12+50R12R1+50。
分式的加减说课稿市公开课一等奖省优质课获奖课件

【合作探究】小组讨论交流解题思绪,小组活动后,小组代表展示活动结果。10分钟
探究1 已知:
,求A与B值。
解:∵
∴ ∴
∴
点拨精讲:先将左边相加,再与右边对比即可。
第5页
【合作探究】小组讨论交流解题思绪,小组活动后,小组代表展示活动结果。10分钟
探究2 计算:
解: = = =
点拨精讲:巧用乘法公式,逐项通分。
;异分母分式相
a b a b , a c ad bc ad bc c c c b d bd bd bd
第3页
【预习导学】
二、自学检测:学生自主完成,小组内展示、点评,教师巡视。8分钟
1、教材P141页练习题第1、2题;
2、计算①
②
③
④
⑤
⑥
点拨精讲:分式加减结果要化为最简分式.。
第4页
求最简公分母概括为: 1、取各分母系数最小公倍数; 2、凡出现字母为底幂因式都要取; 3、相同字母幂因式取指数最大。取这些因式积就是最简公分
母。
第8页
【课堂小结】
(学生总结本堂课收获与迷惑)2分钟
【当堂训练】10分钟
第9页
第6页
【跟踪练习】学生独立确定解题思绪,小组内交流,上台展示并讲解思绪。9分钟
1、 计算 :①
②
③
2、化简 x 分式
计算结果是 a .
4、先化简,再求值:
,其中
第7页
【点拨精讲】(3分钟)
异分母分式加减法步骤: 1、正确地找出各分式最简公分母。 2、准确地得出各分式分子、分母应乘因式。 3、用公分母通分后,进行同分母分式加减运算。 4、公分母保持积形式,将各分子展开。 5、将得到结果化成最简分式(整式)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
分式的加减---同分母、异分母分式加减
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。