太阳能光伏电池板安装计算攻略

合集下载

屋面太阳能光伏板计算公式

屋面太阳能光伏板计算公式

屋面太阳能光伏板计算公式
屋面太阳能光伏板的计算公式包括多个因素,以下为光伏容量(千瓦)=屋顶面积(平方米)×光伏板面积利用系
数×光伏板效率×年均日照时间(小时/天)/1000,其中:
1.屋顶面积(平方米):表示可以安装光伏板的面积。

2.光伏板面积利用系数:表示光伏板实际接收太阳能的效率,一般为0.5~0.8。

3.光伏板效率:表示光伏板将太阳能转化为电能的效率,一般为10%~20%。

4.年均日照时间(小时/天):表示一年中平均每天的
日照时间。

请注意,以上公式仅为参考,实际安装过程中可能还需要考虑其他因素,如建筑物的结构、地理位置、气候条件等。

同时,安装光伏板前应咨询专业人士或机构,确保安装符合相关标准和规定。

小型光伏安装价格计算公式

小型光伏安装价格计算公式

小型光伏安装价格计算公式随着清洁能源的重要性日益凸显,光伏发电作为一种清洁、可再生的能源形式,受到了越来越多人的青睐。

在家庭和商业用途中,小型光伏安装成为了一种常见的选择。

然而,对于许多人来说,光伏安装价格是一个比较模糊的概念。

那么,如何计算小型光伏安装的价格呢?下面我们将介绍一下小型光伏安装价格的计算公式。

首先,让我们来了解一下小型光伏安装的基本构成。

小型光伏安装通常包括太阳能电池板、逆变器、支架、电缆、接线盒等组件。

在计算小型光伏安装价格时,需要考虑到这些组件的价格以及安装费用。

太阳能电池板是光伏系统中最核心的部分,它将太阳能转化为电能。

太阳能电池板的价格取决于其类型、品牌、功率等因素。

一般来说,太阳能电池板的价格可以通过以下公式计算:太阳能电池板价格 = 单块太阳能电池板的价格×安装所需的太阳能电池板数量。

逆变器是将太阳能电池板产生的直流电转化为交流电的设备。

逆变器的价格也受到品牌、功率等因素的影响。

逆变器的价格可以通过以下公式计算:逆变器价格 = 单台逆变器的价格×安装所需的逆变器数量。

支架、电缆、接线盒等组件也需要考虑在内。

这些组件的价格可以通过以下公式计算:其他组件价格 = 支架价格 + 电缆价格 + 接线盒价格。

除了组件的价格之外,安装费用也是计算小型光伏安装价格的重要部分。

安装费用一般包括人工费、材料运输费、安装工具费等。

安装费用可以通过以下公式计算:安装费用 = 人工费 + 材料运输费 + 安装工具费。

综上所述,小型光伏安装价格可以通过以下公式计算:小型光伏安装价格 = 太阳能电池板价格 + 逆变器价格 + 其他组件价格 + 安装费用。

需要注意的是,以上公式中的价格都需要根据具体情况进行调整。

例如,太阳能电池板的价格取决于其品牌、功率等因素,逆变器的价格取决于其品牌、功率等因素,其他组件的价格也会因具体情况而有所不同。

因此,在计算小型光伏安装价格时,需要根据实际情况进行具体的调整。

太阳能板的安装角度计算方式

太阳能板的安装角度计算方式

太阳能板的安装角度计算方式由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

太阳能光伏电池板安装计算攻略

太阳能光伏电池板安装计算攻略

太阳能电池板方阵安装角度怎样计算?由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

各类建筑光伏安装面积快速估算方法

各类建筑光伏安装面积快速估算方法

各类建筑光伏安装面积快速估算方法建筑光伏安装面积是指在建筑物的屋顶、墙壁或其他适宜的位置上安装太阳能光伏板,利用太阳能转换成电能供建筑物使用。

快速估算建筑光伏安装面积的方法可以根据建筑物的不同类型进行分类,下面将介绍几种常见的建筑光伏安装面积快速估算方法。

1.平面屋顶光伏安装面积估算方法:平面屋顶是建筑物上最常见的安装太阳能光伏系统的位置。

在估算平面屋顶光伏安装面积时,首先需要获得建筑物屋顶的尺寸,包括长、宽以及屋顶的可用面积。

然后,需要根据光伏板的大小和布局来确定其在屋顶上的布置方式,通常光伏板之间需要保留一定的间距。

2.斜面屋顶光伏安装面积估算方法:斜面屋顶相对于平面屋顶来说更常见,但它的形状和角度可能会影响光伏板的安装方式和面积估算。

在估算斜面屋顶光伏安装面积时,首先需要获得建筑物屋顶的尺寸和角度。

然后,需要确定光伏板的布置方式,通常光伏板需要与斜面屋顶的角度相匹配。

快速估算的方法是使用光伏板的安装系数来计算。

安装系数是指实际光伏安装面积与理论光伏安装面积之间的比例。

假设光伏板的安装系数为80%,建筑物屋顶的尺寸为100平方米,则安装面积为100平方米*安装系数80%=80平方米。

3.墙壁光伏安装面积估算方法:墙壁是另一种安装太阳能光伏系统的位置,尤其是在高层建筑或大型建筑物的外墙上。

在估算墙壁光伏安装面积时,首先需要获得建筑物墙壁的尺寸和面积。

然后,需要确定光伏板的布置方式,通常光伏板可以垂直或倾斜安装在墙壁上。

快速估算的方法是使用平均的光伏板功率密度来计算。

假设墙壁上安装的光伏板功率密度为150W/平方米,墙壁的面积为50平方米,则安装面积为50平方米*单位面积的功率密度150W/平方米=7500W=7.5kW。

需要注意的是,这些方法只是基于平均或估计的数据进行快速估算,并不能精确地确定建筑光伏系统的安装面积。

实际安装面积需要考虑更多因素,如太阳能资源、阴影遮挡、电力需求等。

因此,在进行建筑光伏安装时,最好还是通过专业的太阳能系统设计和工程团队进行详细的规划和设计。

太阳能板安装角度计算公式

太阳能板安装角度计算公式

太阳能板安装角度计算公式
太阳能板是一种利用太阳能转化为电能的设备。

它通常安装在阳台、屋顶或是地面等空旷的地方,为人们的生活提供了便利。

然而,
太阳能板的安装角度需要经过一定的计算来达到最高的效益。

太阳能板最佳安装角度取决于所在地的经纬度,日照时间以及使
用场所的需求。

一般来说,它的安装角度可以参照季节变化以及固定
角度。

季节变化:
夏季太阳较高,因此安装角度可以稍微倾斜一些,这样可以增加
太阳照射的时间。

安装角度的公式为:安装角度 = 维度角 - 10度冬季太阳较低,因此安装角度应该更倾斜一些,这样可以增加太
阳照射的面积。

安装角度的公式为:安装角度 = 维度角 + 10度固定角度:
在一些固定的场所,太阳能板的安装角度需要根据实际情况调整。

一般来说,太阳能板的安装角度可以按照以下公式进行计算:安装角度 = sin^-1(cosθ / cosφ) - φ
其中,θ为太阳高度角,φ为所在地的维度角,cos为余弦函数,sin为正弦函数,并将结果向下取整,误差控制在0.5度以内。

为了提高太阳能板的效率,还可以使用跟踪器来自动调节太阳能板的朝向和倾斜角度。

总的来说,太阳能板的安装角度需要根据实际情况进行计算和调整,以达到最高的发电效益。

光伏阵列太阳能电池板方阵安装角度计算和确定

光伏阵列太阳能电池板方阵安装角度计算和确定

光伏阵列太阳能电池板方阵安装角度计算和确定 The pony was revised in January 2021太阳能电池板方阵安装角度计算由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

太阳能光伏配置计算公式

太阳能光伏配置计算公式

太阳能光伏配置计算公式
1.光伏阵列的总发电能力计算公式:
总发电能力(kW)=单个光伏组件的发电能力(kW)×光伏组件的数量
其中,单个光伏组件的发电能力可以通过组件的额定输出功率和光照强度来估算。

太阳能组件的额定输出功率通常以瓦特(W)为单位给出。

2.太阳能光伏系统的总发电量计算公式:
总发电量(kWh)=系统总容量(kW)×平均每天日照时间(h)×发电效率
其中,平均每天日照时间(h)表示太阳能辐射的有效工作时间,可以根据实际情况和地理位置来确定。

发电效率考虑了系统在实际运行过程中的损耗和效率。

3.光伏系统所需面积计算公式:
光伏系统所需面积(㎡)=系统总容量(kW)×需要的功率密度(W/㎡)
功率密度表示每平方米面积上光伏组件所能提供的额定输出功率。

需要的功率密度可以根据实际情况和安装条件来确定。

在实际设计过程中,还需要考虑光伏组件之间的间距和阵列布局的因素。

4.光伏系统所需光伏组件数目计算公式:
光伏组件的数量=系统总容量(kW)/单个光伏组件的发电能力(kW)
通过以上公式,可以计算出需要安装的光伏组件的数量。

这个数量往往会考虑到备份和储存的需求,以确保在光照不足或故障情况下仍能提供足够的电力。

需要注意的是,上述公式只是一个基础的参考,实际设计中还需要考虑到其他因素,如光照变化、系统效率、组件损耗和布线效率等。

因此,在实际工程中,通常还需要进行更为详细的计算和模拟分析,以确保系统的可靠性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池板方阵安装角度怎样计算?由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1. 方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2. 倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。

对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。

对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。

特别是在倾斜角大于50°〜60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。

方阵从垂直放置到10°〜20°的倾斜放置都有实际的例子。

对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。

以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

3. 阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。

因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%〜20%。

针对这种情况,我们要对理论计算值进行校正。

通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。

如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。

另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。

有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,贝心R= L2/L1= ctgA x cosB此式应按冬至那一天进行计算,因为,那一天的阴影最长。

例如方阵的上边缘的高度为hl,下边缘的高度为h2,则:方阵之间的距离a=(h1-h2)XR当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。

对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。

通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。

具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。

太阳能发电系统原理光伏系统设计1引言经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。

特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电源的要求也越来越高,所以稳定可靠的太阳能电源被广泛使用于通信领域。

而如何根据各地区太阳能辐射条件,来设计出既经济而又可靠的光伏电源系统,这是众多专家学者研究已久的课题,而且已有许多卓越的研究成果,为我国光伏事业的发展奠定了坚实的基础。

笔者在学习各专家的设计方法时发现,这些设计仅考虑了蓄电池的自维持时间(即最长连续阴雨天),而没有考虑到亏电后的蓄电池最短恢复时间(即两组最长连续阴雨天之间的最短间隔天数)。

这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。

本文综合以往各设计方法的优点,结合笔者多年来实际从事光伏电源系统设计工作的经验,引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一,并综合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及相关设计方法。

2影响设计的诸多因素太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。

太阳能电池方阵的光电转换效率,受到电池本身的温度、太阳光强和蓄电池电压浮动的影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。

蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变化。

蓄电池提供的能量还受环境温度的影响。

太阳能电池充放电控制器由电子元器件制造而成,它本身也需要耗能,而使用的元器件的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。

负载的用电情况,也视用途而定,如通信中继站、无人气象站等,有固定的设备耗电量。

而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。

设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。

某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。

这些气象数据需取积累几年甚至几十年的平均值。

地球上各地区受太阳光照射及辐射能变化的周期为一天24h。

处在某一地区的太阳能电池方阵的发电量也有24h 的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。

但是天气的变化将影响方阵的发电量。

如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。

设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。

由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。

根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。

气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。

对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。

3蓄电池组容量设计太阳能电池电源系统的储能装置主要是蓄电池。

与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。

它的容量比负载所需的电量大得多。

蓄电池提供的能量还受环境温度的影响。

为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。

(1)蓄电池的选用能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。

国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。

普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。

碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

(2)蓄电池组容量的计算蓄电池的容量对保证连续供电是很重要的。

在一年内,方阵发电量各月份有很大差别。

方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。

所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。

同样,连续阴雨天期间的负载用电也必须从蓄电池取得。

所以,这期间的耗电量也是确定蓄电池容量的因素之一。

因此,蓄电池的容量BC计算公式为:BC二从QLX NLVTCCAh(1)式中:A 为安全系数,取1.1〜1.4 之间;QL为负载日平均耗电量,为工作电流乘以日工作小时数;NL为最长连续xx数;TO为温度修正系数,一般在0C以上取1,—10C以上取1.1,—10C以下取1.2; CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。

4太阳能电池方阵设计(1)太阳能电池组件xx数Ns将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。

串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。

如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。

因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

计算方法如下:Ns=UR/Uoc=( Uf+UD+Uc) /Uoc2)式中:UR 为太阳能电池方阵输出最小电压;Uoc 为太阳能电池组件的最佳工作电压;Uf 为蓄电池浮充电压;UD 为二极管压降,一般取0.7V;UC为其它因数引起的压降。

表 1 我国主要xx 的辐射参数表:城市纬度①日辐射量Ht最佳倾角①op斜面日辐射量修正系数Kop哈尔滨45.68 12703 軒3 158381.1400xx43.90 13572 ①+1 171271.1548xx41.77 13793 ①+1 165631.0671xx39.80 15261 ①+ 4 180351.097639.10 14356 軒5 167221.0692xx40.78 16574 軒3 200751.1468xx37.78 15061 軒5 17394 1.1005xx43.78 14464 軒12 165941.0092xx36.75 16777 軒1 196171.1360xx36.05 14966 軒8 15842 0.9489银川38.48 16553 軒2 19615 1.155934.30 12781 軒14 12952 0.9275xx31.17 12760 軒3 136910.9900xx32.00 13099 軒5 142071.0249合肥31.85 125 孙9 132990.9988xx30.23 11668 軒3 123720.9362xx28.67 13094 軒2 137140.8640xx26.08 12001 軒4 124510.8978xx36.68 14043 軒6 1.0630xx34.72 13332 軒7 1.0476xx30.63 13201 軒7 0.9036xx28.20 11377 軒6 0.8028xx23.13 12110 A 7 0.8850海口20.03 13835 軒12 0.8761xx22.82 12515 軒5 0.8231 15994 14558 13707 11589 12702 13510 1273430.67 10392 軒2 103040.7553xx26.58 10327 軒8 102350.8135xx25.02 14194 A 8 153330.9216拉萨29.70 21301 A 8 241511.0964蓄电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。

相关文档
最新文档