第一章 解三角形 章末复习
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学解三角形章末复习课

知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
(2)由 S=12absin C=10 3,C=π3,得 ab=40.① 由余弦定理得:c2=a2+b2-2abcos C, 即 c2=(a+b)2-2ab(1+cos 3π), ∴72=(a+b)2-2×40×1+12.∴a+b=13.② 由①②得 a=8,b=5 或 a=5,b=8.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例 2 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且满 足(2a-b)cos C=c·cos B,△ABC 的面积 S=10 3,c=7. (1)求角 C; (2)求 a,b 的值.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
高中知数识学网·必络修5·人教A版
章末复习
第一章 解三角形
目标:正弦定理、余弦定理,解三角形与三角函数的综合问题 重点:解三角形与三角函数结合 难点:正弦定理、余弦定理,解三角形与三角函数的综合问题
知识网络 要点归纳 题型研修
知识网络
第一章 解三角形
知识网络 要点归纳 题型研修
要点归纳
第一章 解三角形
所以 sin A=sin(π-B-C)=sin34π-B
=sin
3π 4 cos
B-cos
3π 4 sin
B=7102.
由正弦定理,得 c=assiinnAC=170,
所以 S=12acsin B=12×2×170×45=87.
知识网络 要点归纳 题型研修
题型研修
第一章 解三角形
例3 (2015·课标全国Ⅱ)如图,在△ABC中,D是BC上的点, AD平分∠BAC,△ABD面积是△ADC面积的2倍.
八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。
高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
专题01 三角形章末重难点题型(解析版)

专题01 三角形章末重难点题型汇编【举一反三】【考点1 三角形的稳定性】【方法点拨】理解稳定性:“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.【例1】(2019春•永泰县期中)如图小方做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.【思路点拨】根据三角形的稳定性进行解答.【答案】解:根据三角形的稳定性可得C是最好的加固方案.故选:C.【方法总结】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.【变式1-1】(2019秋•西陵区校级期中)将几根木条用钉子钉成如图的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.【思路点拨】根据三角形具有稳定性进行解答.【答案】解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.【方法总结】此题主要考查了三角形的稳定性,是需要识记的内容.【变式1-2】(2018秋•桐梓县校级期中)图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A.1个B.2个C.3个D.4个【思路点拨】用木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,可用三角形的稳定性解释.【答案】解:如图:A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边.故选:A.【方法总结】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式1-3】(2019秋•安陆市期中)我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十二边形至少再钉上()A.11根B.10根C.9根D.8根【思路点拨】根据分成三角形个数与边数的关系,需要的木条数等于过多边形的一个顶点的对角线的条数,由此得出答案即可.【答案】解:过n边形的一个顶点可以作(n﹣3)条对角线,把多边形分成(n﹣2)个三角形,所以,要使一个十二边形木架不变形,至少需要12﹣3=9根木条固定.故选:C.【方法总结】此题考查了图形的变化规律,考虑把多边形分成三角形是解题的关键.【考点2 判断三角形的高】【方法点拨】三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【例2】(2019春•海州区期中)如图,△ABC中的边BC上的高是()A.AF B.DB C.CF D.BE【思路点拨】根据三角形高的定义即可解答.【答案】解:△ABC中的边BC上的高是AF,故选:A.【方法总结】本题考查了三角形的角平分线、中线和高:过三角形的一个顶点引对边的垂线,这个点与垂足的连线段叫三角形的高.【变式2-1】(2019春•大丰区期中)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【思路点拨】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【答案】解:过点C作AB边的垂线,正确的是C.故选:C.【方法总结】本题是一道作图题,考查了三角形的角平分线、高、中线,是基础知识要熟练掌握.【变式2-2】(2019春•苏州期中)如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【思路点拨】根据直角三角形的性质即可直接得出结论.【答案】解:∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;故选:B.【方法总结】本题考查的是三角形高的性质,熟知直角三角形的三条高的交点恰好是三角形的一个顶点是解答此题的关键.【变式2-3】(2018春•南岗区校级期中)如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个【思路点拨】根据三角形的高的定义以及平行线的性质,即可解答.【答案】解:∵BD是△ABC的高,∴∠ADB=∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【方法总结】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质.【考点3 三角形边角关系的应用】【方法点拨】掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.【例3】(2019春•福州期末)用一根长为10cm的绳子围成一个三角形,若所围成的三角形中一边的长为2cm,且另外两边长的值均为整数,则这样的围法有()A.1种B.2种C.3种D.4种【思路点拨】根据三角形的两边之和大于第三边,根据周长是10厘米,可知最长的边要小于5厘米,进而得出三条边的情况.【答案】解:∵三角形中一边的长为2cm,且另外两边长的值均为整数,∴三条边分别是2cm、4cm、4cm.故选:A.【方法总结】本题主要考查了学生根据三角形三条边之间的关系解决问题的能力.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【变式3-1】(2019秋•银海区期末)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2c C.4a D.2b﹣2c【思路点拨】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【答案】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【方法总结】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.【变式3-2】(2019春•秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b【思路点拨】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l的取值范围即可.【答案】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长L的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.【方法总结】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.【变式3-3】(2019•孝感模拟)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6B.7C.8D.9【思路点拨】两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【答案】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.【方法总结】本题考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.【考点4 多边形的相关概念】【方法点拨】了解凸多边形的定义,掌握多边形对角线与所分成三角形个数之间的关系:从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.【例4】(2019春•道里区期末)下列选项中的图形,不是凸多边形的是()A.B.C.D.【思路点拨】根据凸多边形的概念,如果多边形的边都在任何一条边所在的直线的同旁,该多边形即是凸多边形.否则即是凹多边形.【答案】解:图形不是凸多边形的是A.故选:A.【方法总结】本题主要考查了凸多边形的定义,正确理解凸多边形的定义是解决此类问题的关键.【变式4-1】(2019秋•德州校级月考)要使一个五边形具有稳定性,则需至少添加()条对角线.A.1B.2C.3D.4【思路点拨】根据三角形具有稳定性,过一个顶点作出所有对角线即可得解.【答案】解:如图需至少添加2条对角线.故选:B.【方法总结】本题考查了三角形具有稳定性的应用,作出图形更形象直观.【变式4-2】(2018秋•南城县期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.7【思路点拨】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.【答案】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【方法总结】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.【变式4-3】(2018秋•绵阳期中)一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10【思路点拨】根据截去一个角后边数增加1,不变,减少1讨论得解.【答案】解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.【方法总结】本题考查了多边形,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况.【考点5 多边形内角和与外角和的应用】【方法点拨】(1)掌握多边形内角和计算公式:(n-2) ×180 °(n ≥3的整数),多边形的外角和等于360°特别注意:与边数无关.【例5】(2019春•吴江区期中)一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【思路点拨】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【答案】解:设这个多边形的边数为n,依题意得(n﹣2)×180°=3×360°,解得n=8,∴这个多边形为八边形,故选:D.【方法总结】此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.【变式5-1】(2018秋•桐梓县校级期中)如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了()米.A.100B.120C.140D.60【思路点拨】根据多边形的外角和为360°,由题意得到小明运动的轨迹为正10边形的周长,求出即可.【答案】解:由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).故选:B.【方法总结】此题考查了多边形的内角与外角,熟练掌握多边形的外角和定理是解本题的关键.【变式5-2】(2019春•江都区期中)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.180°B.90°C.210°D.270°【思路点拨】根据两直线平行,同旁内角互补得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【答案】解:延长AB,DC,∵AB∥CD,∴∠4+∠5=180°,根据多边形的外角和定理可得∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选:A.【方法总结】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.【变式5-3】(2019春•江阴市期中)如图,在六边形ABCDEF中,∠A+∠B+∠E+∠F=α,CP、DP分别平分∠BCD、∠CDE,则∠P的度数是()A.α﹣180°B.180°﹣αC.αD.360°﹣α【思路点拨】由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由和②即可求出结果.【答案】解:在六边形ABCDEF中,∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6﹣2)×180°=720°①,∵CP、DP分别平分∠BCD、∠CDE,∴∠BCP=∠DCP,∠CDP=∠PDE,∵∠P+∠PCD+∠PDE=180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE=360°②,①﹣②得:∠A+∠B+∠E+∠F﹣2∠P=360°,即α﹣2∠P=360°,∴∠P=α﹣180°;故选:A.【方法总结】本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.【考点6 三角形内角和定理的应用】【方法点拨】三角形内角和等于180°.【例6】(2019春•石景山区期末)如图,BD平分∠ABC.∠ABD=∠ADB.(1)求证:AD∥BC;(2)若BD⊥CD,∠BAD=α,求∠DCB的度数(用含α的代数式表示).【思路点拨】(1)想办法证明∠ADB=∠DBC即可.(2)利用平行线的性质,三角形的内角和定理即可解决问题.【答案】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD∵∠ABD=∠ADB,∴∠ADB=∠DBC,∴AD∥BC.(2)解:∵AD∥BC,且∠BAD=α,∴∠ABC=180°﹣α,∴∠DBC=∠ABC=90°﹣α,∵BD⊥CD,∴∠BDC=90°∴∠C=90°﹣(90°﹣α)=α.【方法总结】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2018秋•包河区期末)如图,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延长线于点D.(1)若∠B=30°,∠ACB=100°,求∠EAD的度数;(2)若∠B=α,∠ACB=β,试用含α、β的式子表示∠EAD,则∠EAD=.(直接写出结论即可)【思路点拨】(1)根据垂直的定义得到∠D=90°,根据邻补角的定义得到∠ACD=180°﹣100°=80°,根据三角形的内角和得到∠BAC=50°,根据角平分线的定义得到∠CAE=∠BAC=25°,于是得到结论;(2)根据垂直的定义得到∠D=90°,得到∠ACD=180°﹣β,求得∠BAC=90°﹣α﹣(β﹣90°)=180°﹣α﹣β,根据角平分线的定义得到∠CAE=∠BAC=90°﹣(α+β),根据角的和差即可得到结论.【答案】解:(1)∵AD⊥BC,∴∠D=90°,∵∠ACB=100°,∴∠ACD=180°﹣100°=80°,∴∠CAD=90°﹣80°=10°,∵∠B=30°,∴∠BAD=90°﹣30°=60°,∴∠BAC=50°,∵AE平分∠BAC,∴∠CAE=∠BAC=25°,∴∠EAD=∠CAE+∠CAD=35°;(2)∵AD⊥BC,∴∠D=90°,∵∠ACB=β,∴∠ACD=180°﹣β,∴∠CAD=90°﹣∠ACD=β﹣90°,∵∠B=α,∴∠BAD=90°﹣α,∴∠BAC=90°﹣α﹣(β﹣90°)=180°﹣α﹣β,∵AE平分∠BAC,∴∠CAE=∠BAC=90°﹣(α+β),∴∠EAD=∠CAE+∠CAD=90°﹣(α+β)+β﹣90°=β﹣α.故答案为:β﹣α.【方法总结】本题考查了三角形的内角和,角平分线的定义,正确的识别图形是解题的关键.【变式6-2】(2019春•福州期末)如图,在△ABC中,∠ABC的平分线交AC于点D.作∠BDE=∠ABD 交AB于点E.(1)求证:ED∥BC;(2)点M为射线AC上一点(不与点A重合)连接BM,∠ABM的平分线交射线ED于点N.若∠MBC =∠NBC,∠BED=105°,求∠ENB的度数.【思路点拨】(1)利用角平分线的定义,进行等量代换,得出内错角相等,从而两直线平行;(2)分两种情况分别进行解答,根据每一种情况画出相应的图形,依据图形中,角之间的相互关系,转化到一个三角形中,利用三角形的内角和定理,设未知数,列方程求解即可.【答案】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,又∵∠BDE=∠ABD,∴∠BDE=∠DBC,∴ED∥BC;(2)∵BN平分∠ABM,∴∠ABN=∠NBM,①当点M在线段AC上时,如图1所示:∵DE∥BC,∴∠ENB=∠NBC,∵∠MBC=∠NBC,∴∠NBM=∠MBC=∠NBC,设∠MBC=x°,则∠EBN=∠NBM=x°,∠ENB=∠NBC=2x°,在△ENB中,由内角和定理得:x+2x+105°=180°,解得:x=25,∴∠ENB=2x=50°,②当点M在AC的延长线上时,如图2所示:∵DE∥BC,∴∠ENB=∠NBC,∵∠MBC=∠NBC,∴∠NBM=3∠MBC,设∠MBC=x°,则∠EBN=∠NBM=3x°,∠ENB=∠NBC=2x°,在△EMB中,由内角和定理得:3x+2x+105°=180°,解得:x=15,∴∠ENB=2x=30°,答:∠ENB的度数为50°或30°.【方法总结】综合考查角平分线的定义、平行线的性质、三角形的内角和定理等知识,分类讨论,分别画出相应的图形,利用等量代换和图形中角之间的关系布列方程是解决问题常用的方法.【变式6-3】(2018秋•丰城市期末)已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.(1)∠DBC+∠DCB=度;(2)过点A作直线直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.【思路点拨】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)在Rt△ABC中,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,即,∴∠ABD+∠BAC=90°﹣∠ACD=70°,整体代入即可得出结论.【答案】解:(1)在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;故答案为90;(2)在△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠BAC,∴∠ABD+∠BAC=90°﹣∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°,∴∠CAM=180°﹣(∠ABD+∠BAC)=110°.【方法总结】此题主要考查了三角形内角和定理,平行线的性质,解本题的关键是求出∠ABD+∠BAC=70°.【考点7 三角形外角性质的应用】【方法点拨】三角形的外角等于与它不相邻的两个内角的和.【例7】(2019春•宝应县期中)如图,在Rt△ABC中,∠ACB=90°,∠A=34°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【思路点拨】(1)根据三角形的外角的性质求出∠CBD,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【答案】解:(1)∵∠ACB=90°,∠A=34°,∴∠CBD=124°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=62°;(2)∵∠ECB=90°,∠CBE=62°,∴∠CEB=28°,∵DF∥BE,∴∠F=∠CEB=28°.【方法总结】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【变式7-17】(2018春•岱岳区期中)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB 于D,DF⊥CE于F,求∠ACE和∠CDF的度数.【思路点拨】根据三角形内角和定理求出∠ACB,根据角平分线的定义求出∠ACE;根据垂直的定义、三角形内角和定理求出∠CDF.【答案】解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣30°﹣62°=88°;∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=44°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=28°,∴∠ECD=∠ECB﹣∠BCD=16°,∵DF⊥CE,∴∠CDF=90°﹣∠DCF=74°.【方法总结】本题考查的是三角形内角和定理、三角形的外角的性质以及角平分线的定义,掌握三角形内角和等于180°是解题的关键.【变式7-2】(2018春•商水县期末)如图,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各内角的度数.【思路点拨】根据三角形外角性质得到∠FDE=∠BAD+∠ABD,而∠BAD=∠CBE,则∠FDE=∠BAD+∠CBE=∠ABC=64°;同理可得∠DEF=∠ACB=43°,然后根据三角形内角定理计算∠BAC=180°﹣∠ABC﹣∠ACB即可.∠BAD=∠CBE=∠ACF,∠FDE=48°,∠DEF=64°,【答案】解:∵∠FDE=∠BAD+∠ABD,∠BAD=∠CBE∴∠FDE=∠BAD+∠CBE=∠ABC,∴∠ABC=64°;同理∠DEF=∠FCB+∠CBE=∠FCB+∠ACF=∠ACB,∴∠ACB=43°;∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣64°﹣43°=73°,∴△ABC各内角的度数分别为64°、43°、73°.【方法总结】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形外角的性质,熟记:三角形的外角等于与它不相邻的两个内角之和是解题的关键.【变式7-3】(2019春•南开区校级月考)如图,在△ABC中,AD是高,∠DAC=10°,AE是∠BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.【思路点拨】根据直角三角形的性质求出∠BAD的度数,得到∠BAC的度数,根据邻补角的性质求出∠CAM的度数,根据角平分线的定义求出∠MAE的度数,根据三角形的外角的性质计算即可.【答案】解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°﹣∠ABC=44°,又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°,∵AE是∠BAC外角的平分线,∴∠MAE=∠MAC=63°,∵BF平分∠ABC,∴∠ABF=∠ABC=23°,∴∠AFB=∠MAE﹣∠ABF=40°.【方法总结】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【考点8 利用互余关系倒角】【方法点拨】直角三角形两锐角互余,通常利用这一结论进行倒角.【例8】(2019春•莲湖区期中)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【思路点拨】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CF A=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【答案】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CF A=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【方法总结】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.【变式8-1】(2011春•越城区校级期中)如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知∠EPD=125°,求∠BAD的度数.【思路点拨】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CBE的度数,再根据角平分线的定义求出∠ABC的度数,然后利用直角三角形的两锐角互余列式计算即可得解.【答案】解:∵AD是BC边上的高线,∠EPD=125°,∴∠CBE=∠EPD﹣∠ADB=125°﹣90°=35°,∵BE是一条角平分线,∴∠ABD=2∠CBE=2×35°=70°,在Rt△ABD中,∠BAD=90°﹣∠ABD=90°﹣70°=20°.故答案为:20°.【方法总结】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,准确识图,根据图形找出图中各角之间的关系是解题的关键.【变式8-2】在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE,垂足为F,过点B作BD ⊥BC,交CF的延长线于点D,若∠D=65°,求∠EAC的度数.【思路点拨】根据直角三角形的两个锐角互余进行解答即可.【答案】解:在RT△DBC中,∠D=65°,可得:∠DCB=25°,在RT△ACE中,∠DCB=25°,可得:∠ACF=65°,在RT△ACF中,∠ACF=65°,可得:∠EAC=25°.【方法总结】此题考查直角三角形的性质,关键是根据直角三角形的两个锐角互余进行解答.【变式8-3】(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状是什么?为什么?(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?【思路点拨】(1)根据直角三角形的性质得出∠ACD+∠A=∠B+∠DCB=90°,再解答即可;(2)根据直角三角形的性质得出∠ADE+∠A=∠A+∠B=90°,再解答即可;(3)根据直角三角形的性质得出∠ABC+∠A=∠ABC+∠DBE=∠DBE+∠D=90°,再解答即可.【答案】解:(1)∠ACD=∠B,理由如下:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠DCB=90°,∴∠ACD=∠B;(2)△ADE是直角三角形.∵在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,∠A为公共角,∴∠AED=∠ACB=90°,∴△ADE是直角三角新;(3)∠A+∠D=90°.∵在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,∴∠ABC+∠A=∠ABC+∠DBE=∠DBE+∠D=90°,∴∠A+∠D=90°.【方法总结】此题考查直角三角形的性质,关键是根据直角三角形的性质得出两锐角互余.。
解三角形 高一期末复习

解三角形一、知识梳理:三角形中的有关公式:(1)内角和定理:π=++C B A ,这是三角形中三角函数问题的特殊性,解题可不能忘记!锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方。
(2)正弦定理:R R CcB b A a (2sin sin sin ===为三角形外接圆的半径). ①C B A c b a sin :sin :sin ::=;②R a A 2sin = R b B 2s i n = RcC 2s i n =③=a R A 2sin ⋅ R B b 2s i n⋅= R C c 2sin ⋅= 已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.A 为锐角 A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=等,常选用余弦定理鉴定三角形的形状.(4)面积公式:)(21sin 2121c b a r C ab ah S a ++===(其中r 为三角形内切圆半径) 特别提醒:(1)求解三角形中的问题时,一定要注意π=++C B A 这个特殊性:C B A -=+π,2cos 2sin ,sin )sin(CB AC B A =+=+;(2)求解三角形中含有边角混合关系问题时,常运用正弦定理、余弦定理实现边角互化。
二、典型例题:题型一:利用正、余弦定理解三角形1、在ABC ∆中,若,60,2,6 ===B BC AC 则______=C 。
2、下列条件判断三角形解的情况,正确的是_______①30,16,8===A b a ,有两解; ②60,20,18===B c b ,有一解; ③90,2,15===A b a ,无解 ④150,25,30===A b a ,有一解 3、设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c .已知41cos ,2,1===C b a . (1)求ABC ∆的周长(2)求)cos(C A -的值.题型二:判断三角形形状1、在ABC ∆中,,cos sin 2sin C B A =且C B A 222sin sin sin +=,试判断ABC ∆的形状。
高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.
,
A
,
,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.
高二数学必修五 第一章 解三角形

高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末复习 学习目标 1.整合知识结构,进一步巩固、深化所学知识.2.掌握解三角形的基本类型,并能在几何计算、测量应用中灵活分解组合.3.能解决三角形与三角变换的综合问题.1.正弦定理及其推论设△ABC 的外接圆半径为R ,则(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin A ,b =2R sin B ,c =2R sin C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R. (4)在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos A ,b 2= c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .(2)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab. (3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.3.三角形面积公式(1)S =12ah a =12bh b =12ch c ; (2)S =12ab sin C =12bc sin A =12ca sin B . 4.应用举例(1)测量距离问题;(2)测量高度问题;(3)测量角度问题.题型一 利用正弦、余弦定理解三角形例1 (1)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC = . 答案 7解析 由题意知12×5×8×sin A =103,即sin A =32, 又△ABC 为锐角三角形,所以A =60°,cos A =12, 所以BC =52+82-2×5×8×12=7. (2)已知△ABC 中,若cos B =35,C =π4,BC =2,则△ABC 的面积为 . 答案 87反思感悟 利用正弦、余弦定理寻求三角形各元素之间的关系来解决三角形及其面积问题. 跟踪训练1 (1)在△ABC 中,∠A =45°,AB =1,AC =2,则S △ABC 的值为( )A.12B.22C.32D .2 3 答案 B(2)已知锐角△ABC 的面积为3,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 D解析 S =12BC ·AC ·sin C =12×4×3×sin C =3, ∴sin C =12,∵三角形为锐角三角形. ∴C =30°.题型二 几何计算例2 如图,在矩形ABCD 中,AB =3,BC =3,E 在AC 上,若BE ⊥AC ,求ED 的长.解 在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32. 在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =212. 反思感悟 正确挖掘图形中的几何条件简化运算是解题要点,善于应用正弦定理、余弦定理,只需通过解三角形,一般问题便能很快解决.跟踪训练2 在△ABC 中,∠B =120°,AB =2,∠A 的平分线AD =3,求AC 的长. 解 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB, ∴sin ∠ADB =22. 由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,∠C =30°,BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC sin ∠BAC, ∴AC = 6.题型三 实际应用例3 如图,已知在东西走向上有AM ,BN 两个发射塔,且AM =100 m ,BN =200 m ,一测量车在塔底M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了100 3 m 后到达点Q ,在点Q 处测得发射塔顶B 的仰角为θ,且∠BQA =θ,经计算,tan θ=2,求两发射塔顶A ,B 之间的距离.解 在Rt △AMP 中,∠APM =30°,AM =100 m ,所以PM=100 3 m,连接QM,在△PQM中,∠QPM=60°,又PQ=100 3 m,所以△PQM为等边三角形,所以QM=100 3 m.在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200 m. 在Rt△BNQ中,因为tan θ=2,BN=200 m,所以BQ=100 5 m,cos θ=5 5.在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ,所以BA=100 5 m.故两发射塔顶A,B之间的距离是100 5 m.反思感悟实际应用问题的解决过程实质上就是抽象成几何计算模型,在此过程中注意术语如“北偏西60°”、“仰角”的准确翻译,并转换为解三角形所需边、角元素.跟踪训练3如图,从无人机A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时无人机的高是60 m,则河流的宽度BC等于()A.240(3-1)m B.180(2-1)mC.120(3-1)m D.30(3+1)m答案 C解析如图,在△ADC中,∠CAD=90°-30°=60°,AD=60 m,所以CD=AD·tan 60°=603(m).在△ABD中,∠BAD=90°-75°=15°,所以BD =AD ·tan 15°=60(2-3)(m).所以BC =CD -BD =603-60(2-3)=120(3-1)(m).故选C.题型四 三角形中的综合问题例4 a ,b ,c 分别是锐角△ABC 的内角A ,B ,C 的对边,向量p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),且p ∥q ,已知a =7,△ABC 的面积为332,求b ,c 的大小. 解 p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),又p ∥q ,∴(2-2sin A )(1+sin A )-(cos A +sin A )·(sin A -cos A )=0,即4sin 2A -3=0,又∠A 为锐角,则sin A =32,∠A =60°, ∵△ABC 的面积为332,∴12bc sin A =332,即bc =6,① 又a =7,∴7=b 2+c 2-2bc cos A ,∴b 2+c 2=13,②①②联立解得⎩⎪⎨⎪⎧ b =3,c =2或⎩⎪⎨⎪⎧ b =2,c =3.反思感悟 解三角形综合问题的方法(1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角形面积公式、三角恒等变换等知识联系在一起,要注意选择合适的方法、知识进行求解.(2)解三角形常与向量、三角函数及三角恒等变换知识综合考查,解答此类题目,首先要正确应用所学知识“翻译”题目条件,然后根据题目条件和要求选择正弦或余弦定理求解. 跟踪训练4 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,4sin 2B +C 2-cos 2A =72. (1)求A 的度数;(2)若a =3,b +c =3,求b 和c 的值.解 (1)由4sin 2 B +C 2-cos 2A =72及A +B +C =180°,得2[1-cos(B +C )]-2cos 2 A +1=72, 4(1+cos A )-4cos 2A =5,即4cos 2A -4cos A +1=0,∴(2cos A -1)2=0,解得cos A =12. ∵0°<A <180°,∴A =60°.(2)由余弦定理,得cos A =b 2+c 2-a 22bc. ∵cos A =12,∴b 2+c 2-a 22bc =12, 化简并整理,得(b +c )2-a 2=3bc ,将a =3,b +c =3代入上式,得bc =2.则由⎩⎪⎨⎪⎧ b +c =3,bc =2,解得⎩⎪⎨⎪⎧ b =1,c =2或⎩⎪⎨⎪⎧b =2,c =1.1.若△ABC 的周长等于20,面积是103,A =60°,则角A 的对边长为( )A .5B .6C .7D .8答案 C解析 设角A ,B ,C 的对边分别为a ,b ,c ,∵a +b +c =20,∴b +c =20-a ,即b 2+c 2+2bc =400+a 2-40a ,∴b 2+c 2-a 2=400-40a -2bc ,①又cos A =b 2+c 2-a 22bc =12, ∴b 2+c 2-a 2=bc .②又S △ABC =12bc sin A =103, ∴bc =40.③由①②③可知a =7.2.在△ABC 中,已知cos A =35,cos B =513,b =3,则c = . 答案 145解析 在△ABC 中,∵cos A =35>0,∴sin A =45. ∵cos B =513>0,∴sin B =1213. ∴sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =c sin C ,∴c =b sin C sin B =3×56651213=145. 3.在△ABC 中,cos A 2=1+cos B 2,判断△ABC 的形状. 解 由已知得cos 2A 2=1+cos B 2, ∴2cos 2A 2-1=cos B ,∴cos A =cos B , 又0<A <π,0<B <π,∴A =B ,∴△ABC 为等腰三角形.4.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223.故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26.。