【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版27

合集下载

通用版2018年中考数学总复习专题突破预测与详解第八单元统计与概率专题27规律探索问题试题新版新人教版

通用版2018年中考数学总复习专题突破预测与详解第八单元统计与概率专题27规律探索问题试题新版新人教版

1 专题27规律探索问题
2016~2018详
解详析第34页
1.(2018中考预测)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是
(B)
A.y=2n+1
B.y=2n +n
C.y=2n+1+n
D.y=2n +n+1 〚
导学号92034120〛 2.(2017广东模拟,15,4分)有一组数,,,,…,则这组数中的第8个数为,第n 个数为(用含n 的代数式表示).
3.(2018中考预测)如图,以O (0,0),A (2,0)为顶点作正三角形OAP 1,以点P 1和线段P 1A 的中点B 为顶点作正三角形P 1BP 2,再以点P 2和线段P 2B 的中点C 为顶点作正三角形P 2CP 3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P 6的坐标是.
4.(2017湖南永州二模,16,4分)杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.我们把杨辉三角的每一行分别相加,如下
:
杨辉三角第n 行中n 个数之和等于2n-1.
〚导学号92034121〛。

【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版11

【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版11

第二单元方程(组)与不等式(组)专题5一次方程(组)及其应用2016~2018详解详析第5页A组基础巩固1.方程2x-1=3的解是(D)A.x=1B.x=-2C.x=4D.x=22.(2018中考预测)小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是(B)A.1B.2C.3D.4〚导学号92034022〛3.(2017湖北天门模拟,6,3分)已知是二元一次方程组的解,则2m-n的算术平方根是(B)A.4B.2C.D.±24.(2017四川广安武胜期中,13,3分)已知方程x m-3+y2-n=6是二元一次方程,则m-n=3.5.(2017吉林长春一模,11,3分)一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是140元.6.(2017四川资阳简阳期中,17,8分)(1)解方程:7x-4=3(x+2).(2)解方程:-4=.解(1)去括号得,7x-4=3x+6,移项、合并同类项得,4x=10,解得,x=2.5.(2)去分母得,2(2x+5)-24=3(x-3),去括号得,4x+10-24=3x-9,移项、合并同类项得,x=5.B组能力提升1.(2017广东深圳南山二模,6,3分)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(C)A.19B.18C.16D.152.(2018中考预测)已知x+4y-3z=0,且4x-5y+2z=0,则x∶y∶z为(A)A.1∶2∶3B.1∶3∶2C.2∶1∶3D.3∶1∶23.(2017江苏泰州姜堰一模,14,3分)已知实数x,y满足方程组则(x+y)x-3y=.4.(2018中考预测)(1)用代入法解方程组:(2)已知关于x,y的二元一次方程组的解满足二元一次方程-=4,求m的值.解(1)由②得x=-3y+7③,把③代入①,得-9y+21-2y=1,解得y=,把y=代入③得x=,则方程组的解为(2)①×2+②得7x=14m,即x=2m,把x=2m代入①得y=2m,把x=y=2m代入已知方程得-=4,去分母得10m-6m=60,解得m=15.〚导学号92034023〛5.(2017山东泰安宁阳二模,27,10分)某服装店花费6 000元购进A,B两种新式服装,按标价售出后可获得毛利润3 800元(毛利润=.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?解(1)设A种服装购进x件,B种服装购进y件,由题意,得解得答:A种服装购进50件,B种服装购进30件.(2)由题意,得3 800-50×(100×0.8-60)-30×(160×0.7-100)=3 800-1 000-360=2 440(元).答:服装店比按标价售出少收入2 440元.。

(通用版)2018年中考数学总复习专题突破预测与详解试题(打包32套)(新版)新人教版

(通用版)2018年中考数学总复习专题突破预测与详解试题(打包32套)(新版)新人教版

第一单元数与式专题1实数2016~2018详解详析第1页A组基础巩固1.(2017安徽阜阳太和一模,1,4分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果盈利50元记作+50元,那么亏本30元记作(A)A.-30元B.-50元C.+50元D.+30元2.(2017山东临沂模拟,1,3分)+(-3)的相反数是(C)A.-(+3)B.-3C.3D.+3.(2017山东临沂临沭期中,5,3分)在下列各数:301 415 926,,0.2,,,,中无理数的个数是(A)A.2B.3C.4D.54.(2018中考预测)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000人,这个数用科学记数法表示为4.4³109.5.(2017安徽宿州埇桥二模,11,5分)PM2.5是指每立方米大气中直径小于或等于0.000 002 5米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 002 5米用科学记数法表示为2.5³10-6米.〚导学号92034006〛6.(2017湖北孝感孝南期中,11,3分)比较大小:>0(填“<”“=”或“>”).7.(2017海南保亭期中,15,4分)±=±;=-3;|-|=;π-3.14的相反数是3.14-π.B组能力提升1.(2017河北模拟,11,3分)如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在(D)A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间(靠近点C)或点C的右边2.(2018中考预测)某市2017年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为37.39亿元,那么这个数值精确到(D)A.十分位B.个位C.十位D.百万位3.(2017重庆期中,5,4分)下列说法中,错误的是(C)A.4的算术平方根是2B.的平方根是±3C.8的立方根是±2D.-1的立方根等于-14.(2017湖北宜昌枝江期中,16,6分)计算+-|-2|.解原式=2+5-(2-)=7-2+=5+.5.(2018中考预测)数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,像x2=-1这类方程在实数范围内无解.为了解决这个问题,需要把数的范围作进一步的扩充.为此,为探索新问题的需要,定义一种新数:如果一个数的平方等于-1,就记为i2=-1,这个数i叫做虚数单位.那么形如“a+b i”(a,b为实数)的数就叫做复数,a叫做这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i,(3+i)(1+2i)=1+7i,(3i)2=-9等.根据信息,解决下列问题:(1)填空:i4=,(2+i)2=;(2)若两个复数相等,则它们的实部和虚部必须分别相等,据此,完成下列问题:已知(x+y)+3i=(1-x)-y i(x,y为实数),求x,y的值;(3)试一试:请利用相关知识,将化简成a+b i的形式.解(1)∵i2=-1,i4=i2²i2=(-1)³(-1)=1,(2+i)2=4+4i+i2=4+4i-1=3+4i.(2)∵(x+y)+3i=(1-x)-yi,∴x+y=1-x,3=-y,∴x=2,y=-3.(3)====i.专题2整式2016~2018详解详析第2页A组基础巩固1.(2018中考预测)甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是(B)A.甲B.乙C.丙D.都一样2.(2017山东临沂模拟,4,3分)下列式子中,正确的是(D)A.a5n÷a n=a5B.(-a2)3²a6=a12C.a8n²a8n=2a8nD.(-m)(-m)4=-m53.(2017山东菏泽东明一模,4,3分)下列分解因式正确的是(D)A.x2-4=(x-4)(x+4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.2x2-18=2(x-3)(x+3)4.(2017四川资阳简阳期中,13,3分)已知2x a y b与-7x b-3y4是同类项,则a b=1.5.(2017江苏盐城东台期中,17,2分)若x2+(m-1)x+16是一个完全平方式,则m=9或-7.6.(2017山东泰安东平期中,22,3分)若2x+3y=4,则4x²8y的值为16.7.(2017河北邢台模拟,20,8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:+(a-3b)2=2a2+5b2,(1)求所捂的多项式;(2)当a=-2,b=时,求所捂的多项式的值.解(1)原式=(2a2+5b2)-(a-3b)2=2a2+5b2-a2+6ab-9b2=a2+6ab-4b2.(2)当a=-2,b=时,原式=4-12-20=-16-12.〚导学号92034009〛B组能力提升1.(2017河北石家庄模拟,15,3分)如图所示的运算程序中,若开始输入的x值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2 017次输出的结果为(A)A.3B.4C.6D.92.(2018中考预测)如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为(A)A.2,3,7B.3,7,2C.2,5,3D.2,5,73.(2017四川成都期中,4,3分)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是(A)A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b) 〚导学号92034010〛4.(2017山东威海模拟,13,3分)若3a2-a-3=0,则5+2a-6a2=-1.5.(2017福建漳州漳浦期中,15,4分)已知2a=5,2b=10,2c=50,那么a,b,c之间满足的等量关系是a+b=c.6.(2017江苏扬州邗江期中,26,10分)问题背景:对于形如x2-120x+3 600这样的二次三项式,可以直接用完全平方公式将它分解成(x-60)2,对于二次三项式x2-120x+3 456,就不能直接用完全平方公式分解因式了.此时常采用将x2-120x加上一项602,使它与x2-120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2-120x+3 456=x2-2³60x+602-602+3 456=(x-60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).问题解决:(1)请你按照上面的方法分解因式:x2-140x+4 756;(2)已知一个长方形的面积为a2+8ab+12b2,宽为a+2b,求这个长方形的长.解(1)x2-140x+4 756=x2-2³70x+702-702+4 756=(x-70)2-144=(x-70)2-122=(x-70+12)(x-70-12)=(x-58)(x-82).(2)a2+8ab+12b2=a2+2³a³4b+(4b)2-(4b)2+12b2=(a+4b)2-4b2=(a+4b+2b)(a+4b-2b)=(a+2b)(a+6b).故宽为a+2b时,这个长方形的长为a+6b.〚导学号92034011〛专题3分式2016~2018详解详析第3页A组基础巩固1.(2017浙江温州一模,5,3分)若分式无意义,则(B)A.x=2B.x=-1C.x=1D.x≠-12.(2017浙江温州瓯海一模,8,4分)若分式=0,则x的值是(C)A.±2B.2C.-2D.03.(2017江苏无锡江阴期中,5,3分)下列各式从左到右的变形正确的是(C)A.=B.-=C.=D.=a-b4.(2017江苏盐城东台月考,9,3分)若使分式有意义,则x的取值范围是x≠-3.5.(2017河北唐山玉田一模,17,3分)计算的结果是.6.(2017新疆一模,11,5分)计算:+-=.〚导学号92034014〛7.(2016江苏江阴期中,19,6分)计算:(1)÷;(2)-x-1.解(1)÷=²=.(2)-x-1=-=.B组能力提升1.(2017江苏扬州江都期末,3,3分)如果把分式中的m和n都扩大3倍,那么分式的值(A)A.不变B.扩大3倍C.缩小3倍D.扩大9倍2.(2018中考预测)已知两个分式:A=,B=+,其中x≠±2,有下面三个结论:①A=B;②A²B=1;③A+B=0.其中正确的有(B)A.0个B.1个C.2个D.3个3.(2017四川成都期中,23,4分)已知+=5,则=1.4.(2018中考预测)已知-=(其中A,B为常数),求A2 018B=-2.5.(2017安徽宿州灵璧一模,16,8分)先化简,再求值:÷,选一个你喜欢的数代入求值.解原式=²=²=²=1-(x-1)=2-x.当x=0时,原式=2.〚导学号92034015〛6.(2018中考预测)我们把分子为1的分数叫做单位分数,如,,,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,….(1)根据对上述式子的观察,你会发现=+,则a=,b=;(2)进一步思考,单位分数=+(n是不小于2的正整数),则x=(用n的代数式表示);(3)计算:+++…+.解(1)6 30 (2)n(n+1)(3)原式=1-+-+…+-=1-=.专题4二次根式2016~2018详解详析第4页A组基础巩固1.(2017广西钦州月考,9,3分)下列各式中二次根式的个数是(B)①-;②;③;④;⑤π.A.1B.2C.3D.42.(2017江苏苏州张家港一模,4,3分)如果在实数范围内有意义,则x的取值范围是(B)A.x≠4B.x≤4C.x≥4D.x<43.(2017浙江杭州一模,2,3分)下列二次根式中,是最简二次根式的是(C)A. B. C. D.4.(2017上海闵行二模,2,4分)下列二次根式中,与是同类二次根式的是(A)A. B. C. D.5.(2018中考预测)矩形相邻两边长分别为,,则它的周长是6,面积是4.6.(2017山东威海期中,17,3分)能使得=²成立的所有整数a的和是5.〚导学号92034018〛7.(2017福建模拟,19,10分)计算:(1)(2+)(2-);(2)-.解(1)原式=(2)2-()2=20-3=17.(2)原式=2---=-.B组能力提升1.(2017广东广州期中,7,2分)实数a,b在数轴上的位置如图所示,则化简-+b的结果是(A)A.1B.b+1C.2aD.1-2a2.(2017江苏宜春高安期中,3,3分)下列计算错误的是(B)A.³=B.+=C.÷=3D.=23.(2018中考预测)若a=,b=,则a2+b2+ab的值是(B)A.2B.4C.5D.74.(2017湖北黄石下陆期中,18,8分)已知x=+和y=-,求下列各式的值:(1)x2-y2;(2)x2+2xy+y2.解(1)∵x=+,y=-,∴x+y=2,x-y=2,∴x2-y2=(x+y)(x-y)=2³2=4.(2)x2+2xy+y2=(x+y)2=(2)2=12.〚导学号92034019〛5.(2017重庆江津期中,24,10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a,b,m,n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a=,b=.(2)若a+4=(m+n)2,且a,m,n均为正整数,求a的值.解(1)m2+3n22mn(2)由题意,得∵4=2mn,且m,n为正整数,∴m=2,n=1或m=1,n=2,∴相应地,有a=22+3³12=7或a=12+3³22=13.第二单元方程(组)与不等式(组)专题5一次方程(组)及其应用2016~2018详解详析第5页A组基础巩固1.方程2x-1=3的解是(D)A.x=1B.x=-2C.x=4D.x=22.(2018中考预测)小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是(B)A.1B.2C.3D.4〚导学号92034022〛3.(2017湖北天门模拟,6,3分)已知是二元一次方程组的解,则2m-n的算术平方根是(B)A.4B.2C.D.±24.(2017四川广安武胜期中,13,3分)已知方程x m-3+y2-n=6是二元一次方程,则m-n=3.5.(2017吉林长春一模,11,3分)一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是140元.6.(2017四川资阳简阳期中,17,8分)(1)解方程:7x-4=3(x+2).(2)解方程:-4=.解(1)去括号得,7x-4=3x+6,移项、合并同类项得,4x=10,解得,x=2.5.(2)去分母得,2(2x+5)-24=3(x-3),去括号得,4x+10-24=3x-9,移项、合并同类项得,x=5.B组能力提升1.(2017广东深圳南山二模,6,3分)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(C)A.19B.18C.16D.152.(2018中考预测)已知x+4y-3z=0,且4x-5y+2z=0,则x∶y∶z为(A)A.1∶2∶3B.1∶3∶2C.2∶1∶3D.3∶1∶23.(2017江苏泰州姜堰一模,14,3分)已知实数x,y满足方程组则(x+y)x-3y=.4.(2018中考预测)(1)用代入法解方程组:(2)已知关于x,y的二元一次方程组的解满足二元一次方程-=4,求m的值.解(1)由②得x=-3y+7③,把③代入①,得-9y+21-2y=1,解得y=,把y=代入③得x=,则方程组的解为(2)①³2+②得7x=14m,即x=2m,把x=2m代入①得y=2m,把x=y=2m代入已知方程得-=4,去分母得10m-6m=60,解得m=15.〚导学号92034023〛5.(2017山东泰安宁阳二模,27,10分)某服装店花费6 000元购进A,B两种新式服装,按标价售出后可获得毛利润3 800元(.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?解(1)设A种服装购进x件,B种服装购进y件,由题意,得解得答:A种服装购进50件,B种服装购进30件.(2)由题意,得 3 800-50³(100³0.8-60)-30³(160³0.7-100)=3 800-1 000-360=2 440(元).答:服装店比按标价售出少收入2 440元.专题6分式方程及其应用2016~2018详解详析第5页A组基础巩固1.(2016上海闵行期末,1,3分)下列方程中,不是分式方程的是(B)A.x-=1B.+=-2C.+=D.x+=2.(2017河北承德一模,10,3分)方程=的解为(B)A.x=B.x=-C.x=-2D.无解3.(2018中考模拟)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为(D) A.-=5 B.+5=C.-=5D.-=54.(2017江苏盐城东台期中,14,2分)若方程=2+有增根,则a=4.5.(2017湖北襄阳枣阳模拟,13,3分)某校学生利用双休时间去距学校20 km的白水寺参观,一部分学生骑自行车先走,过了40 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,骑车学生的速度是15 km/h.6.(2017上海黄浦二模,20,10分)解分式方程:-=.解去分母得,(x+2)2-16=x-2,整理得,x2+3x-10=0,即(x-2)(x+5)=0,解得x=2或x=-5,经检验x=2是增根,故分式方程的解为x=-5.B组能力提升1.(2018中考预测)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程-=6.则方程中未知数x所表示的量是(D)A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度2.(2018中考预测)使得关于x的不等式组有解,且使分式方程-=2有非负整数解的所有m的和是(B)A.-2B.-3C.-7D.0〚导学号92034026〛3.(2017山东济宁嘉祥一模,13,3分)关于x的方程=1的解是正数,则a的取值范围是a<-1且a≠-2.4.(2017山东滨州博兴模拟,19,8分)设A=,B=.(1)求A与B的差;(2)若A与B的值相等,求x的值.解(1)A-B=-===.(2)∵A=B,∴=.去分母,得2(x+1)=x.去括号,得2x+2=x.移项、合并同类项,得x=-2.经检验x=-2是原方程的解.5.(2017山东济宁模拟,20,8分)六一前夕,某幼儿园园长到厂家选购A,B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2 000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A,B两种品牌服装每套的进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1 200元,则最少购进A品牌的服装多少套?解(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,由题意得=³2,解得x=100,经检验,x=100是原分式方程的解,x-25=100-25=75.答:A,B两种品牌服装每套进价分别为100元、75元.(2)设购进A品牌的服装a套,则购进B品牌的服装(2a+4)套,由题意得(130-100)a+(95-75)(2a+4)>1 200,解得a>16.答:至少购进A品牌服装17套.专题7一元二次方程及其应用2016~2018详解详析第7页A组基础巩固1.(2017河北模拟,9,3分)关于x的一元二次方程(m-1)x2+2x+m2-5m+4=0,常数项为0,则m的值等于(B)A.1B.4C.1或4D.02.(2017浙江宁波鄞州模拟,2,4分)若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是(B)A.1B.0C.-1D.23.(2017浙江宁波高新模拟,6,4分)方程2x2-x+1=0的根的情况是(D)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.(2018中考预测)我省2015年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2017年的快递业务量达到4.5亿件.设2016年与2017年这两年的平均增长率为x,则下列方程正确的是(C) A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.55.(2017云南曲靖一模,11,3分)若关于x的方程(a-1)=1是一元二次方程,则a的值是-1.6.(2017湖北鄂州期中,12,3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+2与2m-5,则=9.〚导学号92034030〛7.(2017山东威海经区期中,20,15分)解方程:(1)2x2-4x-6=0(用配方法);(2)2y2+4(y-1)=0(用公式法);(3)(x+1)2=6x+6.解(1)∵2x2-4x=6,∴x2-2x=3,则x2-2x+1=3+1,即(x-1)2=4,∴x-1=±2,即x1=3或x2=-1.(2)整理成一般式,可得y2+2y-2=0.∵a=1,b=2,c=-2,∴Δ=4-4³1³(-2)=12>0,则y==-1±.(3)∵(x+1)2-6(x+1)=0,∴(x+1)(x-5)=0,则x+1=0或x-5=0,解得x1=-1或x2=5.B组能力提升1.(2018中考预测)关于x的一元二次方程kx2+3x-1=0有实数根,则k的取值范围是(D)A.k≤-B.k≤-且k≠0C.k≥-D.k≥-且k≠02.(2017山东济南章丘二模,7,3分)已知m,n是方程x2+3x-2=0的两个实数根,则m2+4m+n+2mn 的值为(C)A.1B.3C.-5D.-93.(2017福建模拟,16,4分)无论x取何值,二次三项式-3x2+12x-11的值不超过1.4.(2017湖北孝感模拟,13,3分)如图,某小区规划在一个长为16 m、宽为9 m的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112 m2,求小路的宽度.若设小路的宽度为x m,则x满足的方程为(16-2x)(9-x)=112.5.(2017湖北孝感应城二模,21,8分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1,x2,求+的最小值.(1)证明因为Δ=[-(2m+1)]2-4m(m+1)=1>0,所以方程总有两个不相等的实数根.(2)解∵方程的两根分别为x1,x2,∴x1+x2=2m+1,x1x2=m(m+1),∴+=(x1+x2)2-2x1x2=(2m+1)2-2m(m+1)=2m2+2m+1=2+.故+的最小值为.6.(2018中考预测)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1 250元,问第二周每个旅游纪念品的销售价格为多少元?解题方案:(1)设该商店第二周降低x元销售,用含x的代数式表示:①该商店第二周的销售利润为元;②该商店对剩余纪念品清仓处理的利润为元.(2)按题意要求完成解答.解(1)①-50x2+800②100x-400(2)根据题意得-50x2+100x+1 200=1 250,整理得x2-2x+1=0,解得x=1,∴10-x=9.答:第二周每个旅游纪念品的销售价格为9元.〚导学号92034031〛专题8不等式(组)及其应用2016~2018详解详析第8页A组基础巩固1.(2017河北衡水冀州一模,11,3分)已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是(D)A.甲B.乙C.丙D.丁2.(2018中考预测)不等式组的解集,在数轴上表示正确的是(D)3.(2017安徽芜湖繁昌模拟,11,5分)不等式2x-5<7-x的解集是x<4.4.(2017江苏泰州兴化期中,14,3分)若关于x的不等式-2x+a≥2的解集是x≤-1,则a的值是0.5.(2017浙江湖州吴兴一模,18,8分)解不等式+1>,并把它的解集在数轴上表示出来.解去分母,得x+6>2(x+2),去括号,得x+6>2x+4,移项,得x-2x>4-6,合并同类项,得-x>-2,系数化为1,得x<2.它的解集在数轴上表示如下:6.(2017贵州黔东南模拟,22,10分)植树节期间,某单位欲购进A,B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2 100元,若购进A种树苗4棵,B种树苗10棵,需3 800元.(1)求购进A,B两种树苗的单价;(2)若该单位准备用不多于8 000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?解设A树苗的单价为x元,B树苗的单价为y元,可得解得答:A树苗的单价为200元,B树苗的单价为300元.(2)设购进A种树苗a棵,则B种树苗为(30-a)棵,可得200a+300(30-a)≤8 000,解得a≥10.答:A种树苗至少需购进10棵.〚导学号92034034〛B组能力提升1.(2017山东日照模拟,9,3分)若不等式组有解,则实数a的取值范围是(D)A.a≥-2B.a<-2C.a≤-2D.a>-22.(2018中考预测)已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为x=-.3.(2017北京石景山一模,18,5分)解不等式组并写出它的所有整数解.解解不等式①,得x≥-2.解不等式②,得x<1.所以原不等式组的解集为-2≤x<1.所以原不等式组的整数解为-2,-1,0.4.(2018中考预测),其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1 100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4 300元,且销售完这批商品后获利多于1 260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.解(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得解得答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意得解不等式组,得65<a<68.因为a为非负整数,所以a取66,67,160-a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.第三单元函数专题9函数基础知识2016~2018详解详析第8页A组基础巩固1.(2017山东菏泽曹县二模,2,3分)若点A(a+1,b-1)在第二象限,则点B(-a,b+2)在(A)A.第一象限B.第二象限C.第三象限D.第四象限2.(2018中考预测)中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么,所在位置的坐标为(D)A.(0,1)B.(4,0)C.(-1,0) 3.(2017江苏南京玄武一模,6,2分)如图,将正六边形ABCDEF放入平面直角坐标系后,若点A,B,E的坐标分别为(a,b),(3,1),(-a,b),则点D的坐标为(D)A.(1,3)B.(3,-1)C.(-1,-3)D.(-3,1)4.(2017云南楚雄州永仁一模,14,3分)一支蜡烛长20 cm,若点燃后每小时燃烧5 cm,则燃烧剩余的长度h(单位:cm)与燃烧时间t(单位:时)之间的函数关系的图象大致为(C)〚导学号92034038〛5.(2017河北一模,17,3分)函数y=的自变量x的取值范围是x≤0.5且x≠-1.6.(2018中考预测)如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x,△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为y=-x+20.7.(2018中考预测)李大爷按每千克2.1元批发了一批蜜橘到镇上出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出蜜橘千克数x与他手中持有的钱数y(单位:元)(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是元;(2)降价前他每千克蜜橘出售的价格是元/千克;(3)按市场价卖了几天,剩下的蜜橘卖相不好了,随后他按每千克下降1.5元的价格将剩下的蜜橘售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的蜜橘?解(1)50 (2)3.5(3)李大爷一共批发的蜜橘重量为80+(450-330)÷(3.5-1.5)=140(千克).答:李大爷一共批发了140千克的蜜橘.B组能力提升1.(2017黑龙江哈尔滨道里一模,10,3分)甲、乙两位运动员在一段2 000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与x之间的函数图象是(B)2.(2017江苏宜春丰城期中,12,3分)图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有①②④.〚导学号92034039〛①体育场离小冬家2.5千米;②小冬在体育场锻炼了15分钟;③体育场离早餐店4千米;④小冬从早餐店回家的平均速度是3千米/时.3.(2017四川成都期中,25,4分)如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则矩形ABCD的面积是20.4.(2017山东泰安一模,24,3分)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,点A在y轴上,点O,B1,B2,B3…都在直线l上,则点B2 017的坐标是(2 017,2 017).5.(2016江苏盐城实验学校月考,26,8分)P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1-x2|+|y1-y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).(1)令P0(2,-4),O为坐标原点,则d(O,P0)=;(2)已知Q(2,1),动点P(x,y)满足d(Q,P)=3,且x,y均为整数.①满足条件的点P有多少个?②若点P在直线y=3x上,请写出符合条件的点P的坐标.解(1)6(2)①由d(Q,P)=|2-x|+|1-y|=3,且x,y均为整数,可知当|1-y|=0时,|2-x|=3,解得P 点坐标为(-1,1),(5,1);当|1-y|=1时,|2-x|=2,解得P点坐标为(0,0),(4,0),(0,2),(4,2);当|1-y|=2时,|2-x|=1,解得P点坐标为(1,-1),(3,-1),(1,3),(3,3);当|1-y|=3时,|2-x|=0,解得P点坐标为(2,-2),(2,4).综上,得满足条件的点P有12个.②直线y=3x上的点有纵坐标是横坐标3倍的特点,故符合条件的点P的坐标为(0,0)和(1,3).专题10一次函数2016~2018详解详析第10页A组基础巩固1.(2017上海奉贤二模,3,4分)直线y=(3-π)x经过的象限是(D)A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限2.(2018中考预测)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能是(A)〚导学号92034041〛3.(2017陕西模拟,5,3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为(A)A.第二、三、四象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限4.(2017上海徐汇二模,4,4分)已知直线y=ax+b(a≠0)经过点A(-3,0)和点B(0,2),那么关于x的方程ax+b=0的解是(A)A.x=-3B.x=-1C.x=0D.x=2 〚导学号5.(2018中考预测)把直线y=-x-1向y轴正方向平移4个单位,得到的直线与y轴的交点坐标为(0,3).6.(2017广西模拟,16,3分)如图,直线x=2与y=x+a的交点A在第四象限,则a的取值范围是a<-2.7.(2018中考预测)如图,长方形ABCD中,点P沿着四边按B→C→D→A方向,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,求S与t的函数解析式.解(1)从图象可知,当6≤t≤8时,△ABP面积不变,即6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2³(8-6)=4,∴AB=CD=4.当t=6时(点P运动到点C),S△ABP=16,∴AB²BC=16,∴BC=8,故长方形的长为8,宽为4.(2)当t=a时,S△ABP=AB²BP=2BP=8,即点P此时在BC的中点处,∴PC=BC=³8=4,∴2(6-a)=4,∴a=4.∵BP=PC=4,∴m===1.当t=b时,S△ABP=AB²AP=4,∴³4³AP=4,AP=2,=2,∴b=13-2=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,4)的一条直线,可设S=kt+b,∴∴∴S=-4t+48(8≤t≤11).同理可求当11≤t≤13时S关于t的函数解析式:S=-2t+26(11≤t≤13).B组能力提升1.(2017浙江杭州萧山月考,10,3分)复习课中,教师给出关于x的函数y=-2mx+m-1(m≠0).学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x-3及y轴围成的面积必小于0.5.以上5个结论中正确的有(D)个.A.4B.3C.2D.02.(2018中考预测)若A(x1,y1),B(x2,y2)是一次函数y=ax+x-2图象上的不同的两点,记m=(x1-x2)(y1-y2),则当m<0时,a的取值范围是(C)A.a<0B.a>0C.a<-1D.a>-13.(2017广东深圳一模,16,3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为y=x.4.(2017重庆沙坪坝期中,17,4分)波波和爸爸两人以相同路线从家出发,步行前往公园.图中OA,BC分别表示爸爸和波波所走的路程y(单位:米)与步行的时间x(单位:分)的函数图象,已知爸爸从家步行到公园所花的时间比波波的2倍还多10分钟.则在步行过程中,他们父子俩相距的最远路程是1 200米.5.(2017江西萍乡一模,18,8分)如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行端和下行端,甲站在上行扶梯的同时又以0.8 m/s的速度往上跑,乙站在下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8 m/s的速度往下跑,而乙到达底端后则在原地等候甲.图2中线段OB,AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(单位:m)与所用时间x(单位:s)之间的部分函数关系,结合图象解答下列问题:(1)点B的坐标是;(2)求AB所在直线的函数关系式;(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?解(1)(7.5,18)(2)设直线AB的函数关系式为y=kx+b,点A,B坐标分别为(0,30),(7.5,18),代入y=kx+b,得解得故AB所在直线的函数关系式为y=-1.6x+30.(3)30³2÷(1.6+0.8)-30÷1.6=60÷2.4-18.75=25-18.75=6.25(s).故乙到达扶梯底端后,还需等待6.25 s,甲才到达扶梯底端.〚导学号92034043〛6.。

通用版2018年中考数学总复习专题突破预测与详解第三单元函数专题10一次函数试题新版新人教版

通用版2018年中考数学总复习专题突破预测与详解第三单元函数专题10一次函数试题新版新人教版

专题10一次函数2016~2018详解详析第10页A组基础巩固1.(2017上海奉贤二模,3,4分)直线y=(3-π)x经过的象限是(D)A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限2.(2018中考预测)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能是(A)〚导学号92034041〛3.(2017陕西模拟,5,3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为(A)A.第二、三、四象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限4.(2017上海徐汇二模,4,4分)已知直线y=ax+b(a≠0)经过点A(-3,0)和点B(0,2),那么关于x的方程ax+b=0的解是(A)A.x=-3B.x=-1C.x=0D.x=2 〚导学号92035.(2018中考预测)把直线y=-x-1向y轴正方向平移4个单位,得到的直线与y轴的交点坐标为(0,3).6.(2017广西模拟,16,3分)如图,直线x=2与y=x+a的交点A在第四象限,则a的取值范围是a<-2.7.(2018中考预测)如图,长方形ABCD中,点P沿着四边按B→C→D→A方向,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,求S与t的函数解析式.解(1)从图象可知,当6≤t≤8时,△ABP面积不变,即6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2×(8-6)=4,∴AB=CD=4.当t=6时(点P运动到点C),S△ABP=16,∴AB·BC=16,∴BC=8,故长方形的长为8,宽为4.(2)当t=a时,S△ABP=AB·BP=2BP=8,即点P此时在BC的中点处,∴PC=BC=×8=4,∴2(6-a)=4,∴a=4.∵BP=PC=4,∴m===1.当t=b时,S△ABP=AB·AP=4,∴×4×AP=4,AP=2,=2,∴b=13-2=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,4)的一条直线,可设S=kt+b,∴∴∴S=-4t+48(8≤t≤11).同理可求当11≤t≤13时S关于t的函数解析式:S=-2t+26(11≤t≤13).B组能力提升1.(2017浙江杭州萧山月考,10,3分)复习课中,教师给出关于x的函数y=-2mx+m-1(m≠0).学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x-3及y轴围成的面积必小于0.5.以上5个结论中正确的有(D)个.A.4B.3C.2D.02.(2018中考预测)若A(x1,y1),B(x2,y2)是一次函数y=ax+x-2图象上的不同的两点,记m=(x1-x2)(y1-y2),则当m<0时,a的取值范围是(C)A.a<0B.a>0C.a<-1D.a>-13.(2017广东深圳一模,16,3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为y=x.4.(2017重庆沙坪坝期中,17,4分)波波和爸爸两人以相同路线从家出发,步行前往公园.图中OA,BC分别表示爸爸和波波所走的路程y(单位:米)与步行的时间x(单位:分)的函数图象,已知爸爸从家步行到公园所花的时间比波波的2倍还多10分钟.则在步行过程中,他们父子俩相距的最远路程是1 200米.5.(2017江西萍乡一模,18,8分)如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行端和下行端,甲站在上行扶梯的同时又以0.8 m/s 的速度往上跑,乙站在下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8 m/s的速度往下跑,而乙到达底端后则在原地等候甲.图2中线段OB,AB 分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(单位:m)与所用时间x(单位:s)之间的部分函数关系,结合图象解答下列问题:(1)点B的坐标是;(2)求AB所在直线的函数关系式;(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?解(1)(7.5,18)(2)设直线AB的函数关系式为y=kx+b,点A,B坐标分别为(0,30),(7.5,18),代入y=kx+b,得解得故AB所在直线的函数关系式为y=-1.6x+30.(3)30×2÷(1.6+0.8)-30÷1.6=60÷2.4-18.75=25-18.75=6.25(s).故乙到达扶梯底端后,还需等待6.25 s,甲才到达扶梯底端.〚导学号92034043〛6.(2017河北模拟,24,10分)在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,4),点M是线段AB上任意一点(A,B两点除外).(1)求直线AB的解析式.(2)过点M分别作MC⊥OA于点C,MD⊥OB于点D,当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由.(3)当点M把线段AB分成的两部分的比为1∶3时,请求出点M的坐标.解(1)设直线AB的解析式为y=kx+b,由题意可得解得故AB的解析式为y=-x+4.(2)不发生变化.理由如下:设M点的坐标为(x,-x+4),当点M在AB上运动时,MD=|x|=x,MC=|-x+4|=-x+4, 四边形OCMD的周长=2(MD+MC)=2[x+(-x+4)]=8,即四边形OCMD的周长不发生变化.(3)∵DM∥x轴,∴=.①当BM∶MA=1∶3时,==,即=,DM=1,则点M的横坐标为1,此时纵坐标=-x+4=-1+4=3,M(1,3).②当BM∶MA=3∶1时,==,即=,DM=3,则点M的横坐标为3,此时纵坐标=-x+4=-3+4=1,M(3,1).综上可知点M的坐标为(1,3)或(3,1).。

通用版2018年中考数学总复习专题突破预测与详解第八单元统计与概率专题28图表信息问题试题新版新人教版

通用版2018年中考数学总复习专题突破预测与详解第八单元统计与概率专题28图表信息问题试题新版新人教版

1 专题28图表信息问题
2016~2018详
解详析第35页
1.(2017浙江温州一模,2,3分)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则书法兴趣小组的频率是
(C)
A.0.1
B.0.15
C.0.2
D.0.3
2.(2017湖北宜昌模拟,10,3分)
名运动员的身高如表:
则该校16名运动员身高的平均数和中位数分别是(B)
A.173 cm,173 cm
B.174 cm,174 cm
C.173 cm,174 cm
D.174 cm,175 cm
3.(2018中考预测)如图,一次函数y=ax+b (a ≠0)与二次函数y=ax 2+bx (a ≠0)的图象大致是(B)
〚导学号92034124〛
4.(2017湖南衡阳模拟,13,5分)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有5个. 〚导学号92034125〛。

通用版2018年中考数学总复习专题突破预测与详解第七单元图形的变换专题24相似变换试题新版新人教版

通用版2018年中考数学总复习专题突破预测与详解第七单元图形的变换专题24相似变换试题新版新人教版

专题24相似变换2016~2018详解详析第31页A组基础巩固1.(2017甘肃兰州模拟,5,3)已知===,且a+c+e=6,且b+d+f=(B)A.12B.9C.6D.42.(2017河北石家庄模拟,3,3分)如图,已知AB∥CD∥EF,则下列结论正确的是(C)A.=B.=C.=D.=3.(2017甘肃张掖临泽期末,4,2分)若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则它们的周长比为(B)A.1∶4B.1∶2C.2∶1D.1∶4.(2017上海杨浦一模,13,4分)如果两个相似三角形的面积之比是9∶25,其中小三角形一边上的中线长是12 cm,那么大三角形对应边上的中线长是20 cm.5.(2017甘肃兰州二十七中模拟,20,4分)如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1∶3把线段AB缩小,则点A的对应点坐标是(2,1)或(-2,-1).6.(2017江苏无锡新吴区一模,21,8分)如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=,BC=.(2)判断△ABC与△DEF是否相似?并证明你的结论.解(1)∠ABC=90°+45°=135°,BC===2.故答案为135°;2.(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=,∴==,==.∴△ABC∽△DEF.〚导学号92034105〛B组能力提升(2017江苏无锡一模,16,2分)如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,若EG=4,则AC=12 .C组综合创新(2017江苏扬州高邮一模,26,10分)如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD,BC于点G,E.(1)求证:BE2=EG·EA;(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.证明(1)∵四边形ABCD是矩形,∴∠ABC=90°,∵AE⊥BD,∴∠ABC=∠BGE=90°,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,∴BE2=EG·EA.(2)由(1)证得BE2=EG·EA,∵BE=CE,∴CE2=EG·EA,∴=.∵∠CEG=∠AEC,∴△CEG∽△AEC,∴∠ECG=∠EAC.〚导学号92034106〛。

通用版2018年中考数学总复习专题突破预测与详解第八单元统计与概率专题26概率试题新版新人教版

专题26概率2016~2018详解详析第33页A组基础巩固1.(2017辽宁本溪二模,3,3分)下列事件是必然事件的是(D)A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°2.(2017浙江绍兴模拟,5,4分)掷一颗质地均匀且六个面上分别刻有1到6点的正方体骰子,观察向上的一面的点数,下列属于不可能事件的是(D)A.出现的点数是3B.出现的点数为偶数C.出现的点数不会是0D.出现的点数是83.(2017内蒙古鄂尔多斯模拟,7,3分)下列说法正确的是(B)A.一个游戏的中奖概率是,则做10次这样的游戏,一定会中奖B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.为了解全国中学生的心理健康情况,应该采用普查的方式D.若甲组数据的方差=0.01,乙组数据的方差=0.1,则乙组数据比甲组数据稳定4.(2017安徽宿州埇桥区二模,5,4分)如图,在4×4正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是(B)A.B.C.D.5.(2017四川资阳简阳一模,17,3分)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有12个.6.(2017江苏泰州泰兴一模,10,3分)如图是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为0.600.7.(2018中考预测)一个不透明的袋子中装有大小、质地完全相同的4个小球,小球上分别标有1,2,3,4四个数字.(1)从袋中随机摸出一个小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一个小球,再从剩下的小球中随机摸出一个小球,求两次摸出的小球上所标数字之和为5的概率.解 (1)小球上所标数字为奇数的概率是.(2)列表如下:所以可能的结果有12种,两次摸出的小球上所标数字之和为5的结果有(4,1),(3,2),(2,3),(1,4)共4种可能的结果,所以两次摸出的球上所标数字之和为5的概率是.〚导学号92034115〛B组能力提升1.(2017山东菏泽曹县模拟,6,3分)从长度分别为2,3,4,5的4条线段中任取3条,能构成三角形的概率为(A)A.B. C. D.2.(2017河南平顶山宝丰一模,6,3分)某班九年级一共有1,2,3,4四个班,先从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(D)A.B. C. D.3.(2016四川甘孜州,22,4分)在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个.若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为3.4.(2017山东聊城莘县一模,21,8分)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次传递后,足球踢到了小华处的概率是多少(用树状图表示或列表说明)?(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.解 (1)如图:∴P(足球踢到小华处)=.(2)应从小明开始踢.若从小明开始踢,如图:则P(踢到小明处)==,同理,若从小强开始踢,则P(踢到小明处)=,若从小华开始踢,则P(踢到小明处)=.故应从小明开始踢.〚导学号92034116〛。

【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版31

专题16解直角三角形2016~2018详解详析第22页A组基础巩固1.(2017河北承德一模,9,3分)如图,△ABC的顶点都在正方形网格的格点上,则cos C的值为(D)A. B.C.D.2.(2018中考预测)在△ABC中,若+=0,∠A,∠B都是锐角,则∠C的度数是(C)A.75°B.90°C.105°D.120°〚导学号92034065〛3.(2017重庆江北一模,11,4分)如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1∶0.6,为提高大坝的防洪能力需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3∶4,则大坝底端增加的长度CF是(C)米.A.7B.11C.13D.204.(2018中考预测)如图,P(12,a)在反比例函数y=图象上,PH⊥x轴于点H,则tan∠POH的值为.5.(2017上海普陀一模,19,6分)计算:cos245°+-·tan 30°.解原式=+-×=+-1=.〚导学号92034066〛B组能力提升1.(2017江苏泰州一模,9,3分)如图,港口A在观测站O的正东方向,OA=6 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为(A)A.3 kmB.3 kmC.4 kmD.(3-3)km2.(2017北京模拟,14,3分)如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E,F在线段AD 上,tan∠ABC=3,则阴影部分的面积是6.(第1题图)(第2题图)3.(2018中考预测)如图,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD与AC相交于点E,AB=9,cos∠BAC=,tan∠DBC=.求:(1)边CD的长;(2)△BCE的面积.解(1)∵∠ABC=∠BCD=90°,AB=9,cos∠BAC=,tan∠DBC=,∴cos∠BAC===,tan∠DBC==,得AC=15,BC==12,∴DC=5.即CD的长是5.(2)由(1)知,AB=9,BC=12,CD=5,∵∠ABC=∠BCD=90°,∴AB∥CD,∴==.作EF∥AB交CB于点F,则△CEF∽△CAB,∴=,∴=,解得EF=,故△BCE的面积是==.4.(2017山东菏泽曹县模拟,20,10分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan α的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O,B,C,A,P在同一平面内.求:(1)P到OC的距离;(2)山坡的坡度tan α.(参考数据sin 26.6°≈0.45,tan 26.6°≈0.50;sin 31°≈0.52,tan 31°≈0.60)解(1)如图,过点P作PD⊥OC于点D,PE⊥OA于点E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD·tan∠BPD=PD·tan 26.6°;在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,∴CD=PD·t an∠CPD=PD·tan 31°;∵CD-BD=BC,∴PD·tan 31°-PD·tan 26.6°=40,∴0.60PD-0.50PD=40,解得PD=400,即P到OC的距离为400米.(2)在Rt△PBD中,BD=PD·tan 26.6°≈400×0.50=200,∵OB=240,∴PE=OD=OB-BD=40.∵OE=PD=400,∴AE=OE-OA=400-300=100,∴tan α===0.4.即坡度为0.4.〚导学号92034067〛。

【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版22

专题30阅读理解问题2016~2018详解详析第36页1.(2016安徽模拟,8,4分)定义运算a b=a(b-1),下面给出了关于这种运算的四个结论:①2(-1)=-4;②a b=b a;③若a+b=1,则a a=b b;④若b a=0,则a=0或b=1.其中正确结论的序号是(D)A.②④B.②③C.①④D.①③2.(2017福建一模,21,8分)材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=,(log216)2+log381=.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,在这种规定下,请你解决下列问题: (1)计算5!=.(2)已知x为整数,求出满足该等式的x:=1.解材料1:2 17材料2:(1)120(2)已知等式化简得=1,即|x-1|=6,解得x=7或-5.〚导学号92034132〛3.(2018中考预测)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=.当F(s)+F(t)=18时,求k的最大值.解(1)F(243)=(423+342+234)÷111=9,F(617)=(167+716+671)÷111=14;(2)∵s,t都是“相异数”,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6,∵F(s)+F(t)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,x,y都是正整数,∴或或或或或∵s是“相异数”,∴x≠2,x≠3,∵t是“相异数”,∴y≠1,y≠5,∴或或∴或或∴k==或k==1或k==,∴k的最大值为.〚导学号92034133〛。

【初中数学】2018年中考数学总复习专题突破预测与详解试题(32套) 人教版21

专题29方案设计问题2016~2018详解详析第35页1.(2018中考预测)如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有(C)A.6种B.5种C.4种D.2种2.(2017河北张家口蔚县期末,9,2分)小明欲购买A,B两种型号的笔记本共10本(不可只购买一种),要求其总价钱不超过60元,已知A种型号的单价是5元,B种型号的单价是7元,则购买方案有(C)A.3种B.4种C.5种D.6种3.(2017江苏无锡江阴期中,24,8分)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”或“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).图①图②图③解(1)= (2)如图所示.图②(3)如图所示.图③4.(2017河南南阳二模,21,10分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量).(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.解(1)设该商场计划购进甲种手机x部,乙种手机y部,由题意得解得答:该商场计划购进甲种手机20部,乙种手机30部.(2)设甲种手机减少a部,则乙种手机增加3a部,由题意得4 000(20-a)+2 500(30+3a)≤172 500,解得a≤5.设全部销售后的毛利润为w元,则w=300(20-a)+500(30+3a)=1 200a+21 000.∵1 200>0,∴w随着a的增大而增大,∴当a=5时,w有最大值,w最大=1 200×5+21 000=27 000.答:当商场购进甲种手机15部,乙种手机45部时,全部销售后毛利润最大,最大毛利润是2.7万元.〚导学号92034129〛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21与圆有关的计算
2016~201
8详解详析第28页
A组基础巩固
1.(2017广西贵港一模,6,3分)若一个正多边形的中心角为40°,则这个多边形的边数是(A)
A.9
B.8
C.7
D.6
2.(2017山东德州庆云一练,5,3分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为(B)厘米.
A. B.C.D.2
3.(2017四川资阳简阳一模,6,3分)一个圆锥的底面半径是5 cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为(B)
A.9 cm
B.12 cm
C.15 cm
D.18 cm
4.
(2017安徽芜湖繁昌模拟,12,5)如图,四边形ABCD是☉O的内接四边形,☉O的半径为2,∠B=135°,则的长π.
5.(2017内蒙古巴彦淖尔一模,14,4分)如图,正方形ABCD是☉O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是45度.〚导学号92034090〛
6.
(2017山东滨州博兴模拟,22,10分)如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交☉O于点F,求弦AF,AC和弧CF围成的图形(阴影部分)的面积S.
解(1)∵∠D=60°,∴∠B=60°(圆周角定理),
∵AB是☉O的直径,∴∠ACB=90°.
又AB=6,∴BC=3.∵OE⊥AC,∴OE∥BC.
又点O是AB中点,∴OE是△ABC的中位线.∴OE=BC=.
(2)连接OC,
则易得△COE≌△AFE,
故阴影部分的面积=扇形FOC的面积,S扇形FOC==π.
即可得阴影部分的面积为π.
B组能力提升
1.(2017天津南开一模,10,3分)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(D)
A.B.C.D.
2.(2017江苏苏州一模,10,24)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.
(1)求证:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的长.
(1)证明∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.
∵BC∥AD,∴∠ADB=∠EBC.
∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.
在△ABD和△ECB中,∠ADB=∠EBC,∠A=∠BEC,BD=CB,
∴△ABD≌△ECB.
(2)解∵△ABD≌△ECB,∴AD=BE=3.
∵∠A=90°,∠ABD=30°,∴BD=2AD=6.
∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°.
∴的长为=2π.
〚导学号92034091〛
C组综合创新
(2017山东青岛市北区模拟,13,3分)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是π平方米.。

相关文档
最新文档