陕西省西安市2020年中考数学二模试卷解析版

合集下载

2020届陕西省西安市高新区中考数学二模试卷(有答案)(加精)

2020届陕西省西安市高新区中考数学二模试卷(有答案)(加精)

陕西省西安市高新区中考数学二模试卷一、选择题1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.42.如图所示的几何体的左视图是()A.B.C.D.3.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>4.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°5.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A.y=x﹣2 B.y=﹣x+2 C.y=﹣x﹣2 D.y=﹣2x﹣16.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.87.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:28.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.9.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个 B.2个 C.3个 D.4个二、填空题11.分解因式:(a﹣b)2﹣4b2=.12.(1)圆内接正六边形的边心距为,则这个正六边形的面积为cm2.(2)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.13.如图,已知矩形ABCO的面积为8,反比例函数y=的图象经过矩形ABCO对角线的交点E,则k=.14.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.三、解答题15.计算: +|2﹣3|﹣()﹣1﹣0.16.化简:÷(﹣)17.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为度时,AP平分∠CAB.18.某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.19.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.20.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)21.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)5035利润(元/瓶)201522.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.23.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.24.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)求△PAC为直角三角形时点P的坐标.25.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,在(1)的条件下,擦去折痕AO,线段OP,连结BP,动点M在线段AP⊥(点M与点F、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;说明理由;若不变,求出线段EF的长度.陕西省西安市高新区中考数学二模试卷参考答案与试题解析一、选择题1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.2.如图所示的几何体的左视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选D.3.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【考点】正比例函数的性质.【分析】根据正比例函数的大小变化规律判断k的符号.【解答】解:根据题意,知:y随x的增大而减小,则k<0,即1﹣2m<0,m>.故选D.4.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.5.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A.y=x﹣2 B.y=﹣x+2 C.y=﹣x﹣2 D.y=﹣2x﹣1【考点】一次函数图象与几何变换.【分析】根据旋转90°后直线的k值与原直线l的k值互为负倒数,且函数仍过点A即可得出答案.【解答】解:∵直线l:y=x+2与y轴交于点A,∴A(0,2).设旋转后的直线解析式为:y=﹣x+b,则:2=0+b,解得:b=2,故解析式为:y=﹣x+2.故选B.6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.7.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.8.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再根据数轴上不等式的解集的表示方法解答.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤1,在数轴上表示如下:.故选B.9.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.二、填空题11.分解因式:(a﹣b)2﹣4b2=(a+b)(a﹣3b).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).故答案为:(a+b)(a﹣3b).12.(1)圆内接正六边形的边心距为,则这个正六边形的面积为24cm2.(2)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【考点】解直角三角形的应用﹣坡度坡角问题;正多边形和圆.【分析】(1)根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决;(2)过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:(1)如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos30°,∴OA===4,∴这个正六边形的面积为6××4×2=24.故答案为:24;(2)过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000(米).故答案为1000.13.如图,已知矩形ABCO的面积为8,反比例函数y=的图象经过矩形ABCO对角线的交点E ,则k= 2 .【考点】反比例函数系数k 的几何意义.【分析】过E 点作ED ⊥x 轴于D ,EF ⊥y 轴于F ,根据矩形的性质得S 矩形ODEF =S 矩形OABC =2,然后根据反比例函数的比例系数k 的几何意义求解.【解答】解:过E 点作ED ⊥x 轴于D ,EF ⊥y 轴于F ,如图, ∵四边形OABC 为矩形,点E 为对角线的交点, ∴S 矩形ODEF =S 矩形OABC =2. ∴k=2. 故答案为:2.14.菱形0BCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP +BP 最短时,点P 的坐标为 () .【考点】菱形的性质;坐标与图形性质;轴对称﹣最短路线问题.【分析】点B 的对称点是点D ,连接ED ,交OC 于点P ,再得出ED 即为EP +BP 最短,解答即可.【解答】解:连接ED ,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().三、解答题15.计算: +|2﹣3|﹣()﹣1﹣0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2+3﹣2﹣3﹣1=﹣1.16.化简:÷(﹣)【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=﹣.17.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为30度时,AP平分∠CAB.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.【解答】解:(1)如图,(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.18.某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.【考点】频数(率)分布直方图;扇形统计图;加权平均数.【分析】(1)利用0.5小时的人数为:100人,所占比例为:20%,即可求出样本容量;(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.【解答】解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,∴本次调查共抽样了500名学生;(2)1.5小时的人数为:500×24%=120(人)如图所示:(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1小时.19.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.20.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【解答】解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=≈=x+,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56=x+,解得:x=52,答:该铁塔的高AE为52米.21.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)5035利润(元/瓶)2015【考点】一次函数的应用.【分析】(1)A种品牌白酒x瓶,则B种品牌白酒瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.【解答】解:(1)A种品牌白酒x瓶,则B种品牌白酒瓶,依题意,得y=20x+15=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒瓶,依题意,得50x+35≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.23.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.【解答】(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴=,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴=,∴BE=2,∴AC=AB=AE+BE=7+2=9.24.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)求△PAC为直角三角形时点P的坐标.【考点】二次函数综合题.【分析】(1)根据题意可以求得m的值,从而可以求得a、b的值,从而可以求得抛物线的解析式;(2)根据△PAC为直角三角形,可以得到PA⊥AC或PC⊥AC,然后针对两种情况分别求出点P 的坐标即可解答本题.【解答】解:(1)∵点A(,)和B(4,m)在直线y=x+2上,∴当x=4时,y=4+2=6,∴m=6,即点B的坐标为(4,6),∵点A(,)和B(4,6)在抛物线y=ax2+bx+6(a≠0)上,∴,解得,,即抛物线的解析式为:y=2x2﹣8x+6;(2)∵△PAC为直角三角形,∴PA⊥AC或PC⊥AC,当PA⊥AC时,∵点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C,∴设点C的坐标为(m,2m2﹣8m+6),将x=m代入y=x+2得,y=m+2,∴点P的坐标为(m,m+2),∵点A(,),点P(m,m+2),点C(m,2m2﹣8m+6),∴,解得,(舍去),m2=3,∴点P(3,5);当PC⊥AC时,∵点A(,),∴点C的纵坐标为,将y=代入y=2x2﹣8x+6,得,∴此时点C的坐标为(),将x=代入y=x+2,得y=,即点P的坐标为();由上可得,当△PAC为直角三角形时点P的坐标为(3,5)或().25.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,在(1)的条件下,擦去折痕AO,线段OP,连结BP,动点M在线段AP⊥(点M与点F、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;说明理由;若不变,求出线段EF的长度.【考点】相似形综合题.【分析】(1)①根据折叠的性质得到∠APO=∠B=90°,根据相似三角形的判定定理证明△OCP ∽△PDA;②根据相似三角形的面积比等于相似比的平方解答;(2)根据直角三角形的性质得到∠DAP=30°,根据折叠的性质解答即可;(3)作MQ∥AB交PB于Q,根据等腰三角形的性质和相似三角形的性质得到EF=PB,根据勾股定理求出PB,计算即可.【解答】解:(1)①由折叠的性质可知,∠APO=∠B=90°,∴∠APD+∠OPC=90°,又∠POC+∠OPC=90°,∴∠APD=∠POC,又∠D=∠C=90°,∴△OCP∽△PDA;②∵△OCP与△PDA的面积比为1:4,∴△OCP与△PDA的相似比为1:2,∴PC=AD=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,即x2+82=(x﹣4)2,解得,x=10,即AB=10;(2)∵点P是CD边的中点,∴DP=DC,又AP=AB=CD,∴DP=AP,∴∠DAP=30°,由折叠的性质可知,∠OAB=∠OAP=30°;(3)EF的长度不变.作MQ∥AB交PB于Q,∴∠MQP=∠ABP,由折叠的性质可知,∠APB=∠ABP,∴∠MQP=∠APB,∴MP=MQ,又BN=PM,∴MQ=BN,∵MQ∥AB,∴=,∴QF=FB,∵MP=MQ,ME⊥BP,∴PE=QE,∴EF=PB,由(1)得,PC=4,BC=8,∴PB==4,∴EF=2.。

2020年陕西省西安交大附中中考数学二模试卷含答案

2020年陕西省西安交大附中中考数学二模试卷含答案
12.【答案】85°
四、解答题(本大题共 9 小题,共 66.0 分) 17. 计算; -tan30°+(π-1)0+
18. 如图,在四边形 ABCD 中,AB=AD.在 BC 上求作 一点 P 使△ABP≌△ADP.(要求:用尺规作图,不 写作法,保留作图痕迹)
19. 如图,P 是正方形 ABCD 的对角线 AC 上的一点, PM⊥AB,PN⊥BC,垂足分别为点 M,N.求证:DP=MN .
9.【答案】C
【解析】【分析】 该题主要考查了垂径定理、勾股定理及其应用问题;解题的 关键是作辅助线,灵活运用勾股定理等几何知识点来分析 、判断、推理或解答. 如图,作辅助线;首先求出 BD=5;根据勾股定理求出 DE 的长度;运用射影定理即可求出 AD 的长度,即可解决问 题. 【解答】 解:如图,作直径 AD,连接 BD; ∵AB=AC,
故选:B. 求出 A 的坐标和抛物线的对称轴,根据对称性得出 C 点坐标,求出 BC∥x 轴,则
AD=6-2=4,BD=3,tan∠CBA= .
本题主要考查了二次函数的性质,证得∠ADB=90°是关键.
11.【答案】(x-y)(x+y-2)
【解析】解:x2-y2-2x+2y=(x2-y2)-(2x-2y)=(x+y)(x-y)-2(x-y)=(x-y)(x+y-2 ). 故答案为:(x-y)(x+y-2). 根据因式分解-分组分解法分解因式即可. 本题考查了分解因式-分组分解法,熟记平方差公式是解题的关键.
∴S△ABC= ×3× = .
故选:D. 首先判断△ABC 是直角三角形,再根据勾股定理求得 AB,AC,就可求得面积. 本题考查勾股定理的应用,综合考查了直角三角形斜边上的中线的有关内容.

2020-2021学年陕西省西安市中考数学二模试卷2及答案解析

2020-2021学年陕西省西安市中考数学二模试卷2及答案解析

陕西省西安市中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的绝对值是()A.B.﹣C.D.﹣2.(3分)如图,由几个相同的小正方体搭成的一个几何体,它的主视图为()A.B.C.D.3.(3分)下列运算正确的是()A.3x2+4x2=7x4B.(x2)4=x8C.x6÷x3=x2D.2x3•3x3=6x34.(3分)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°5.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<06.(3分)如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD 的面积是()A.12B.36 C.24D.607.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥38.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.249.(3分)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则tan∠BCE值为()A.1.5 B.2 C.3 D.3.510.(3分)已知二次函数y=x2﹣bx+1(﹣1<b<1),在b从﹣1变化到1的过程中,它所对应的抛物线的位置也随之变化,下列关于抛物线的移动方向描述正确的是()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动二、填空题(共5小题,每小题3分,满分12分)11.(3分)不等式>﹣1的解是.12.(3分)一个n边形的每个内角都等于140°,则n= .13.如果3sinα=+1,则∠α= .(精确到0.1度)14.(3分)如图,反比例函数y=的图象与矩形AOBC的边AC交于E,且AE=2CE,与另一边BC交于点D,连接DE,若S△CED=1,则k的值为.15.(3分)如图,点C和点D在以O为圆心、AB为直径的半圆上,且∠COD=90°,AD与BC交于点P,若AB=2,则△APB面积的最大值是.三、解答题(共11小题,计78分,解答应写出过程)16.(5分)计算:()﹣1+(π﹣3.14)0﹣|﹣﹣|.17.(5分)化简:(x﹣1﹣)÷.18.(5分)如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D 到AB的距离等于CD.(保留作图痕迹,不写作法)19.(5分)某校学生数学兴趣小组为了解本校同学对上课外补习班的态度,在学校抽取了部分同学进行了问卷调查,调查分别为“A﹣非常赞同”、“B﹣赞同”、“C﹣无所谓”、“D﹣不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)请补全条形统计图.(2)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度.(3)若该校有3000名学生,请你估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和.20.(7分)如图,点E为正方形ABCD外一点,点F是线段AE上一点,且△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.求证:CE⊥EF.21.(7分)如图,数学课外小组的同学欲测量校内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知点A到水平地面的距离AB为4米.台阶AC坡度为1:,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).22.(7分)为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打折售票,节假日按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票;超过10人的团队,其中10人仍按原价售票,超过10人部分的游客打折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元),y1,y2与x之间的函数图象如图所示.(1)求y1,y2与x之间的函数关系式.(2)某旅行社导游小王于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?23.(7分)某游乐场设计了一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的,并且规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值6元小兔玩具,否则应付费4元.(1)问游玩者得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?24.(8分)如图,点D是△ABC中AB边上一点,以AD为直径的⊙O与BC相切于点C,连接CD.(1)求证:∠BCD=∠A.(2)若⊙O的半径为3,ta n∠BCD=,求BC的长度.25.(10分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且点A的坐标为(﹣3,0),顶点D的坐标为(﹣1,4).(1)求该抛物线的表达式.(2)求B、C两点的坐标.(3)连接AD、AC、CD、BC,在y轴上是否存在点M,使得以M、B、C为顶点的三角形与△ACD相似?若存在,请求出点M的坐标;若不存在,请说明理由.26.(12分)小明与小颖在做关于两个边长和为定值的动态等边三角形的研究.已知线段AB=12,M是线段AB上的任意一点.分别以AM、BM为边在AB的上方作出等边三角形AMC和等边三角形BMD,连接CD.(1)如图①,若M为AB的中点时,则四边形ABDC的面积为.(2)如图②,试确定一点M,使线段CD取最小值,并求出这个最小值.(3)如图③,设CD的中点为O,在M从点A运动到点B的过程中,△OAB的周长是否存在最小值?如果存在,请求出最小周长和点O从最初位置运动到此时所经过的路径长;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的绝对值是()A.B.﹣C.D.﹣【解答】解:﹣的绝对值是,故选:C.2.(3分)如图,由几个相同的小正方体搭成的一个几何体,它的主视图为()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形,最左边有一个正方形,中间没有没有正方形.故选:B.3.(3分)下列运算正确的是()A.3x2+4x2=7x4B.(x2)4=x8C.x6÷x3=x2D.2x3•3x3=6x3【解答】解:∵3x2+4x2=7x2,故选项A错误,∵(x2)4=x8,故选项B正确,∵x6÷x3=x3,故选项C错误,∵2x3•3x3=6x6,故选项D错误,故选:B.4.(3分)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.5.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【解答】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.6.(3分)如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD 的面积是()A.12B.36 C.24D.60【解答】解:∵四边形ABCD是平行四边形,∴AC⊥BD,OA=OC=AC=6,OB=OD=BD,∴OB===,∴BD=2OB=2,∴菱形ABCD的面积=AC×BD=×12×=12,故选:A.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3【解答】解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选:A.8.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选:A.9.(3分)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则tan∠BCE值为()A.1.5 B.2 C.3 D.3.5【解答】解:连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE===8,∴tan∠BCE===2,故选:B.10.(3分)已知二次函数y=x2﹣bx+1(﹣1<b<1),在b从﹣1变化到1的过程中,它所对应的抛物线的位置也随之变化,下列关于抛物线的移动方向描述正确的是()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动【解答】解:y=x2﹣bx+1=(x﹣)2+,所以顶点是(,),根据b的值的变化和抛物线顶点位置的变化,按照“左加右减,上加下减”的规律,抛物线的移动方向是先往右上方移动,再往右下方移动.故选C.二、填空题(共5小题,每小题3分,满分12分)11.(3分)不等式>﹣1的解是x<5 .【解答】解:去分母,得:3(x+1)>2(2x+2)﹣6,去括号,得:3x+3>4x+4﹣6,移项,得:3x﹣4x>4﹣6﹣3,合并同类项,得:﹣x>﹣5,系数化为1,得:x<5,故答案为:x<512.(3分)一个n边形的每个内角都等于140°,则n= 9 .【解答】解:由题意可得:180°•(n﹣2)=140°•n,解得n=9.故答案为:9.13.如果3sinα=+1,则∠α= 65.5°.(精确到0.1度)【解答】解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.14.(3分)如图,反比例函数y=的图象与矩形AOBC的边AC交于E,且AE=2CE,与另一边BC交于点D,连接DE,若S△C ED=1,则k的值为12 .【解答】解:设E的坐标是(m,n),则C的坐标是(m,n),在y=中,令x=m,解得:y=n,∵S△ECD=1,∴CD=n,CE=m,∵CE•CD=1,∴k=12,故答案为:12.15.(3分)如图,点C和点D在以O为圆心、AB为直径的半圆上,且∠COD=90°,AD与BC交于点P,若AB=2,则△APB面积的最大值是﹣1 .【解答】解:连接BD、DC.∵∠COD=90°,∴∠AOC+∠DOB=90°,∵∠PAB=∠DOB,∠PBA=∠AOC,∴∠PAB+∠PBA=45°,∴∠APB=135°,∴点P的运动轨迹是以AB为弦,圆周角为135°的弧上运动,∴当PO⊥AB时,即PA=PB时,△PAB的面积最大,∵∠PDB=90°,∠DPB=45°,∴DP=DB,设DP=DB=x,则PA=PB=x,在Rt△ADB中,∵AD2+BD2=AB2,∴(x+x)2+x2=22,∴x2=2﹣,∴△PAB的面积的最大值=•PA•BD=•x•x=•(2﹣)=﹣1.故答案为﹣1.三、解答题(共11小题,计78分,解答应写出过程)16.(5分)计算:()﹣1+(π﹣3.14)0﹣|﹣﹣|.【解答】解:()﹣1+(π﹣3.14)0﹣|﹣﹣|=3+1﹣﹣4=﹣17.(5分)化简:(x﹣1﹣)÷.【解答】解:原式=×=18.(5分)如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D 到AB的距离等于CD.(保留作图痕迹,不写作法)【解答】解:如图,点D即为所求.19.(5分)某校学生数学兴趣小组为了解本校同学对上课外补习班的态度,在学校抽取了部分同学进行了问卷调查,调查分别为“A﹣非常赞同”、“B﹣赞同”、“C﹣无所谓”、“D﹣不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)请补全条形统计图.(2)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36 度.(3)若该校有3000名学生,请你估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,补全条形统计图如图所示:(2)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,故答案为:36;(3)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).20.(7分)如图,点E为正方形ABCD外一点,点F是线段AE上一点,且△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.求证:CE⊥EF.【解答】证明:∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∵△EBF为等腰直角三角形,∴∠EBF=90°,BE=BF,∴∠ABF+∠FCB=∠FCB+∠CBE,∴∠ABF=∠CBE,在△AFB和△CEB中∴∠AFB=∠CEB,∵BE=BF,∠EBF=90°,∴∠BFE=∠BEF=45°,∴∠AFB=135°,即∠CEB=135°,∴∠CEF=∠CEB﹣∠BEF=135°﹣45°=90°,即CE⊥EF.21.(7分)如图,数学课外小组的同学欲测量校内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知点A到水平地面的距离AB为4米.台阶AC坡度为1:,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【解答】解:作AF⊥DE于F.∵tan∠ACB==,∴∠ACB=30°,∵∠DCE=60°,∴∠ACD=90°,∵AF∥BE,∴∠CAF=∠ACB=30°,∵∠DAF=30°,∴∠DAC=60°,∴∠ADC=30°,在Rt△ACB中,AC=2AB=8,在Rt△ACD中,AD=2AC=16,在Rt△ADF中,DF=AD=8,∵AB=EF=4,∴DE=DF+EF=8+4=12.答:古树DE的高度为12米.22.(7分)为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打折售票,节假日按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票;超过10人的团队,其中10人仍按原价售票,超过10人部分的游客打折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元),y1,y2与x之间的函数图象如图所示.(1)求y1,y2与x之间的函数关系式.(2)某旅行社导游小王于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【解答】解:(1)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k2=500,∴k2=50,∴y2=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和(20,900),∴,∴,∴y2=40x+100;∴y2=;(2)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,50n+30(50﹣n)=1900,解得n=20(不符合题意舍去),当n>10时,40n+100+30(50﹣n)=1900,解得n=30,∴50﹣n=50﹣30=20,答:A团有30人,B团有20人.故答案为:a=6;b=8;m=10.23.(7分)某游乐场设计了一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的,并且规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值6元小兔玩具,否则应付费4元.(1)问游玩者得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?【解答】解:(1)画树状图为:共有10种等可能的结果数,其中从开始进入的出入口离开的结果数为2,所以游玩者玩一次“守株待兔”游戏能得到小兔玩具的概率==;(2)100×0.8×4﹣100×0.2×6=200,所以估计游戏设计者可赚200元.24.(8分)如图,点D是△ABC中AB边上一点,以AD为直径的⊙O与BC相切于点C,连接CD.(1)求证:∠BCD=∠A.(2)若⊙O的半径为3,tan∠BCD=,求BC的长度.【解答】(1)证明:连接OC.∵AD是直径,∴∠ACD=90°,∴∠A+∠2=90°,∵BC是⊙O的切线,∴∠BCO=90°,∴∠BCD+∠1=90°,∵OC=OD,∴∠1=∠2,∴∠BCD=∠A.(2)在Rt△ACD中,tan∠BCD=tan∠A==∵∠B=∠B,∠BCD=∠A,∴△BCD∽△BAC,∴===,设BC=a,则AB=2a,∴BC2=BD•BA,∴a2=(2a﹣6)2a,解得a=4,∴BC=4.25.(10分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且点A的坐标为(﹣3,0),顶点D的坐标为(﹣1,4).(1)求该抛物线的表达式.(2)求B、C两点的坐标.(3)连接AD、AC、CD、BC,在y轴上是否存在点M,使得以M、B、C为顶点的三角形与△ACD相似?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x+1)2+4.将点A的坐标为(﹣3,0)代入得:4a+4=0,解得:a=﹣1.所以抛物线的表达式为y=﹣(x+1)2+4,y=﹣x2﹣2x+3.(2)将x=0代入得:y=3,∴C(0,3).令y=0得:﹣x2﹣2x+3=0,解得:x=﹣3或x=1,∴B(﹣1,0).(3)∵A(3,0),C(0,3),D(﹣1,4),∴DC=,AC=3,AD=2,BC=,∴∠DCA=90°.当∠CMB=90°时,点O与点M重合,∴点M的坐标为(0,0).当∠CBM=90°时,=,即=,解得:CM=.∴点M的坐标为(0,﹣).综上所述,点M的坐标为(0,0)或(0,﹣).26.(12分)小明与小颖在做关于两个边长和为定值的动态等边三角形的研究.已知线段AB=12,M是线段AB上的任意一点.分别以AM、BM为边在AB的上方作出等边三角形AMC和等边三角形BMD,连接CD.(1)如图①,若M为AB的中点时,则四边形ABDC的面积为27.(2)如图②,试确定一点M,使线段CD取最小值,并求出这个最小值.(3)如图③,设CD的中点为O,在M从点A运动到点B的过程中,△OAB的周长是否存在最小值?如果存在,请求出最小周长和点O从最初位置运动到此时所经过的路径长;若不存在,请说明理由.【解答】解:如图①,∵AB=6,点M是AB的中点,∴AM=BM=AB=6,∵△ACM和△BDM是等边三角形,∴∠AMC=∠BMD=60°,AM=CM,BM=DM,∴CM=DM,∵∠CMD=180°﹣∠AMC﹣∠BMD=60°,∴△CMD是等边三角形,且△ACM≌△BDM≌△CDM,过点C作CE⊥AB,在Rt△MCE中,CM=6,∠AMC=60°,∴CE=3,∴S四边形ABCD=3S△ACM=3×AM×CE=3××6×3=27;故答案为27;(2)方法1、∵△ACM和△BDM是等边三角形,∴AM=CM,DM=BM,∠AMC=∠BMD=60°,∴∠CMD=60°,在△CDM中,利用大角对大边,只有△CDM是等边三角形时,CD最小,∴CD最小=CM=BM=AM=BM,∵AB=AM+BM=12,∴CD最小=6;方法2、如图②,过点C作DE⊥AB于E,过点D作DF⊥AB于F,过点F作DG⊥CE交CE的延长线于G,∴四边形EFDG是矩形,∴EG=DF,DG=EF,设AM=x,(0≤x≤6),∵△ACN是等边三角形,∴AM=2AE=2x,∴BM=12﹣2x,同理:FM=FB=BM=6﹣x,∴DG=6﹣x,同(1)的方法得,CE=x,DF=(6﹣x),∴CG=EG﹣CE=DF﹣CE=(6﹣x)﹣x=2(3﹣x),在Rt△CDG中,CD==,∴x=3时,CD最小为=6,∴AM=2AE=2x=6,即:点M是AB中点时,CD最小,最小值为6;(3)如图③,延长AC,BD交于点E,连接EM交CD于O,取AE的中点O',BE的中点O'',连接OO',OO'',当点M和点A重合时,点C和点A重合,点D和点E重合,此时CD的中点是AE的中点O',当点M和点B重合时,点C和点E重合,点D与点B重合,此时CD的中点是BE 的中点O'',∵△ACM和△BDM是等边三角形,∴∠A=∠B=60°,∴△ABE是等边三角形,∴AE=BE=AB,∴CM=AM=DE,DM=BM=CE,∴四边形CMDE是平行四边形,∵点O是CD的中点,∴点O也是EM的中点,∴E,O,M在同一条直线上,∵点O'是AE的中点,∴OO'∥AB,同理:OO''∥AB,∴O',O,O''在同一条直线上,即:CD的中点O的运动路径是线段O'O'';∴O'O''=AB=6.∴点O从最初位置运动到此时所经过的路径长为3.如图4过点E作EF⊥AB,则EF是边长为12的等边三角形ABE的高为6,∵点O是等边三角形ABE的中位线CD上一点,∴CD∥AB,作点A关于直线CD的对称点A',连接A'B交CD于O,连接OA,此时OA+OB最小,即:△AOB的周长最小,∴AA'⊥AB,AA'=CF=6,在Rt△A'AB中,AA'=6,AB=12,∴A'B==6,即:△AOB的周长最小值为AB+OA+OB=AB+A'B=12+6.点O从最初位置运动到此时所经过的路径长3.。

陕西省西安市高新一中2020届中考数学二模试题(含答案解析)

陕西省西安市高新一中2020届中考数学二模试题(含答案解析)

陕西省西安市高新一中2020届中考数学二模试题一、单选题1.一次函数23y x =-的图象不经过的象限是 ( )A .第一象限.B .第二象限C .第三象限D .第四象限2.已知一个直角三角形的斜边长是4,一条直角边是3,则第三边长为( )A .5B C .5 D .7 3.如图,O 是正方形 ABCD 的外接圆,点 P 是CD 上的一点,则APB ∠的度数是( )A .30B .36C .45D .724.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( ) A .①② B .①③ C .①④D .①③④ 5.设()1A 2,y -,()2B 1,y ,()3C 2,y 是抛物线y=(x+1)2+k 上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<6.如图所示的几何图形的左视图是( )A .B .C .D .7.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1)B (x 2,y 2),当x 1>x 2时,有y 1<y 2那么m 的取值范围是( )A .m>0B .m<0C .m>1D .m<18.如图,在△ABC 中,∠BAC =90°,∠C =30°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,且交AD 于P ,如果AP =2,则AD 的长为( )A .2B .3C .4D .69.下列运算,计算结果是错误的是( )A .a 4·a 3=a 7B .a 6÷a 3=a 3C .(a 3)2=a 5D .a 3·b 3=(a·b)310.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°二、填空题11.比较大小-6 ______12.如图,☉O 是边长为2的等边三角形ABC 的内切圆,则☉O 的面积为________.13.如图,,4,60ABCD AB B ︒=∠=,点G 为边BC 上一点,且BG =E 为AB 上一动点,将B 沿GE 折叠,当点B 的对应点F 落在平行四边形的边上时,线段BE 的长为_______.14.如图,11P OA ,212P A A ,323n n 1n P A A P A A -⋯都是等腰直角三角形,点1P 、2P 、3n P P ⋯都在函数4y (x 0)x=>的图象上,斜边1OA 、12A A 、23n 1n A A A A -⋯都在x 轴上.则点10A 的坐标是______.三、解答题15.在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A (﹣3,0),B (1,0),与y 轴交于点C ,顶点为点D .(1)求抛物线的解析式;(2)点P 为直线CD 上的一个动点,连接BC ;①如图1,是否存在点P ,使∠PBC =∠BCO ?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由;②如图2,点P 在x 轴上方,连接P A 交抛物线于点N ,∠P AB =∠BCO ,点M 在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.16.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点的勾股点;在点E、F、G三点中只有点是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①若△ADE是等腰三角形,求AE的长;②直接写出AE+56BE的最小值.17.七年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项:评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将频数分布直方图补充完整;(4)如果全市有8600名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?18.(1)计算:102(1-+-(2)解方程:()482x x x -=-19.央视举办的《中国诗词大会》受到广大学生群体广泛关注.某校的诗歌朗诵社团就《中国诗词大会》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A 、B 、C 、D .根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中说给信息解答下列问题:(1)本次被调查对象共有 人,扇形统计图中被调查者“非常喜欢”等级所对应圆心角的度数为 ;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两名女生,其余是男生,从原“不太喜欢”的人中挑选两名学生了解不太喜欢的原因,请用画树状图或列表法求所选取的这两名学生恰好是一男一女的概率. 20.如图,△ABC 的边BC 上的高为AF ,AC 边上的高为BG ,中线为AD .已知AF =6,BC =10,BG =5.(1)求△ABC 的面积;(2)求AC 的长;(3)试说明△ABD 和△ACD 的面积相等.21.在△ABC 中,BD 是AC 边上的中线,BE =AB ,且AE 与BD 相交于点F ,试说明:AB BC =EF AF . 22.如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.△AOB 的两条外角平分线交于点P ,P 在反比例函数y 9x=的图象上.P A 的延长线交x 轴于点C ,PB 的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.23.如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求⊙O的半径.24.如图,A l,B l分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距___千米。

2020-2021学年陕西省西安市中考数学第二次模拟试题及答案解析一

2020-2021学年陕西省西安市中考数学第二次模拟试题及答案解析一

最新陕西省西安市中考数学二模试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B.C.D.3.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a64.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.45.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣46.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值等于()A.B.﹣2 C.﹣D.27.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD 与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.8.观察下列图形规律:当n=()时,图形“•”的个数和“△”的个数相等A.9 B.7 C.6 D.59.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45° B.50° C.60°D.不确定10.已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(共4小题,每小题3分,计12分)11.方程x2=﹣x的解是.12.已知点A(x1,y1),点B(x2,y2)都在反比例函数y=的图象上,若x1•x2=﹣3,求y1•y2的值.13.请从以下两个小题中任意选一题作答A.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时正方形CDEF的面积是.B.比较大小.(填“>”“<”或“=”)14.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为.三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.16.先化简,再求值:,其中x=+1.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为度;②课外阅读时间的中位数落在(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA 上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D 处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A的仰角为30°,求旗杆AB的高度.(结果保留根号)21.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?23.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3【考点】相反数.【分析】两数互为相反数,它们的和为0.【解答】解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.3.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、a+2a=3a,故本选项错误;B、a•a2=a3,故本选项正确;C、(2a)2=4a2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选B.4.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.5.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣4【考点】一元二次方程的解.【分析】将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.【解答】解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选:B.6.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值等于()A.B.﹣2 C.﹣D.2【考点】一次函数图象与几何变换.【分析】根据关于x轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.则两个解析式的k值应互为相反数.【解答】解:两个解析式的k值应互为相反数,即k=﹣2,故选B.7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD 与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.【考点】切线的性质;锐角三角函数的定义.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,∴sin∠ADP=,故选:D.8.观察下列图形规律:当n=()时,图形“•”的个数和“△”的个数相等A.9 B.7 C.6 D.5【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“•”的个数和“△”的个数相等,求出n 的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;∴第n个图形中“•”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“•”的个数和“△”的个数相等.故选D.9.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45° B.50° C.60°D.不确定【考点】全等三角形的判定与性质;正方形的性质.【分析】过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.【解答】解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,∵E是BF的垂直平分线EM上的点,∴EF=EB,∵E是∠BCD角平分线上一点,∴E到BC和CD的距离相等,即BH=EI,Rt△BHE和Rt△EIF中,,∴Rt△BHE≌Rt△EIF(HL),∴∠HBE=∠IEF,∵∠HBE+∠HEB=90°,∴∠IEF+∠HEB=90°,∴∠BEF=90°,∵BE=EF,∴∠EBF=∠EFB=45°.故选:A.10.已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【考点】抛物线与x轴的交点.【分析】令y=0,则﹣x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD==.故选:D.二、填空题(共4小题,每小题3分,计12分)11.方程x2=﹣x的解是0或﹣1 .【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x,将原式化为左边是两式相乘,右边是0的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x2+x=0x(x+1)=0x=0或x=﹣1.12.已知点A(x1,y1),点B(x2,y2)都在反比例函数y=的图象上,若x1•x2=﹣3,求y1•y2的值.【考点】反比例函数图象上点的坐标特征.【分析】因为A、B都在反比例函数的图象上,可知x1y1=6,x2y2=6,把已知x1•x2=﹣3代入可求得y1•y2的值.【解答】解:∵A、B都在反比例函数的图象上,∴x1y1=6,x2y2=6,∴x1y1x2y2=36且x1•x2=﹣3,∴y1•y2=﹣12.13.请从以下两个小题中任意选一题作答A.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时正方形CDEF的面积是 6 .B.比较大小>.(填“>”“<”或“=”)【考点】正方形的性质;实数大小比较.【分析】A、首先设正方形CDEF的边长为x,易得△ADE∽△ACB,然后由相似三角形的对应边成比例,求得答案;B、首先求得的近似值,继而比较大小,即可求得答案.【解答】解:A、设正方形CDEF的边长为x,则DE=CF=CD=x,BC=CF+BF=3+x,AC=AD+CD=2+x,∴DE∥BC,∴△ADE∽△ACB,∴,∴,解得:x=±,∴DE=,∴正方形CDEF的面积是:6;B、∵≈=0.618,=0.5,∴>.故答案为:A、6,B、>.14.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为 6 .【考点】轴对称-最短路线问题.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6,故答案为:6三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得x>3,由②得x>1,故不等式组的解集为:x>3.16.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】把括号里式子进行通分,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===x(x﹣1)当x=+1时原式=(+1)(+1﹣1)=3+.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.【考点】作图—复杂作图;切线的性质.【分析】直接过作AB的垂线进而得出D点位置,进而作出⊙C.【解答】解:作AB的垂线,交AB于点D,作⊙C,交AC于点E.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为36°度;②课外阅读时间的中位数落在1~1.5 (填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【分析】(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数×频率即可得出答案.【解答】解:(1)总人数=30÷25%=120人;(2)①a%==10%,∴对应的扇形圆心角为360°×10%=36°;②总共120名学生,中位数为60、61,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800×30%=240人.19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA 上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.【解答】(1)证明:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D.又∵AE=CG,AH=CF,∴BE=DG,BF=DH,在△BEF与△DGH中,∴△BEF≌△DGH(SAS),∴EF=GH.又由(1)知,△AEH≌△CGF,∴EH=GF,∴四边形EFGH是平行四边形,∴HG∥EF,∴∠HGE=∠FEG,∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠HEG=∠HGE,∴HE=HG,∴四边形EFGH是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D 处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A的仰角为30°,求旗杆AB的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由∠AFC为△AFG的外角,利用外角性质得到∠AGF=∠FAG,利用等角对等边得到AF=GF=ED,在直角三角形ACF中,利用锐角三角函数定义求出AC的长,由AC+BC 求出AB的长即可.【解答】解:∵∠AFC=60°,∴∠AFG=120°,∵∠CGA=30°,∴∠GAF=30°,∴FA=FG=ED=12m,∴AC=AF•sin60°=6(m),∵BC=FD=1,∴AB=AC+BC=(6+1)m.21.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?【考点】一次函数的应用.【分析】(1)由图2得出点D的坐标,由速度=路程÷时间可得出货车的速度,再由时间=AC两地两地距离÷速度得出货车从C地到A地的时间,设直线DP的解析式为y2=kx+b (k≠0),由D、P点的坐标利用待定系数法即可得出结论;(2)设直线EF的函数解析式为y1=mx+n(m≠0),结合起点终点的坐标利用待定系数法即可求出直线EF的函数解析式,联立直线DP和EF的函数解析式得出方程组,解方程组即可得出结论.【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60÷2=30(千米/时),∴货车行驶360千米所需时间为360÷30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是3时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.23.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)在直角三角形ABC中,根据锐角三角函数的概念以及勾股定理计算它的三边.再根据相似三角形的判定和性质进行计算.【解答】(1)证明:连接BD,∵AB是直径,∠ABC=90°,∴BC是⊙O的切线,∠BDC=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE.故DE=BC.(2)解:由(1)知,BC=2DE=4.在Rt△ABC中,AB=BCtanC=4×=2,AC==6.∵∠ADB=∠ABC=90°,∠A=∠A,∴△ABD∽△ACB.∴,∴=.解得AD=.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A、C两点坐标代入抛物线y=﹣x2+bx+c,运用待定系数法即可求出b,c的值;(2)先求得M的坐标,进而求出点D的坐标,然后将D(t+2,4)代入(1)中求出的抛物线的解析式,即可求出t的值;(3)由于t=8时,点B与点D重合,△ABD不存在,所以分0<t<8和t>8两种情况进行讨论,在每一种情况下,当以A、B、D为顶点的三角形与△PEB相似时,又分两种情况:△BEP∽△ADB与△PEB∽△ADB,根据相似三角形对应边的比相等列出比例式,求解即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),∴,解得.故所求b的值为,c的值为4;(2)∵∠AOP=∠PEB=90°,∠OAP=∠EPB=90°﹣∠APO,∴△AOP∽△PEB且相似比为==2,∵AO=4,∴PE=2,OE=OP+PE=t+2,又∵DE=OA=4,∴点D的坐标为(t+2,4),∴点D落在抛物线上时,有﹣(t+2)2+(t+2)+4=4,解得t=3或t=﹣2,∵t>0,∴t=3.故当t为3时,点D落在抛物线上;(3)存在t,能够使得以A、B、D为顶点的三角形与△AOP相似,理由如下:①当0<t<8时,如图1.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(4﹣t),整理,得t2+16=0,∴t无解;若△POA∽△BDA,同理,解得t=﹣2±2(负值舍去);②当t>8时,如图2.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(t﹣4),解得t=8±4(负值舍去);若△POA∽△BDA,同理,解得t无解.综上可知,当t=﹣2+2或8+4时,以A、B、D为顶点的三角形与△AOP相似.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)①根据题意直接画出图形得出即可;②利用对称的性质以及等角对等边的性质,进而得出答案;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:,进而利用勾股定理得出答案.【解答】解:(1)①如图1所示:②如图2,连接AE,由对称得,∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(2)如图2,连接AE,由对称得∠PAB=∠PAE=α,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=α,∴∠EAD=90°+2α,∴∠ADF==45°﹣α.(3)如图3,连接AE、BF、BD,由对称可知,EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,在Rt△BDF中,BF2+FD2=BD2,在Rt△ABC中,BD=AB,∴EF2+FD2=2AB2.2016年6月7日。

2019-2020学年最新陕西省西安市中考数学二模试卷及答案解析

2019-2020学年最新陕西省西安市中考数学二模试卷及答案解析

陕西省西安市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•二模)|﹣|的相反数是()A. 2 B.C.﹣D.﹣2分析:根据绝对值的性质和相反数的定义,进行求解.解答:解:∵|﹣|=,∵+(﹣)=0,∴|﹣|的相反数是﹣,故选C.点评:此题主要考查绝对值的性质,当a>0时,|a|=a;当a≤0时,|a|=﹣a,是一道好题.2.(3分)(2014•二模)如图,这个切角长方体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图是从左面看到的图形判定则可.图中摆放的是切角长方体,解答:解:从左边看是下面一个矩形,上面一个矩形.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)(2014•二模)(﹣3x3)2÷x2运算结果正确的是()A.6x4B.﹣6x4C.9x3D. 9x4考点:整式的除法.专题:计算题.分析:原式先计算乘方运算,再计算除法运算即可得到结果.解答:解:原式=9x6÷x2=9x4,故选D点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.4.(3分)(2014•二模)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数 1 3 2 3 5 1A. 1.65,1.70 B. 1.70,1.65 C. 1.70,1.70 D.3,5考点:众数;中位数.分析:根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.解答:解:跳高成绩为170的人数最多,故跳高成绩的众数为176;共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为165,故中位数为165;故选A.点评:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候注意数据的奇偶性.5.(3分)(2014•二模)正比例函数y=2x的图象向右平移m个单位后,所得直线与坐标轴围成三角形面积为3,则m的值为()A. 3 B.C. D.考点:一次函数图象与几何变换.分析:先根据图形平移的性质得出平移后直线的解析式,再求出此直线与x、y轴的交点,利用三角形的面积公式即可求解.解答:解:∵正比例函数y=2x的图象向右平移m个单位后的直线方程为:y=2(x﹣m).∴此直线与x、y轴的交点坐标分别为(0,﹣2m),(m,0),∴平移后的直线与坐标轴围成的三角形面积=×2m×m=3,解得m=(舍去负值).故选:C.点评:本题考查的是一次函数的图象与几何变换,解答此题的关键是求出平移后的直线解析式及与两坐标轴的交点.6.(3分)(2014•二模)如图,△ABC中,AB=AC,AD平分∠BAC,DE∥AC交AB于E,则S△EBD:S△ABC=()A.1:2 B.1:4 C. 1:3 D. 2:3考点:三角形中位线定理;等腰三角形的性质;相似三角形的判定与性质.分析:易证ED是△ABC的中位线,相似三角形△EBD∽△ABC的相似比是1:2;然后由相似三角形的面积之比等于相似比的平方进行答题.解答:解:如图,∵在△ABC中,AB=AC,AD平分∠BAC,∴点D是BC的中点.又∵DE∥AC,∴ED是△ABC的中位线,且△EBD∽△ABC,∴相似比是:ED:AC=1:2,∴S△EBD:S△ABC=1:4.故选:B.点评:本题综合考查了三角形中位线定了、等腰三角形的性质以及相似三角形的判定与性质.根据题意判定ED是△ABC的中位线是解题的关键.7.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A. 2 B. 3 C. 4 D. 5考点:坐标与图形变化-平移.专题:压轴题.分析:直接利用平移中点的变化规律求解即可.解答:解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.点评:本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.(3分)如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式是()A.b=a+c B.b=ac C. b2=a2+c2D.b=2a=2c考点:相似三角形的判定与性质;正方形的性质.专题:压轴题.分析:因为Rt△ABC内有边长分别为a、b、c的三个正方形,所以图中三角形都相似,且与a、b、c关系密切的是△DHE和△GQF,只要它们相似即可得出所求的结论.解答:解:∵DH∥AB∥QF∴∠EDH=∠A,∠GFQ=∠B;又∵∠A+∠B=90°,∠EDH+∠DEH=90°,∠GFQ+∠FGQ=90°;∴∠EDH=∠FGQ,∠DEH=∠GFQ;∴△DHE∽△GQF,∴=∴=∴ac=(b﹣c)(b﹣a)∴b2=ab+bc=b(a+c),∴b=a+c.故选A.点评:此题考查了相似三角形的判定,同时还考查观察能力和分辨能力.9.(3分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.考点:垂径定理;勾股定理.分析:在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.解答:解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.点评:注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.10.(3分)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是()A.m﹣1的函数值小于0 B. m﹣1的函数值大于0 C.m﹣1的函数值等于0 D. m﹣1的函数值与0的大小关系不确定考点:二次函数的性质.专题:压轴题.分析:根据二次函数的性质解题.解答:解:设x1,x2是方程x2﹣x+a=0的两根,∴x1+x2=1,x1•x2=a,∴|x 1﹣x2|==,∵a>0,∴<1,∴|x1﹣x2|<1,∵当自变量x取m时,其相应的函数值y<0,∴当自变量x取m﹣1时,那么m﹣1的函数值y>0.点评:此题考查了数形结合思想,提高了学生的分析能力.二、填空题(每小题3分,共18分)11.(3分)(2014•二模)计算:tan30°﹣= .考点:二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:根据特殊角的三角函数值和绝对值的意义得到原式=•+,然后进行二次根式的乘除法运算后合并即可.解答:解:原式=•+=1+﹣1=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值.12.(3分)(2014•二模)如图,A、B是反比例函数,y=(k>0)图象上的两个点,AC⊥x 轴于点C,BD⊥y轴于点D,连接AD、BC,则△ADB与△ACB的面积大小关系是S△ADB= S△ACB(填<、>或=).考点:反比例函数系数k的几何意义.专题:计算题.分析:作AE⊥y轴于E,BF⊥x轴于F,根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AEOC=S矩形BFOD,它们都减去矩形PDOC的面积得到S△APD=S△BPC,然后都加上S△APB即可得到S△ADB=S△ACB.解答:解:作AE⊥y轴于E,BF⊥x轴于F,如图,根据题意得S矩形AEOC=S矩形BFOD,∴S矩形AEDP=S矩形BFCP,∴S△APD=S△BPC,∴S△APB+S△APD=S△BPC+S△APB,即S△ADB=S△ACB.故答案为=.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(3分)(2014•二模)分解因式:﹣3x3y+27xy= ﹣3xy(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣3xy,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:﹣3x3y+27xy,=﹣3xy(x2﹣9),﹣﹣(提取公因式)=﹣3xy(x+3)(x﹣3).﹣﹣(平方差公式).点评:本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•二模)如图,把△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D点.若∠A′DC=90°,则∠A=55 度.考点:旋转的性质.分析:根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,则∠A度数可求.解答:解:∵△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°.点评:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.15.(3分)(2014•二模)若一圆锥的底面半径为2,母线长为4,则其侧面展开图的圆心角是180°.考点:圆锥的计算.分析:圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.解答:解:圆锥侧面展开图的弧长是:4π,设圆心角的度数是x度.则=4π,解得:x=180.故答案为180°.点评:考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.(3分)(2014•二模)如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB 相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2 .考点:切线的性质;垂线段最短.专题:计算题.分析:三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时,EF长度最小,求出即可.解答:解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.点评:此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.三、计算题(共72分)17.(7分)(2014•二模)先化简,再求值:,其中.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:先化简,再求值:,其中.解:原式=•﹣•=3(x+1)﹣(x﹣1)=2x+4,当时,原式=2(﹣2)+4=2.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.(7分)已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.考点:全等三角形的判定与性质.专题:证明题.分析:由AB=DC,∠B=∠C,BE+EF=CF+EF,即BF=CE,可得出△ABF≌△DCE(SAS),得AF=DE,∠AFB=∠DEC,有OE=OF,由等式性质有AF﹣OF=DE﹣OE.即OA=OD.解答:证明:∵BE=CF,∴BE+EF=EF+CF,即BF=CE,在△ABF与△DCE中,∴△ABF≌△DCE,∴AF=DE,∠AFB=∠DEC,∴OF=OE,∴AF﹣OF=DE﹣OE,∴OA=OD.点评:本题考查了全等的证明方法以及逻辑推理能力.本题两次运用等量减等量差相等.19.(7分)九年级一班的两位学生对本班的一次数学成绩(分数取整数,满分为100分)进行了一次初步统计,看到80分以上(含80分)有17人,但没有满分,也没有低于30分的.为更清楚了解本班的考试情况,他们分别用两种方式进行了统计分析,如图1和图2所示.请根据图中提供的信息回答下列问题:(1)班级共有多少名学生参加了考试;(2)填上两个图中三个空缺的部分;(3)问85分到89分的学生有多少人?考点:频数(率)分布直方图;扇形统计图.分析:解决本题需要从由统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.本题主要考查扇形统计图的定义,其中各部分的数量=总体×其所占的百分比.解答:解:(1)(2+3+5)÷20%=50(人);(2)如图所示.(3)85~100分:1﹣20%﹣62%=18%,所以,含有18%×50=9(人),又90~100有17﹣11=6(人),则85分至89分的有9﹣6=3(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.专题:转化思想.分析:(1)利用点D处的周角即可求得∠ADB的度数;(2)首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:(1)∵DC⊥CE,∴∠BCD=90°.又∵∠DBC=10°,∴∠BDC=80°.(1分)∵∠ADF=85°,∴∠ADB=360°﹣80°﹣90°﹣85°=105°.(2分)(2)过点D作DG⊥AB于点G.(3分)在Rt△GDB中,∠GBD=40°﹣10°=30°,∴∠BDG=90°﹣30°=60°.(4分)又∵BD=100米,∴GD=BD=100×=50米.∴GB=BD×cos30°=100×=50米.(6分)在Rt△ADG中,∠ADG=105°﹣60°=45°,(7分)∴GD=GA=50米.(8分)∴AB=AG+GB=(50+50)米.(9分)答:索道长(50+50)米.(10分)点评:本题考查仰角的定义及直角三角形的解法,首先构造直角三角形,再借助角边关系、三角函数的定义解题.21.(8分)(2014•二模)某市出租车管理处公示的出租车运价如图:(1)某乘客工作单位离家的距离超过8公里,他每天乘出租车上下班,写出他乘车费用y与乘车距离x之间的函数关系式.(2)有同事告诉他,当乘车距离较远时,可以考虑中途岛8公里时下车换乘出租车,节省费用,他试了一下,发现第二次乘车距离超过2公里,但未超过8公里,而且他还发现与之前不换车费用相同,请你算算他的工作单位离家的距离.考点:一次函数的应用.分析:(1)根据自变量的取值范围,写出乘车费用y(元)与路程x(公里)之间的函数关系式;(2)由题意可知分2种情况收费,x=8和2<x<8两者收费相加和(1)联立方程解决问题.解答:解:(1)当x>8时,y=6+(8﹣2)×1.6+(x﹣8)×1.6×50%,即y=0.8x+9.2;(2)设他的工作单位离家的距离为x公里,由题意得6+(8﹣2)×1.6+6+(x﹣2)×1.6=0.8x+9.2解得:x=11.5.答:他的工作单位离家的距离为11.5公里.点评:本题主要考查一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.22.(8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.专题:阅读型.分析:游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明先挑选或小亮先挑选的概率是否相等,求出概率比较,即可得出结论.解答:解:(1)根据题意可列表或树状图如下:第一次第二次 1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(5分)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)=;(7分)(2)不公平.(8分)∵小明先挑选的概率是P(和为奇数)=,小亮先挑选的概率是P(和为偶数)=,∵,∴不公平.(10分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2014•二模)如图,已知AB=2,AB、CD是⊙O的两条直径,M为弧AB的中点,C在弧MB上运动,点P在AB的延长上,且PC=AC,作CE⊥AP于E,连接DP交⊙O于F.(1)求证:当AC=时,PC与⊙O相切;(2)在PC与⊙O相切的条件下,求sin∠APD的值?考点:切线的判定与性质;全等三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.分析:(1)连接BC,AB为直径,解直角三角形ABC得∠A=30°,又PC=AC,得∠CPE=∠A=30°,∠COP=∠A+∠ACO=2∠A=60°,利用内角和定理证明∠OCP=90°;(2)作DH⊥AP垂足为H,可证DH=CE,利用解直角三角形求CE,在Rt△CDP中,由CD=2,CP=,利用勾股定理求DP,由sin∠APD=求解.解答:(1)证明:连接BC,∵AB为直径,∴∠ACB=90°,在Rt△ABC中,cosA==,∴∠A=30°,又∵PC=AC,∴∠CPE=∠A=30°,∴∠COP=∠A+∠ACO=2∠A=60°,∴∠OCP=180°﹣∠CPE﹣∠COP=90°,∴PC与⊙O相切;(2)解:在Rt△CDP中,∵CD=2,CP=∴DP=(1分)作DH⊥AP垂足为H(1分)∵∠HOD=∠COE,OC=OD,∠CEO=∠DHO=90°,∴Rt△DHO≌Rt△CEO(1分)可得DH=CE=AC•sin30°=(1分)在Rt△DHP中:sin∠APD===点评:本题考查了切线的判定,全等三角形的判定与性质,勾股定理,圆周角定理,解直角三角形的知识.关键是作辅助线,将问题转化到特殊三角形中求解.24.(8分)(2014•二模)如图,在直角坐标系内有点P(1,1)、点C(1,3)和二次函数y=﹣x2.(1)若二次函数y=﹣x2的图象经过平移后以C为顶点,请写出平移后的抛物线的解析式及一种平移的方法;(2)若(1)中平移后的抛物线与x轴交于点A、点B(A点在B点的左侧),求cos∠PBO 的值;(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出D点的坐标;若不存在,说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据平移只改变图形的位置,不改变图形的形状与大小,利用顶点式解析式写出平移后的抛物线解析式即可,根据顶点从坐标原点到点C写出平移方法;(2)令y=0,求出点A、B的横坐标,过点P作PM⊥x轴于点M,从而求出BM、PM的长度,再根据勾股定理求出PB的长度,最后根据余弦的定义列式求解即可;(3)存在.根据互相垂直平分的四边形是平行四边形,可以证明当点D为抛物线与y轴的交点时,四边形OPCD正好是平行四边形.解答:解:(1)平移后以C为顶点的点抛物线解析式为y=﹣(x﹣1)2+3,所以一种移动方式是将y=﹣x2向右平移一个单位长度,再向上平移三个单位长度;(2)由(1)知移动后的抛物线解析式为y=﹣(x﹣1)2+3=x2+2x+2.令﹣x2+2x+2=0,解出x1=1﹣,x2=1+,连接PB,过点P作PM⊥x轴于点M,∴BM=,PM=1,根据勾股定理,PB===2,∴cos∠PBO==;(3)存在这样的点D.理由如下:欲使OC与PD互相平分,只要使四边形OPCD为平行四边形,由题设知,PC∥OD,又PC=2,PC∥y轴,∵点D在y轴上,∴OD=2,即D(0,2).又点D(0,2)在抛物线y=﹣x2+2x+2上,故存在点D(0,2),即OD与PC平行且相等,使线段OC与PD相互平分.点评:本题综合考查了二次函数的问题,有平移变换的性质,抛物线与y轴的交点问题,勾股定理,余弦的定义,平行四边形的性质,综合性较强但难度不大,计算后利用数据的关系得解比较巧妙.25.(12分)(2014•二模)(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等;(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.考点:三角形的面积.分析:(1)根据三角形的面积公式,只需过点A和BC的中点画直线即可;(2)结合平行线间的距离相等和三角形的面积公式即可证明;(3)结合(1)和(2)的结论进行求作.解答:(1)解:取BC的中点D,过A、D画直线,则直线AD为所求;(2)证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=GH•h,S△FGH=GH•h,∴S△EGH=S△FGH,∴S△EGH﹣S△GOH=S△FGH﹣S△GOH,∴△EGO的面积等于△FHO的面积;(3)解:取BC的中点D,连接MD,过点A作AN∥MD交BC于点N,过M、N画直线,则直线MN为所求.点评:此题主要是根据三角形的面积公式,知:三角形的中线把三角形的面积等分成了相等的两部分;同底等高的两个三角形的面积相等.。

2020年陕西省西安市碑林区铁一中学中考数学二模试卷 解析版

2020年陕西省西安市碑林区铁一中学中考数学二模试卷  解析版

25.(12 分)[探索发现]
(1)如图①,△ABC 与△ADE 为等腰三角形,且两顶角∠ABC=∠ADE,连接 BD 与
CE,则△ABD 与△ACE 的关系是

[操作探究]
(2)在△ABC 中,AB=AC=3,∠BAC=100°,D 是 BC 的中点,在线段 AD 上任取一 点 P,连接 PB,将线段 PB 绕点 P 按逆时针方向旋转 80°,点 B 的对应点是点 E,连接
B.(ab+1)2=a2b2+1
C.(﹣2a2)3=﹣6a6
D.6a2b÷(﹣2ab)=﹣3a
【分析】各项计算得到结果,即可作出判断.
【解答】解:A、原式不能合并,不符合题意; B、原式=a2b2+2ab+1,不符合题意; C、原式=﹣8a6,不符合题意; D、原式=﹣3a,符合题意. 故选:D.
8 / 28
21.(7 分)某农贸公司销售一批玉米种子,若一次购买不超过 5 千克,则种子价格为 20 元
每千克,若一次性购买超过 5 千克,则超过 5 千克的部分的种子价格打 8 折,设一次购
买量为 x 千克,付款金额为 y 元.
(1)求 y 关于 x 的函数解析式;
(2)某农户一次购买了一些玉米种子需付款 500 元,请问该农户购买了多少千克玉米种
∴∠2=∠AEF=35°,∠1=∠FEC,
∵∠AEC=90°,
∴∠1=90°﹣35°=55°,
故选:B.
5.(3 分)已知一次函数 y=kx+b 的图象经过 A(x1,y1),B(x2,y2),且 x2=1+x1 时,y2
=y1﹣2,则 k 等于( )
A.1
B.2
C.﹣1
D.﹣2

2020年陕西省西安市莲湖区中考数学第二次统考试卷(含答案解析)

2020年陕西省西安市莲湖区中考数学第二次统考试卷(含答案解析)

2020年陕西省西安市莲湖区中考数学第二次统考试卷一、选择题(本大题共10小题,共30.0分)1.−(−3)2的值为()A. 6B. −6C. −9D. 92.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.3.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm4.直线y=2x向下平移2个单位长度得到的直线是()A. y=2(x+2)B. y=2(x−2)C. y=2x−2D. y=2x+25.下列计算正确的是()A. 2x2⋅2xy=4x3y4B. 3x2y−5xy2=−2x2yC. x−1÷x−2=x−1D. (−3a−2)(−3a+2)=9a2−46.如图,AB//CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为()A. 20°B. 30°C. 40°D. 60°7.若一个正比例函数的图象经过A(3,−6),B(m,−4)两点,则m的值为()A. 2B. 8C. −2D. −88.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A. 1.6B. 2.5C. 3D. 3.49.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A. 2√6B. 2√10C. 2√11D. 4√310.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴一定在y轴的左侧;②a−b+c≥0;③关于x的方程ax2+bx+c=2一定无实的最小值是3,其中正确结论的个数是()数根;④a+b+cb−aA. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)11.比较大小√10______3√2(填“>”、“<”或“=”);12.如图,在正五边形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是______度.13. 如图,四边形ABCD 为菱形,点A 在y 轴正半轴上,AB//x 轴,点B ,C 在反比例函数y =3x 上,点D 在反比例函数y =−12x 上,那么点D 的坐标为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 20160 的值为( )
A. 0
B. 1
C. 2016
D. -2016
2. 如图是一个正方体被截去两个角后的几何体,它的俯视图为(

A.
B.
C.
D.
3. 如图,已知 AB∥CD,∠DFE=135°,则∠ABE 的度数为 ( )
A. -2
B. -1
C. 1
பைடு நூலகம்D. 2
8. 如图,矩形 ABCD 中,AB=3,BC=4,EB∥DF 且 BE 与 DF
之间的距离为 3,则 AE 的长是( )
A.
B.
C.
第 1 页,共 17 页
D.
9. 如图,已知∠OBA=20°,且 OC=AC,则∠BOC 的度数是( )
A. 70° B. 80° C. 40° D. 60°
D. (-3xy2)3=-9x3y6
6. 如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交 BC 于点 D,DE⊥AB,垂 足为 E.若 DE=1,则 BC 的长为( )
A. 2+
B. +
C. 2+
D. 3
7. 将直线 y=2x+1 向下平移 n 个单位长度得到新直线 y=2x-1,则 n 的值为( )
23. 如图,AB 是⊙O 的直径,点 C、E 在⊙O 上,∠B=2∠ACE,在 BA 的延长线上有一 点 P,使得∠P=∠BAC,弦 CE 交 AB 于点 F,连接 AE. (1)求证:PE 是⊙O 的切线; (2)若 AF=2,AE=EF= ,求 OA 的长.
三、计算题(本大题共 1 小题,共 5.0 分)
15. 先化简,再求值:
,其中

第 2 页,共 17 页
四、解答题(本大题共 10 小题,共 73.0 分)
16. 计算: -( )-1-|
|
17. 如图,已知线段 AB. (1)仅用没有刻度的直尺和圆规作一个以 AB 为腰、底角等 于 30°的等腰△ABC.(保留作图痕迹,不要求写作法) (2)在(1)的前提下,若 AB=2cm,则等腰△ABC 的外接圆的半径为______cm.
(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中 m 的值;并将条形统 计图补充完整; (2)若规定:本学期阅读 3 本以上(含 3 本)课外书籍者为完成目标,据此估计 该校 600 名学生中能完成此目标的有多少人?
第 3 页,共 17 页
20. 数学实践小组想利用镜子的反射测量池塘边一棵树的高度 AB.测量和计算的部分 步骤如下: ①如图,树与地面垂直,在地面上的点 C 处放置一块镜子,小明站在 BC 的延长线 上,当小明在镜子中刚好看到树的顶点 A 时,测得小明到镜子的距离 CD=2 米,小 明的眼睛 E 到地面的距离 ED=1.5 米; ②将镜子从点 C 沿 BC 的延长线向后移动 10 米到点 F 处,小明向后移动到点 H 处 时,小明的眼睛 G 又刚好在镜子中看到树的顶点 A,这时测得小明到镜子的距离 FH=3 米; ③计算树的高度 AB;
22. 四张卡片,除一面分别写有数字 2,2,3,6 外,其余均相同,将卡片洗匀后,写 有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写 有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到 2 的概率;
第 4 页,共 17 页
(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次 抽取的数字作为个位,组成一个两位数,若组成的两位数不小于 32,小贝获胜, 否则小晶获胜.你认为这个游戏公平吗?请说明理由.
21. 我们知道,海拔高度每上升 1 千米,温度下降 6℃.某时刻,吉首市地面温度为 20℃,设高出地面 x 千米处的温度为 y℃. (1)写出 y 与 x 之间的函数关系式; (2)已知吉首市区最高峰莲台山高出地面约 965 米,这时山顶的温度大约是多少 ℃? (3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为 -34℃,求飞机离地面的高度为多少千米?
18. 如图,在 Rt△ABC 中,∠ACB=90°,CD 是 AB 边上的 中线,过点 B 作 BE∥CD,过点 C 作 CE∥AB,BE,CE 相交于点 E. 求证:四边形 BDCE 是菱形.
19. 阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的 4 月 23 日 被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的 课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完 整的统计图.根据图示信息,解答下列问题:
B. 2 个
C. 3 个
D. 4 个
二、填空题(本大题共 4 小题,共 12.0 分)
11. 在实数 ,-(-1), , ,313113113, 中,无理数有______个.
12. 若正六边形的边长为 3,则其面积为______. 13. 如图,在平面直角坐标系 xOy 中,四边形 ODEF 和四边
A. 30° B. 45° C. 60° D. 90°
4. 若一个正比例函数的图象经过 A(3,-6),B(m,-4)两点,则 m 的值为( )
A. 2
B. 8
C. -2
D. -8
5. 下列计算结果正确的是( )
A. 6x6÷2x3=3x2
B. x2+x2=x4
C. -2x2y(x-y)=-2x3y+2x2y2
10. 已知二次函数 y=ax2+bx+c 的 y 与 x 的部分对应值如下表:
x
-1
0
1
3
y
-3
1
3
1
下列结论:①抛物线的开口向下;②其图象的对称轴为 x =1;③当 x<1 时,函数
值 y 随 x 的增大而增大;④方程 ax2+bx+c=0 有一个根大于 4.其中正确的结论有(

A. 1 个
形 ABCD 都是正方形,点 F 在 x 轴的正半轴上,点 C 在
边 DE 上,反比例函数 y= (k≠0,x>0)的图象过点 B,
E.若 AB=2,则 k 的值为______.
14. 如图,已知正方形 ABCD 的边长为 8,点 E 是正方形内部一点, 连接 BE,CE,且∠ABE=∠BCE,点 P 是 AB 边上一动点,连接 PD ,PE,则 PD+PE 的长度最小值为______.
相关文档
最新文档