语音信号基音周期检测的matlab程序
自相关函数法基音周期提取(matlab版)

function nmax=find_maxn(r)%maxn,为峰值最大的nzer=find(r==0); %找第一个零点如果存在jiaocha=0; %找第一近零点ii=1;while (jiaocha<=0)if(r(ii)>0 && r(ii+1)<0 && (ii+1)<length(r))jiaocha=ii;endii=ii+1;if ii==length(r) %没有找到符合要求的点jiaocha=1;endendif length(zer)>0 %检查是否存在零点if zer(1)<jiaocha %存在,则和jiaocha比较大小,用于祛除前点的对基音周期的查找带来的影响jiaocha=zer(1);endendr(1:jiaocha)=0; %祛除影响maxn=max(r); %找最大值temp=find(r==maxn);%返回第一个最大值nmax=temp(1);function jiyinzhouqi(filename,shift)%短时自相关分析%filename语音文件*.wav%zhouqi基音周期shift=10;[signal,fs]=wavread('f:/mywork/1.wav');shift=round(fs*shift); %帧移n1=fix(fs*0.97)+1; %分析起点970ms,帧长30msn2=fix(fs*1)+1;ii=1;for ii=1:(length(signal)-n1)/shift %分析次数if n2<length(signal)data=signal(n1:n2);N=n2-n1+1;R=zeros(1,N); %基音周期(n)多次分析数组for k=1:N-1for jj=1:N-kR(k)=R(k)+data(jj)*data(jj+k);endendvalue(ii)=find_maxn(R); %调用基音周期(n)分析函数n1=n1+shift; %移动帧n2=n2+shift;endend%figure(3)%plot(R);%axis([0,1000 -300 300])figure(1)stem(value);axis([0 length(value) 0 1000])len =length(value); %基音周期(n)多次分析数组长度aver=mean(value);index=find(abs((value-aver))>aver/5);value(index)=0; %去除大野点的影响len=len-length(index);for jj=1:3:len/3 %中值平滑,滑动窗口宽度3,精度为中值1/4(剔除野点)average=(value(jj)+value(jj+1)+value(jj+2))/3;for kk=1:3if abs((value(jj-1+kk))-average)>average/4value(jj-1+kk)=0; %将野点置零,同时数组长度减一len=len-1;endendendfigure(2)stem(value);axis([0 length(value) 0 max(value)])Tp=sum(value)/len/fs %求基音周期(Tp)。
语音信号处理 实验报告用修正的短时自相关检测语音的基音周期

语音信号处理课程实验报告专业班级通信学号姓名指导教师实验名称 用修正的短时自相关检测语音的基音周期 同组人 专业班级通信 学号 姓名 成绩 一、实验目的 1.熟悉前一个实验程序以及中心削波的意义 2.用Matlab 实现用修正的短时自相关检测语音的基音周期。
3.分析修正的短时自相关在基音周期检测中的应用。
4.能够对程序进行重新编制。
二、实验原理 如果x(n)是一个周期为P 的信号,则其自相关函数也是周期为P 的信号,且在信号周期的整数倍处,自相关函数取最大值。
语音的浊音信号具有准周期性,其自相关函数在基音周期的整数倍处取最大值。
计算两相邻最大峰值间的距离,就可以估计出基音周期。
观察浊音信号的自相关函数图,其中真正反映基音周期的只是其中少数几个峰,而其余大多数峰都是由于声道的共振特性引起的。
因此为了突出反映基音周期的信息,同时压缩其他无关信息,减小运算量,有必要对语音信号进行适当预处理后再进行自相关计算以获得基音周期。
第一种方法是先对语音信号进行低通滤波,再进行自相关计算。
因为语音信号包含十分丰富的谐波分量,基音频率的范围分布在50~500Hz 左右,即使女高音升c 调最高也不会超过1kHz ,所以采用1kHz 的低通滤波器先对语音信号进行滤波,保留基音频率;再用2kHz 采样频率进行采样;最后用2~20ms 的滞后时间计算短时自相关,帧长取10~20ms ,即可估计出基音周期。
第二种方法是先对语音信号进行中心削波处理,再进行自相关计算。
本实验采用第二种方法。
且中心削波函数如式(3-1)所示: ……………………………………装………………………………………订…………………………………………线………………………………………()()0()()L L L L L L x x x x f x x x x x x x x ->⎧⎪=-≤≤⎨⎪+<⎩一般削波电平L x 取本帧语音最大幅度的60%~70%。
《语音信号处理》实验2-基音周期估计

华南理工大学《语音信号处理》实验报告实验名称:基音周期估计姓名:学号:班级:10级电信5班日期:2013年5 月15日1.实验目的本次试验的目的是通过matlab编程,验证课本中基音周期估计的方法,本实验采用的方法是自相关法。
2. 实验原理1、基音周期基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。
基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。
因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。
由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。
基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。
②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。
③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。
④基音周期变化范围大,从老年男性的50Hz到儿童和女性的450Hz,接近三个倍频程,给基音检测带来了一定的困难。
由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。
尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。
MATLAB处理语音信号

MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结
语音信号处理是利用数字信号处理技术对语音信号进行分析、处
理和改进的过程。
语音信号是不规则的波形,其包含了很多信息,如
语音的音高、音调、音色、语速、语气等,因此语音信号处理是一项
非常重要的技术。
语音信号处理的一般流程包括语音信号采集、预处理、特征提取、模型建立和应用,其中预处理包括信号增强、降噪、去混响等,特征
提取包括时域特征、频域特征和时频域特征,模型建立包括声学模型
和语言模型等。
为了更加深入地掌握语音信号处理技术,我们进行了一些matlab
仿真实验。
我们首先学习了语音信号的采样和量化过程,并使用
matlab软件对语音信号进行了仿真采样和量化,了解了采样率和分辨
率等概念,还了解了量化噪声的影响。
其次,我们学习了语音信号的基本特征提取技术,并用matlab仿
真实现了时域特征、频域特征和时频域特征的提取,如时域的短时能
量和短时过零率、频域的傅里叶变换和倒谱系数、时频域的小波变换等。
最后,我们学习了基于模型的语音信号处理技术,如基于隐马尔
可夫模型、高斯混合模型、人工神经网络等模型的语音识别、语音合
成等应用,并用matlab进行了相关的仿真实验。
总之,语音信号处理是一项非常重要的技术,它可以在语音识别、语音合成、语音压缩、语音增强等领域得到广泛应用。
通过学习语音
信号处理及matlab仿真实验,我们了解到了它的基本理论和应用方法,并得到了一些实践经验,这对我们今后的学习和工作将具有很大的指
导意义。
基于MATLAB语音信号检测分析及处理

基于MATLAB语音信号检测分析及处理目录一、内容概述 (2)1. 研究背景与意义 (3)2. MATLAB在语音信号处理中的应用 (4)3. 论文研究内容及结构 (5)二、语音信号基础 (6)1. 语音信号概述 (8)2. 语音信号的特性 (9)3. 语音信号的表示方法 (10)三、MATLAB语音信号处理工具 (11)1. MATLAB语音工具箱介绍 (12)2. 常用函数及其功能介绍 (13)四、语音信号检测与分析 (15)1. 语音信号检测原理及方法 (16)2. 语音信号的频谱分析 (18)3. 语音信号的时频分析 (19)4. 语音信号的端点检测 (20)五、语音信号处理算法研究 (21)1. 预加重处理算法 (22)2. 分帧与加窗处理算法 (23)3. 预处理算法 (24)4. 特征提取算法 (25)5. 模式识别与分类算法 (26)六、语音信号处理实验设计与实现 (27)1. 实验目的与要求 (28)2. 实验环境与工具配置 (29)3. 实验内容与步骤 (30)4. 实验结果分析与讨论 (31)七、语音信号处理应用案例 (32)1. 语音识别系统应用案例 (33)2. 语音合成系统应用案例 (34)3. 语音情感识别应用案例 (35)4. 其他领域应用案例 (36)八、总结与展望 (38)1. 研究成果总结 (39)2. 研究不足与问题剖析 (40)3. 未来研究方向与展望 (41)一、内容概述语音信号捕捉与预处理:介绍如何使用MATLAB捕捉语音信号,包括从麦克风等输入设备获取原始语音数据,并对信号进行预处理,如去除噪声、增强语音质量等。
特征提取:详述如何从预处理后的语音信号中提取关键特征,如梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等,以便进行后续的模型训练或识别。
语音信号检测分析:探讨基于MATLAB的语音信号检测分析方法,包括端点检测、语音活动等检测算法的实现,以及基于统计模型、机器学习模型的语音信号分析。
MATLAB处理语音信号

MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
matlab高级编程与应用-语音处理实验报告

语音处理实验报告自03 张驰昱2010012028一、语音预测模型(1)给定e(n) = s(n) -a1s(n -1) -a2s(n -2)假设e(n)是输入信号,s(n)是输出信号,上述滤波器的传递函数是什么?如果a1 = 1.3789,a2 = -0.9506 ,上述合成模型的共振峰频率是多少?用zplane,freqz,impz分别绘出零极点图,频率响应和单位样值响应。
用filter绘出单位样值响应,比较和impz的是否相同。
问题分析:本问题主要练习传递函数到零极点的转化,零极点的绘制,频率响应的绘制,单位响应的绘制,复习filter数字滤波器的使用。
具体实现:clear;clc;a = [1, -1.3789, 0.9506];sys=tf(1,a,-1,'variable','z^-1')[z,p]=tf2zp(1,a);%[r,p,k]=residuez(1,a);也能求出零点omg=abs(angle(p(1)));fs=8000;%数字采样频率f=omg*fs/2/pi%弧度转化为频率n=[0:49]';x=(n==0);figure(1);zplane(1,a);figure(2);freqz(1,a);figure(3);subplot(2,1,1),stem(n,filter(1,a,x));figure(3);subplot(2,1,2),impz(1,a,50);(2)理解speechproc的主要流程我认为主要的部分是以下程序段:(个人理解写在了注释中)%先要统一初始化所用到的向量,这样可以提高执行效率for n = 3:FN%汉明窗取到了帧长的三倍,所以n从3开始s_w = s(n*FL-WL+1:n*FL).*hw; %加窗方便用lpc处理[A E] = lpc(s_w, P); %用lpc技术得到传递函数系数As_f = s((n-1)*FL+1:n*FL); %待处理的本帧语音,即激励响应%需要推算本帧语音的激励,只有得到了激励才能做接下来的变声处理s_Pitch = exc(n*FL-222:n*FL);PT= findpitch(s_Pitch); %刚才算出的激励信号是有高斯白噪声的,需要找%出基音周期和能量,为重新合成激励信号做准备 G = sqrt(E*PT(n));(3)在27帧处观察零极点图问题分析:主要让我们对语音传函的共轭极点有一个更直观的认识具体实现:if n == 27figure(n);zplane(1,A);end(4)用filter计算每帧的激励信号问题分析:已经求出了传函系数和激励相应,只要传函的分子分母互换把激励相应当激励,得到的相应就是原激励具体实现:%前输出状态作为后输入状态即前后状态不变[temp1,zi_pre]=filter(A,1,s_f,zi_pre);exc((n-1)*FL+1:n*FL)=temp1;(5)利用刚才得到的激励信号,继续用filter重建语音问题分析:相当于对于之前求出的激励的验算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function nmax=find_maxn(r)
%寻找峰值最大的n值及基音周期
%r,自相关序列
%maxn,为峰值最大的n
zer=find(r==0); %找第一个零点如果存在
jiaocha=0; %找第一近零点
ii=1;
while (jiaocha<=0)
if(r(ii)>0 && r(ii+1)<0 && (ii+1)<length(r))
jiaocha=ii;
end
ii=ii+1;
if ii==length(r) %没有找到符合要求的点
jiaocha=1;
end
end
if length(zer)>0 %检查是否存在零点
if zer(1)<jiaocha %存在,则和jiaocha比较大小,用于祛除前点的对基音周期的查找带来的影响jiaocha=zer(1);
end
end
r(1:jiaocha)=0; %祛除影响
maxn=max(r); %找最大值
temp=find(r==maxn);%返回第一个最大值
nmax=temp(1);
function jiyinzhouqi(filename,shift)
%短时自相关分析
%filename语音文件*.wav
%zhouqi基音周期
shift=10;
[signal,fs]=wavread('f:/mywork/1.wav');
shift=round(fs*shift); %帧移
n1=fix(fs*0.97)+1; %分析起点970ms,帧长30ms
n2=fix(fs*1)+1;
ii=1;
for ii=1:(length(signal)-n1)/shift %分析次数
if n2<length(signal) %防止溢出
data=signal(n1:n2);
N=n2-n1+1;
R=zeros(1,N); %基音周期(n)多次分析数组
for k=1:N-1 %求自相关序列
for jj=1:N-k
R(k)=R(k)+data(jj)*data(jj+k);
end
end
value(ii)=find_maxn(R); %调用基音周期(n)分析函数
n1=n1+shift; %移动帧
n2=n2+shift;
end
end
%figure(3)
%plot(R);
%axis([0,1000 -300 300])
figure(1)
stem(value);
axis([0 length(value) 0 1000])
len =length(value); %基音周期(n)多次分析数组长度aver=mean(value);
index=find(abs((value-aver))>aver/5);
value(index)=0; %去除大野点的影响
len=len-length(index);
for jj=1:3:len/3 %中值平滑,滑动窗口宽度3,精度为中值1/4(剔除野点)
average=(value(jj)+value(jj+1)+value(jj+2))/3;
for kk=1:3
if abs((value(jj-1+kk))-average)>average/4
value(jj-1+kk)=0; %将野点置零,同时数组长度减一
len=len-1;
end
end
end
figure(2)
stem(value);
axis([0 length(value) 0 max(value)])
Tp=sum(value)/len/fs %求基音周期(Tp)。